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Abstract. Coding prescriptions are combinatorial objects linked to a substitution, that is a
morphism of the free monoid. Originally they have been introduced in order to code the induced

symbolic dynamical systems. In the present article we are interested in coding prescriptions of
compositions and powers of substitutions. This will provide a a very general framework for
representing integers. We will study their properties and find several relations with well-known

systems of integer numeration.

1. Introduction

We are concerned with combinatorial aspects of morphisms of the free monoid, so-called sub-
stitutions. More precisely, we study coding prescriptions. Quickly explained, for a substitution σ

over an alphabet A, a coding prescription with respect to σ is given by a complete residue system
modulo the length of σ(x) for each letter x contained in the alphabet A. These combinatorial
objects have been introduced in [8] in order to relate the dynamical system induced by a primitive
substitution with shifts of finite type.

In the actual research we associate a finite directed graph with a coding prescription. This
will allow us to define a binary operation for coding prescriptions that is compatible with the
composition of substitutions. It will turn out that the finite paths of a given length n of this
graph correspond to coding prescriptions with respect to the nth powers of the substitution. In
the principal result of the article we use the theory to represent integers by finite paths on the
associated graph generalising the result of Dumont and Thomas in [1].

The main ingredient of our paper is combinatorics on words. Contrarily to related articles as [1]
(that focus on the free monoid over A) we consider the free group. The inverse letters that appear
in this context correspond to negative integers. In this way we achieve a much more general result.
In particular the set of representable integers usually contains negative as well as positive integers.
The exact shape strongly depends on the choice of the coding prescription.

In the easiest case, when the coding prescription is given by sets of consecutive integers (we call
such coding prescriptions continuous), we either obtain the representation of Dumont-Thomas or
we can represent the entire set Z. In this case we will also see that the canonical order of the
integers corresponds to an ordering on the paths. For other coding prescriptions this equivalence
of orderings does not hold in general, in fact, for such non-continuous coding prescriptions the
representations may have quite unusual properties.

Following [1, 2] the integer representation presented by Dumont and Thomas covers several
generalised integer numeration systems as Zeckendorf’s Fibonacci expansion [9] or Rauzy’s Tri-
bonacci expansion [7], which are actually special cases of digit representations with respect to
linear recurrences (also known as G-ary representations, see [3, 5]). Our result provides possibil-
ities to treat these issues in a more general way. In particular, it will turn out that our setting
does not only cover the cited numeration systems but also the negaFibonacci expansion presented
recently by Knuth in part four of its famous monograph “The art of computer programming” [4].
Furthermore, we will see by some examples how to generalise the concept of G-ary expansions.

2010 Mathematics Subject Classification. 11A63, 68R15, 11B39.
Key words and phrases. Sustitutions, integer representation, combinatorics on words.

The research was supported by the Austrian Research Foundation (FWF), Project P28991-N35.

1



2 PAUL SURER

The article is organised as follows. In Section 2 we carefully introduce all necessary formalisms
and state the main results. In Section 3 we are concerned with combinatorial aspects of coding
prescriptions. We are interested in how to obtain coding prescriptions with respect to compo-
sition and powers of substitutions and study their behaviour. In Section 4 we prove the results
concerning integers representation. This also involves the investigation of the structure of the
set of representable integers. In Section 5 we discuss through several examples the relation of our
research with existing results, as the integer numeration of Dumont-Thomas [1], the negaFibonacci
expansion and representations with respect to linear recurrences.

2. Definitions, notations and main results

2.1. Free monoids and free groups. Throughout the paper we let A = {1, . . . , m} denote a
finite set (alphabet) and call its elements the letters of A. The free monoid generated by A is the
set of finite words A∗ together with the concatenation of words. The neutral element is the empty
word ε. Furthermore we define the set of non-empty words A+ ∶= A∗ ∖ {ε}.

For our considerations we extend our alphabet by the set of “inverse letters” A ∶= {x ∶ x ∈ A}.
Analogously, let A∗ (A+, respectively) denote the set of finite (non-empty, respectively) words

over A, and (A ∪ A)∗ is the set of finite words over the extended alphabet A ∪ A. Define by ∼

the equivalence relation on (A∪A)∗ induced by the cancellation of letters, that is xx ∼ ε ∼ xx for

each x ∈ A. Then (A ∪A)∗/ ∼ is the free group generated by A.

