MemPak - Format

MemPaks are divided to 128 Blocks, each Block contains 256 Byte Data. The first 5 Blocks are used for Organisation of the MemPak, leaving 123 Blocks for the Games to store Data.

a blank MemPak should be filled with 0xFF Values (most Roms wont bother, but some need it)

Block 0 (0x0000 - 0x00FF): MemPak-Header

The very first Byte seems to be a MemPak Identifier... or it could be the first Word means the total accessable adresses, but since i dont know it for sure, its an Identifier... ;)

There 4 Areas that store some kind of checksums, all 4 Areas contain the same data, if the data in all Areas got corrupted, the MemPak becomes unvalidated. Now in sense of Error-Checking, those Values should be based on the MemPak-Content, but...they arent! When the N64 formats a MemPak it gets 2 random 4-Byte-Values, which must follow some rules to be a Valid Number. The layout is this:

FF FF FF FF xx xx xx xx 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 01 01 00 yy yy yy yy

xx xx xx xx = Value 1, yy yy yy yy = Value2 (Checksum of Value2 will be always 0x153)

Im have no clue how to create valid Values, but I can say for sure after the Formating, they never change. So the Values are no kind of CRC-Code, maybe one is totaly Random and the second is calculated of it?

Anyway, that 32-Byte-Area is found at:

0x0020 - 0x003F

0x0060 - 0x007F

0x0080 - 0x009F

0x00C0 - 0x00DF

Block 1 (0x0100 - 0x01FF): Block-Index

Here is stored which Blocks are free & which are used, each Index has 2Bytes length. Since the first 5 Blocks contain no Data, the first Index is found at 0x010A. For the Index, those Values are used:

00 01...Last Block of Note

00 03...Block is free

00 05...The next Part of this Note is Block 0x05

00 yy...The next Part of this Note is Block 0xyy

00 7F...The next Part of this Note is Block 0x7F

Theres a checksum in Byte 0x0101, for getting that value u have to sum up all Indexes(without the checksum itself of course) and take the remainder of a division by 256 (%256).

Block 2 (0x0200 - 0x02FF): Block 1 - Backup

A 1:1 Copy of Block 1

Block 3-4 (0x0300 - 0x04FF): Notes - Header

Here are the Headers of the Notes, each Header is 32Byte long, theres place for max 16 Notes.

Note Header (32 Byte size)

Byte0-2: Vendor????? is same like in Game-ROM

Byte3: Region

00 = (NONE)

4A = J (JAPAN)

37 = 7 (BETA)

41 = A (NTSC)

44 = D (GERMANY)

45 = E (USA)

46 = F (FRANCE)

49 = I (ITALY)

50 = P (EUROPE)

53 = S (SPAIN)

55 = U (AUSTRALIA)

58 = X (PAL)

59 = Y (PAL)

Byte4-5: Game-ID?? Version??

Byte6-7: First Block of Note(see Block 1 - BlockIndex)

Byte8: ?

Byte9: ?

ByteC: this is 1 Character, that will be appended to the String

Byte10 - 1F: Name-String of the Note

Charactar-listing

0x00...End of String(not required if String fills the whole Block)

0x01 - 0x0E...Icons(wont work on most games)

0x0F...Space

0x10 - 0x19...0-9

0x1A - 0x33...A-Z

0x34... !

0x35... "

0x36... #

0x37... `

0x38... *

0x39... +

0x3A... ,

0x3B... -

0x3C... .

0x3D... /

0x3E... :

0x3F... =

0x40... ?

0x41... @

0x42... TM(not sure)

0x43... (C)(not sure)

0x44... R(not sure)

0x45-0x94... Japan signs

Test Block(0x8000 - 0x80FF)

Im not sure about the size, im not sure about the meaning, but this is what i think.

This Block acts the same way as the whole mempak, means it can store and retrieve Data, however no Rom stores Data here, rather it tests the function of the inserted Pak. The typical MemPak behaviour is to store the Datas(usually the 32 Bytes after Adress 0x8000 are taken, but i seen higher adresses too) .

© 2001 N-Rage (go.to/nrage)

