
Docker Basics

Published: 2019-04-03
Updated: 2019-04-03
Web: https://fritzthecat-blog.blogspot.com/2019/04/docker-basics.html

Docker is for deployment. It is a . When you pack your virtualization at operating-system level
application into a docker image and run that image, the application will believe that it has the whole
computer on its own. All dependencies will be in that image, as configured in a of your Dockerfile
application together with build- and runtime-environment variables. You don't depend on any software
being installed on your deployment target.

Virtualization is what did for us until now, but docker can do that more lightweight and virtual machines
much faster. Originally it was available on LINUX only, because the LINUX kernel can somehow
"duplicate" itself (,), which feels like more than one operating-system "instances" cgroups namespaces
running on the same hardware. For WINDOWS 10 this is available as feature, you must "Hyper V"
activate virtualization in the BIOS of your computer; alternatively run a LINUX VM that hosts the
docker installation for WINDOWS. Such said you will understand that, instead of a VM, docker has to be
installed on the machine where you want to run your docker image.

You can find all what's in this Blog on the . Lots of docker images are docker homepage available freely
on the internet.

Mind that

docker aims at the , the packed app may be expected to be a appcloud 12-factor

docker doesn't provide operating-system-independence, the target operating-system must support
the packed app

all data that a dockerized app writes to the file system it runs upon will be lost when its container
gets removed

two Java apps packed into two docker images will carry two and not share themJREs

all dockerized Java apps will see the same number of CPU cores and the same memory amount, so
if they scale themselves (like a JVM does), they may (switch to or overuse system resources Java 9
newer and use JVM options -XX:+UnlockExperimentalVMOptions -XX:+UseCGroupMemoryLimitForHeap
).

Build Image, Run Containers

The is what you . The is what you .image build container run

The image won't change, it's the template for the container, while the container is a process that can take
on states. You can instantiate many containers from one image. Containers are still present after they
terminated, unless they were created using the flag, like in .--rm docker run --rm imagename

Useful Commands

https://fritzthecat-blog.blogspot.com/2019/04/docker-basics.html
https://hub.docker.com/
https://docs.docker.com/engine/reference/builder/
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Linux_namespaces
https://blogs.technet.microsoft.com/canitpro/2015/09/08/step-by-step-enabling-hyper-v-for-use-on-windows-10/
https://docker-curriculum.com/
https://hub.docker.com/
https://en.wikipedia.org/wiki/Cloud_computing
https://12factor.net/
https://en.wikipedia.org/wiki/Java_virtual_machine#Execution_environment
https://jaxenter.com/nobody-puts-java-container-139373.html
https://jdk.java.net/java-se-ri/9

You can manage your docker platform by that all start with "docker".lots of commands

Purpose Command

List all images installed on computer
 docker images

docker image ls

List all running containers on computer
docker ps

docker container ls

List all running and stopped containers on computer
docker ps -a

docker container ls -a

Instantiate a container from image "hello-world",
with download if the image is not present

docker run hello-world

Look at the logs of container "mysql" docker logs --follow mysql

Terminate the container with identity "mysql" docker stop mysql

Start again the stopped container with identity
"mysql", using the same file system

docker start mysql

Stop and start again the running container with
identity "mysql"

docker restart mysql

Remove a container "hello-world" docker rm hello-world

Remove an image "hello-world" docker rmi hello-world

Start an interactive shell (bash) inside a running
container "mysql"

docker exec -it mysql bash

Copy a file from a container /opt/mysql/my.ini

"mysql" into current directory (".")
sudo docker cp mysql:/opt/mysql/my.ini .

Display the layers inside the image "hello-world" docker history hello-world

Create an image out of the app in current directory
where a existsDockerfile

docker build .

Remove all stopped containers, unused images and
other resources

docker system prune -a

Remove all images not connected to a container docker image prune -a

Dockerfile Keywords

A normally is placed in the root directory of the project that needs to be packed into a docker Dockerfile
image. It's like a C , or a Java/Maven , but it has . Following is a short makefile pom.xml its own syntax
reference of some important keywords used in such a file.

Keyword Meaning

#
Exclusively at line start, opens a comment or a parser-directive like " # directive=...

", "# syntax=...", "# escape=..."