For a word X ∈ (A∪A)∗ and a set X ⊂ (A∪A)∗ we write X ∈∼ X if X is contained modulo ∼ in

X. The monoids A∗ as well as A∗ are embedded in a natural way in it the free group (A∪A)∗/ ∼
and A∗ ∩ A∗ = {ε}. Therefore, X ∈∼ A∗ ∩ A

∗
if and only if X ∼ ε. Actually, all the words that

appear in this article will eventually turn out to be contained in A∗ ∪A∗ (modulo ∼).

For a word X = x1⋯xn ∈ (A ∪A)∗ its inverse modulo ∼ is given by

X ∶= xn xn−1⋯x1

where x̄ = x for all x ∈ A. If X ∼ PS (with P, S ∈ (A∪A)∗) then we obviously have X ∼ PS ∼ S P .

For each word X ∈ (A ∪A)∗ with X ∈∼ A∗ we clearly have X ∈∼ A
∗

and vice versa.
We adapt several known combinatorial notations to our setting. For y ∈ A and X = x1, . . . , xn ∈

(A∪A)∗ we define ∣X ∣y to be the difference of the number of occurrences of y and the number of
occurrences of ȳ in X, i.e.

∣X ∣y ∶=#{j ∈ {1, . . . , n} ∶ xj = y} −#{j ∈ {1, . . . , n} ∶ xj = y},
and

∣X ∣ ∶= ∑
y∈A

∣X ∣y.

Observe that these definitions are compatible with ∼ and behave additively with respect to the
concatenation of words, that is for all X, X ′, Y ∈ (A ∪ A)∗ with X ∼ X ′ and y ∈ A we have
∣XY ∣y = ∣X ∣y + ∣Y ∣y and ∣X ∣y = ∣X ′∣y. This immediately implies that ∣XY ∣ = ∣X ∣ + ∣Y ∣, ∣X ∣ = ∣X ′∣
also hold.

We define the partial ordering ⪯ and the corresponding strict partial ordering ≺ on (A∪A)∗ by

X ⪯ Y ⇐⇒XY ∈∼ A∗, X ≺ Y ⇐⇒XY ∈∼ A+.
One easily verifies that the definition is compatible with ∼ and, hence, ⪯ can be transferred to a
partial ordering on the free group (A ∪A)∗/ ∼. Observe that ∣⋅∣ is an order-preserving map from

the partially ordered set ((A ∪A)∗/ ∼,⪯) onto the totally ordered set (Z,≤).
For two words Y, Y ′ ∈ (A ∪A)∗ the set

{X ∈ (A ∪A)∗/ ∼∶ Y ⪯X ⪯ Y ′}
is a ⪯-chain, that is a totally ordered subset, which we will refer to as the Y -Y ′-chain. We can
map it bijectively (and order-preservingly) via ∣⋅∣ onto the ≤-chain {∣Y ∣, . . . , ∣Y ′∣}. Such chains are
of great importance in this article.
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As already mentioned, the words that appear in this paper are all contained in A∗∪A
∗

(modulo
∼). Note that for such words the relation ⪯ corresponds to the “factor”-property. Indeed, suppose
that X, Y ∈ A∗. Then X ⪯ Y means that there exists a word S ∈ A∗ such that XS ∼ Y , thus, X

is a left factor of Y . The term X ≺ Y signifies that X is a proper left factor of Y . If X, Y ∈ A∗
then X, Y ∈ A∗ and X ⪯ Y means that X = PY for a P ∈ A∗, hence, Y is a right factor of X. For

X ∈∼ A
∗

and Y ∈∼ A∗ we always have X ⪯ ε ⪯ Y , hence, the X-Y -chain includes the empty word.

2.2. Substitutions and coding prescriptions. Consider an endomorphism σ ∶ A∗ Ð→ A∗ and
note that σ is uniquely determined by the values σ(x) for each x ∈ A. We call σ a substitution
(over A) if

(1) ∀x ∈ A ∶ σ(x) /= ε,
(2) ∃x ∈ A ∶ limn→∞ ∣σn(x)∣ =∞.

The substitution σ is primitive if there exists an integer n ≥ 1 such that ∣σn(y)∣x > 0 for each two
letters x, y ∈ A.

A substitution σ extends in a natural way to (A ∪A)∗ by defining

σ(ā) = σ(a).
The setting agrees with the relation ∼ since for X, Y ∈ (A ∪A)∗ we have σ(X) ∼ σ(Y ) whenever

X ∼ Y , making σ an endomorphism of the free group (A ∪ A)∗/ ∼. Observe that for words

X, Y ∈∼ A∗ ∪A
∗

the relation ∣X ∣ < ∣Y ∣ implies ∣σ(X)∣ < ∣σ(Y )∣. This does not hold in general for

words X, Y ∈ (A ∪A)∗.
Definition 2.1 (Coding prescription, cf. [8]). Let σ be a substitution over the alphabet A. A
coding prescription (with respect to σ) is a function c with domain A2 that assigns to each pair of
letters a finite set of integers such that

(1) c(xx) is a complete residue system modulo ∣σ(x)∣ for each x ∈ A (hence, #c(xx) = ∣σ(x)∣
and for all k, k′ ∈ c(xx) with k /= k′ we have k /≡ k′ (mod ∣σ(x)∣));

(2) for each x ∈ A we have −∣σ(x)∣ < k < ∣σ(x)∣ for all k ∈ c(xx);
(3) for each ab ∈ A2 we have

c(ab) = {k ∈ c(aa) ∶ k < 0} ∪ {0} ∪ {k ∈ c(bb) ∶ k > 0}. (2.1)

We call a coding prescription continuous if c(ab) is a set of consecutive integers for each ab ∈ A2.

Note that 0 ∈ c(ab) for all ab ∈ A2. By the definition it is easy to see that a coding prescription
is uniquely determined by defining c(xx) for each x ∈ A. Furthermore, c is continuous if and only
if c(xx) is a set of consecutive integers for all x ∈ A.

We associate with a coding prescription a finite directed graph which plays an important role
in the further proceeding.

Definition 2.2 (Graph associated with a coding prescription). Let σ be a substitution over the
alphabet A and c a coding prescription with respect to σ. The graph associated with c is the
directed graph Hσ,c with vertex set A2 and an edge from ab to a1b1 labelled by (D, a1b1) with

D ∈ (A ∪A)∗/ ∼ whenever ∣D∣ ∈ c(ab) and

σ(ā) ⪯Dā1 ≺D ≺Db1 ⪯ σ(b). (2.2)

(hence, D ∈∼ A∗ ∪A
∗
).

For each vertex ab ∈ A the construction of the set of outgoing edges is based on the connection
(via ∣⋅∣) between the σ(ā)-σ(b)-chain and the ≤-chain {−∣σ(a)∣, . . . , ∣σ(b)∣}. This implies that there
is a one-to-one correspondence between c(ab) and the set of outgoing edges H1

σ,c(ab), that is we
have

c(ab) = {∣D∣ ∶ (D, a1b1) ∈H1
σ,c(ab)}.

The destination of an edge is determined by the predecessor and the successor of D in the chain.
We see that Hσ,c does not contain dead ends since each vertex ab has at least one outgoing edge
that corresponds to 0 ∈ c(ab). However, in general graphs associated with coding prescriptions are
not strongly connected even for primitive substitutions.
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In the present article we are mainly interested in finite paths on H = Hσ,c (when there is no
danger of confusion we will frequently skip the indices). Therefore, we fix the following notation:
for a vertex ab ∈ A2 and an integer n > 0 the expression Hn(ab) is the set of paths of length n

that start in ab. We represent the elements of Hn(ab) by the corresponding label sequences.
Each vertex ab possesses (with respect to ≺) a minimal and a maximal outgoing edge

(D−, a−b−) ∈ H1(ab) and (D+, a+b+) ∈ H1(ab), respectively, that satisfy D− ⪯ D ⪯ D+ for all

(D, a1b1) ∈ H1(ab). Observe that we always have D− ∈∼ A
∗

and D+ ∈∼ A∗. The minimal and
the maximal edge may coincide, in this case we have D− ∼ D+ ∼ ε. Note that for each positive
integer n the set Hn(ab) contains a uniquely determined path that consists of minimal (maximal,
respectively) edges only. We refer to this path as the minimal (maximal, respectively) path of
length n.

2.3. Main results. In the first main result we show how to obtain a coding prescription with
respect to the composition of substitutions.