The this app builds on. A Java app would put a JRE here. Dependencies of docker image

https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/builder/
https://hub.docker.com/search/?type=image

FROM dependencies need not to be listed. A valid always starts with FROM.Dockerfile

ARG
Buildtime variable, optionally with default-value. Can be set or overwritten by an option
in the command. docker build

An ENV- or ARG-variable can be used inside a via or .XXX Dockerfile $XXX ${XXX}

ENV
Runtime variable for OS-environment of the contained app. Can be overwritten by an
option in the command.docker run

LABEL Metadata, can be recalled by .docker inspect

EXPOSE The port where the contained app listens, defaults to a TCP type port.

VOLUME
Creates a directory (or mount point) shared with the outside world that will not be
removed when the container gets removed.

WORKDIR
Sets the working directory for all , , , , statements following RUN CMD ENTRYPOINT COPY ADD

in the . In case doesn't exist, it will be created.Dockerfile WORKDIR

USER Sets the system-user for all , , statements following in the Dockerfile.RUN CMD ENTRYPOINT

COPY Buildtime, copies files from file system into the image to build.

ADD
Buildtime, copies files from file system or URLs from the network into the image to
build.

RUN Buildtime, executes the command to the right of RUN.

CMD
Runtime, starts the contained app on . Only one CMD statement is possible docker run

in a .Dockerfile

Mind that setting the image's name inside a is !Dockerfile not supported

Layers and Gotchas

A like this oneDockerfile

FROM debian:jessie
ADD large_file /var/www/large_file
RUN chown www-data /var/www/large_file
RUN chmod 756 /var/www/large_file

that packs a of 1 GB size and then changes its access rights will lead to a 3 GB image with large_file

following layers:

IMAGE CREATED CREATED BY SIZE COMMENT

49b4a4ea228a 36 seconds ago /bin/sh -c chmod 756 /var/www/large_file 1.074 GB

09d77316932b 2 minutes ago /bin/sh -c chown www-data /var/www/large_file 1.074 GB

7adb7c72c3ef 2 minutes ago /bin/sh -c #(nop) ADD file:a86f6dedfb4ba54972 1.074 GB

f50f9524513f 8 weeks ago /bin/sh -c #(nop) CMD ["/bin/bash"] 0 B
<missing> 8 weeks ago /bin/sh -c #(nop) ADD file:b5391cb13172fb513d 125.1 MB

That means, every build step like creates a new , and files referenced in the FROM, RUN, COPY, ADD layer
commands executed there will be copied always newly into the image.

https://docs.docker.com/engine/reference/builder/#from
https://docs.docker.com/engine/reference/builder/#arg
https://docs.docker.com/engine/reference/builder/#env
https://docs.docker.com/engine/reference/builder/#label
https://docs.docker.com/engine/reference/builder/#expose
https://docs.docker.com/engine/reference/builder/#volume
https://docs.docker.com/engine/reference/builder/#workdir
https://docs.docker.com/engine/reference/builder/#user
https://docs.docker.com/engine/reference/builder/#copy
https://docs.docker.com/engine/reference/builder/#add
https://docs.docker.com/engine/reference/builder/#run
https://docs.docker.com/engine/reference/builder/#cmd
https://stackoverflow.com/questions/38986057/how-to-set-image-name-in-dockerfile
https://docs.docker.com/v17.09/engine/userguide/storagedriver/imagesandcontainers/
https://www.datawire.io/not-engineer-running-3-5gb-docker-images/
https://docs.docker.com/v17.09/engine/userguide/storagedriver/imagesandcontainers/

This also affects final cleanups of left-over files, they would be deleted in the topmost layer only.
Docker observes the file system and notices any change after a build step (resulting in a new layer), but it
doesn't associate steps and draw conclusions.

Workaround:

Commands that change the file system should be linked together by the '&&' operator to just one
command:

RUN apt-get update \
 && apt-get install -y vim \
 && rm -rf /var/lib/apt

A could be done by a preparing ". chown "RUN usermod -u 1000 www-data

Alternatively the container can be started by a script that provides all necessary circumstances:

docker run hello-world --entrypoint=/bin/myscript.sh

In the latter case the should be inside the docker image./bin/myscript.sh

Fritz Ritzberger, 2019-04-03