Theorem 2.3. Let σ1 and σ2 be two substitutions over the same alphabet A, and c1 and c2 coding
prescriptions with respect to σ1 and σ2, respectively. For each ab ∈ A2 set

c2 ⊙ c1(ab) ∶= ⋃
(D1,a1b1)∈H1

σ1,c1
(ab)

(∣σ2(D1)∣ + c2(a1b1)).

Then c2 ⊙ c1 is a coding prescription with respect to σ2 ○ σ1.

The following list contains further properties of the binary operation ⊙ and composed coding
prescriptions.

● The graph associated with c2 ⊙ c1 is a product of the graphs associated with c1 and c2.
In particular, for edges (D1, a1b1) ∈ H1

σ1,c1
(ab) and (D2, a2b2) ∈ H1

σ2,c2
(a1b1) there is an

edge (σ2(D1)D2, a2b2) ∈H1
σ2○σ1,c2⊙c1

(ab) (see Corollary 3.4).
● The binary operation ⊙ is associative (see Corollary 3.5).
● The continuity of c1 and c2 is sufficient (but not necessary) for c2 ⊙ c1 to be continuous

(see Lemma 3.8 and Corollary 3.9).

Application of Theorem 2.3 to powers of a single substitution σ yields the following result.

Theorem 2.4. Let σ be a substitution over the alphabet A and c a coding prescription with respect
to σ. For a positive integer n let c(n) denote the function with domain A2 defined by

c(n)(ab) =
⎧⎪⎪⎨⎪⎪⎩

n

∑
j=1

∣σn−j(Dj)∣ ∶ (Dj , ajbj)nj=1 ∈Hn
σ,c(ab)

⎫⎪⎪⎬⎪⎪⎭
.

Then c(n) is a coding prescription with respect to σn. It is continuous if and only if c is continuous.

Theorem 2.4 provides a method for representing integers when the substitution σ satisfies the
additional property

∃ab ∈ A2
∶ (σ(ā) ≺ ā) ∧ (b ≺ σ(b)). (2.3)

This requirement does not depend on the choice of a coding prescription and means that the
rightmost letter of σ(a) equals a and the leftmost letter of σ(b) equals b and that σ(a) as well as
σ(b) have length at least 2 (with this we want to avoid trivialities). Actually, for each substitution
σ there exists a power n such that σn(ā) ⪯ ā and b ⪯ σn(b) for at least one pair ab ∈ A2 (e.g. [6]).

Note that if σ is a primitive substitution that satisfies σ(ā) ⪯ ā and b ⪯ σ(b) then the inequalities
are automatically strict. Indeed, if we had, for instance, b = σ(b) then b = σn(b) holds for all
positive integers n. In the case of a one-letter alphabet this would violate Item (2) of the definition
of a substitution while for larger alphabets this would contradict the definition of primitivity.

Theorem 2.5. Let σ be a substitution over the alphabet A that satisfies (2.3) for ab ∈ A2, and c

a coding prescription with respect to σ. Define the set

Zab ∶= ⋃
n≥1

c(n)(ab) ⊂ Z.
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Then for each element N ∈ Zab there exists a finite path (Dj , ajbj)nj=1 ∈ Hn(ab) such that N can
be represented as

N =
n

∑
j=1

∣σn−j(Dj)∣. (2.4)

Paths that represent the same integer differ by a leading sequence of (ε, ab) only, therefore, the
representation is unique when we require that D1 /∼ ε (and 0 is represented by the empty sum).

Obviously, the set Zab of representable integers always contains 0. Furthermore, if c is a
continuous coding prescription then it follows from Theorem 2.4 that Zab consists of consecutive
integers. Further (and less obvious) properties are collected in the next result.

Proposition 2.6. Consider the setting of Theorem 2.5. Then the following items hold.

(1) Zab contains positive (negative, respectively) integers if and only if c(ab) contains at least
one positive (negative, respectively) integer.

(2) Zab contains all positive (negative, respectively) integers if and only if 1 ∈ c(ab) (−1 ∈ c(ab),
respectively).

(3) If the difference between 0 and the least positive (largest negative, respectively) element of
c(ab) is at least 3 and σ is a primitive substitution then Zab contains gaps of arbitrary
large size.

(4) If ∣σ(x)∣ ≡ 1 (mod 2) for all x ∈ A and c the coding prescription with

c(ab) = {−∣σ(a)∣ + 1,−∣σ(a)∣ + 3, . . . ,−2, 0, 2, . . . , ∣σ(b)∣ − 1}
for all ab ∈ A2 then Zab = 2Z.

The proposition does not yield a complete description of Zab for all settings. In fact, if neither
of the items can be applied then the structure of Zab is quite unpredictable and a characterisation
can be a challenging task. We will analyse one such case in Example 5.5.

For some settings the canonical ordering of the integers corresponds to a lexicographical ordering
of the addends of the representation (2.4). In particular:

Proposition 2.7. Consider the setting of Theorem 2.5 and suppose that either c is a continuous
coding prescription or that the conditions of Item (4) in Proposition (2.6) are satisfied. Let

N ∶=
n

∑
j=1

∣σn−j(Dj)∣, N ′ ∶=
n

∑
j=1

∣σn−j(D′j)∣

be (2.4)-representations of equal length of integers N, N ′ ∈ Zab. Then the following items are
equivalent:

(1) N < N ′;
(2) D1, . . . , Dn ≺lex D′1, . . . , D′n where ≺lex is the lexicographical extension of ≺.
(3) ∣D1∣, . . . , ∣Dn∣ <lex ∣D′1∣, . . . , ∣D′n∣.

Remark 2.8. For comparing (2.4)-representations of different length we have to fill up the shorter
sequence with a respecting number of leading ε.

3. Combinatorics of coding prescriptions

3.1. Composing coding prescriptions. Throughout the following considerations we let σ1 and
σ2 denote two substitutions over the same alphabet A, and by c1 and c2 coding prescriptions with
respect to σ1 and σ2, respectively. Furthermore, we set H1 ∶=Hσ1,c1

and H2 ∶=Hσ2,c2
. Our aim is

to show Theorem 2.3, hence, that c1 and c2 induce in a natural way a coding prescription c2 ⊙ c1

with respect to σ2 ○ σ1 defined by

c2 ⊙ c1(ab) ∶= ⋃
(D1,a1b1)∈H1

1
(ab)

(∣σ2(D1)∣ + c2(a1b1)) (3.1)

for each ab ∈ A2, and to analyse these composed coding prescriptions.

Lemma 3.1. Let (D1, a1b1) ∈H1
1(ab) and D, D′ ∈∼ A∗∪A

∗
such that σ1(ā) ⪯D ≺D1 ≺D′ ⪯ σ1(b).

Then ∣σ2(D)∣ < ∣σ2(D1)∣ + k < ∣σ2(D′)∣ holds for each k ∈ c2(a1b1).
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Proof. By assumption, D, D1 and D′ are contained in the σ1(ā)-σ1(b)-chain. Since D1a1 is the
predecessor and D1b1 is the successor of D1 we clearly have D ⪯D1a1 and D1b1 ⪯D′. Therefore,
∣σ2(D)∣ ≤ ∣σ2(D1)∣ − ∣σ2(a1)∣ and ∣σ2(D1)∣ + ∣σ2(b1)∣ ≤ ∣σ2(D)∣. Now the lemma follows from the
observation that for each k ∈ c2(a1b1) we have −∣σ2(a1)∣ < k < ∣σ2(b1)∣ by definition. �

Lemma 3.2. Let x ∈ A. Then for each k ∈ {0, . . . , ∣σ2 ○ σ1(x)∣ − 1} we have either k ∈ c2 ⊙ c1(xx)
or k − ∣σ2 ○ σ1(x)∣ ∈ c2 ⊙ c1(xx).

Proof. Let k ∈ {0, . . . , ∣σ2 ○ σ1(x)∣ − 1}. There exist words U, V ∈ A∗ and a letter y ∈ A such
that UyV = σ1(x) and ∣σ2(U)∣ ≤ k < ∣σ2(Uy)∣. Hence, 0 ≤ k − ∣σ2(U)∣ < ∣σ2(y)∣. By definition,
there exists a k2 ∈ c2(yy) with k2 ≡ k − ∣σ2(U)∣ (mod ∣σ2(y)∣). In fact, we have two possibilities:
k2 = k− ∣σ2(U)∣ ≥ 0 or k2 = k− ∣σ2(U)∣− ∣σ2(y)∣ = k− ∣σ2(Uy)∣ < 0. We study these cases separately.

Case 1. k2 = k − ∣σ2(U)∣: By definition the set c1(xx) contains either ∣U ∣ ≥ 0 or ∣U ∣−∣σ1(x)∣ =
∣yV ∣ < 0. This yields two subcases.

Case 1a. ∣U ∣ ∈ c1(xx): We clearly have σ1(x̄) ≺ ε ⪯ U ≺ Uy ⪯ σ1(x). Let a1 ∈ A such
that σ1(x̄) ⪯ Uā1 ≺ U . Then, by definition, (U, a1y) ∈ H1

1(xx). Since 0 ≤ k2 ∈ c2(yy)
we have by definition k2 ∈ c2(a1y) and therefore ∣σ2(U)∣+ k2 = ∣σ2(U)∣+ k − ∣σ2(U)∣ =
k ∈ c2 ⊙ c1(xx).

Case 1b. ∣yV ∣ ∈ c1(xx): Here we have σ1(x̄) ≺ yV ≺ V (∼ yV y) ⪯ ε ≺ σ1(x). Let a1 ∈ A
denote the letter with σ1(x̄) ⪯ yV ā1 ≺ yV . Then, by definition, (yV , a1y) ∈ H1

1(xx).
As above we have k2 ∈ c2(a1y) and, thus,

∣σ2(yV )∣ + k2 = ∣σ2(yV )∣ + k − ∣σ2(U)∣ = k − ∣σ2(UyV )∣ = k − ∣σ2 ○ σ1(x)∣ ∈ c2 ⊙ c1(xx).
Case 2. k2 = k − ∣σ2(Uy)∣: Here we consider the element of c1(xx) that is (modulo ∣σ1(x)∣)

equivalent to ∣Uy∣. As before we have two subcases.
Case 2a. ∣Uy∣ ∈ c1(xx): We proceed similarly as in the previous cases. In particular,

we have σ1(x̄) ≺ ε ⪯ U(∼ Uyȳ) ≺ Uy ≺ σ1(x). Let b1 denote the element of A that
satisfies Uy ≺ Uyb1 ⪯ σ1(x). Then clearly (Uy, yb1) ∈ H1(xx). As 0 > k2 ∈ c2(yy) we
have k2 ∈ c2(yb1) and, thus, ∣σ2(Uy)∣ + k2 = ∣σ2(Uy)∣ + k − ∣σ2(Uy)∣ = k ∈ c2 ⊙ c1(xx).

Case 2b. ∣V ∣ ∈ c1(xx): Analogously let b1 ∈ A such that σ1(x̄) ⪯ V ȳ ≺ V ≺ V b1 ⪯ σ1(x).
Hence, (V , yb1) ∈H1

1(xx), 0 > k2 ∈ c2(yb1), and

∣σ2(V )∣ + k2 = −∣σ2(V )∣ + k − ∣σ2(Uy)∣ = k − ∣σ2 ○ σ1(x)∣ ∈ c2 ⊙ c1(xx).
�

Proof of Proposition 2.3. We show that all items of Definition 2.1 are satisfied.
The statement of Lemma 3.2 clearly implies that, for each x ∈ A, c2 ⊙ c1(xx) contains a set of

representatives modulo ∣σ2 ○ σ1(x)∣ whose elements are bounded by ∣σ2 ○ σ1(x)∣ in modulus. From
this we also immediately see that #c2 ⊙ c1(xx) ≥ ∣σ2 ○ σ1(x)∣. On the other hand we estimate

#c2 ⊙ c1(xx) =#⎛⎝ ⋃
(D1,a1b1)∈H1(xx)

(∣σ(D1)∣ + c2(a1b1))
⎞
⎠

≤ ∑
(D1,a1b1)∈H1

1
(xx)

#c2(a1b1)

= ∑
(D1,a1b1)∈H1

1
(xx)

(#{k ∈ c2(a1b1) ∶ k < 0} + 1 +#{k ∈ c2(a1b1) ∶ k > 0})

=∑
y∈A

#{(D1, a1b1) ∈H1
1(xx) ∶ a1 = y} ⋅#{k ∈ c2(yy) ∶ k < 0} + ∣σ1(x)∣

+ ∑
y∈A

#{(D1, a1b1) ∈H1
1(xx) ∶ b1 = y} ⋅#{k ∈ c2(yy) ∶ k > 0}.

We claim that

#{(D1, a1b1) ∈H1
1(xx) ∶ a1 = y} =#{(D1, a1b1) ∈H1

1(xx) ∶ b1 = y} = ∣σ(x)∣y. (3.2)
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To show this we set σ1(x) = x1x2⋯xn. Then the σ1(x̄)-σ1(x)-chain is (modulo ∼) given by

{x̄n⋯x̄1, x̄n⋯x̄2, . . . , x̄nx̄n−1, x̄n, ε, x1, x1x2, . . . , x1x2⋯xn−1, x1x2⋯xn}.
By definition c1(xx) contains 0, hence, (ε, xnx1) ∈ H1

1(xx). Furthermore, for each k ∈ {1, . . . , n −

1} either k ∈ c1(xx) or n − k ∈ c1(xx). This shows that H1
1(xx) contains (modulo ∼) either

(x1⋯xk, xkxk+1) or (x̄n⋯x̄k+1, xkxk+1). Therefore, if we run through all edges (D1, a1b1) ∈H1
1(xx)

then a1 as well as b1 run through all the letters of σ1(x) which immediately shows the claim.
Inserting this into the estimation from above yields

#c2 ⊙ c1(xx) ≤∑
y∈A

∣σ1(x)∣y(#{k ∈ c2(yy) ∶ k < 0} + 1 +#{k ∈ c2(yy) ∶ k > 0})

=∑
y∈A

∣σ1(x)∣y ∣σ2(y)∣ = ∣σ2 ○ σ1(x)∣.

Hence, #c2 ⊙ c1(xx) = ∣σ2 ○ σ1(x)∣, thus, c2 ⊙ c1(xx) is a complete residue system and for each
k ∈ c2○c1(x) we have −∣σ2 ○ σ1(x)∣ < k < ∣σ2 ○ σ1(x)∣ proving the items (1) and (2) of Definition 2.1.

To show item (3) let ab ∈ A2 and write a(1) and a(−1) (b(1) and b(−1), respectively) for the

leftmost and rightmost letter of σ1(a) (σ1(b), respectively). Thus, (ε, a(−1)a(1)) ∈ H1
1(aa) and

(ε, b(−1)b(1)) ∈H1
1(bb). We clearly have

c2⊙c1(aa) =
⋃

(D1,a1b1)∈H
1

1
(aa)

D1∈∼A
+

(∣σ2(D1)∣ + c2(a1b1)) ∪ c2(a(−1)a(1)) ∪ ⋃
(D1,a1b1)∈H

1

1
(aa)

D1∈∼A
+

(∣σ2(D1)∣ + c2(a1b1)),

c2⊙c1(bb) =
⋃

(D1,a1b1)∈H
1

1
(bb)

D1∈∼A
+

(∣σ2(D1)∣ + c2(a1b1)) ∪ c2(b(−1)b(1)) ∪ ⋃
(D1,a1b1)∈H

1

1
(bb)

D1∈∼A
+

(∣σ2(D1)∣ + c2(a1b1)).

Consider an edge (D1, a1b1) ∈ H1
1(aa) with D1 ∈∼ A

+
. Then D1 ≺ ε and, thus, by Lemma 3.1,

∣D1∣ + c2(a1b1) contains only negative elements. Similarly, for D1 ∈∼ A+ all elements of ∣D1∣ +
c2(a1b1) are strictly positive. Thus,

{k ∈ c2 ⊙ c1(aa) ∶ k < 0} = ⋃
(D1,a1b1)∈H

1

1
(aa)

D1∈∼A
+

(∣σ2(D1)∣ + c2(a1b1)) ∪ {k ∈ c2(a(−1)a(−1)) ∶ k < 0},

where we applied (2.1) on c2(a(−1)a(1)). Analogously, we obtain

{k ∈ c2 ⊙ c1(bb) ∶ k > 0} = {k ∈ c2(b(1)b(1)) ∶ k > 0} ∪ ⋃
(D1,a1b1)∈H

1

1
(bb)

D1∈∼A
+

(∣σ2(D1)∣ + c2(a1b1)).

Now we are interested in c2 ⊙ c1(ab). At first observe that the σ1(ā)-σ1(b)-chain consists

(modulo ∼) of the elements of the σ(ā)-σ(a)-chain that are contained in A
+
, the elements of the

σ(b̄)-σ(b)-chain that are contained in A+, and ε. Therefore, we have

H1
1(ab) = {(D1, a1b1) ∈H1

1(aa) ∶D1 ∈∼ A
+} ∪ {(ε, a(−1)b(1))} ∪ {(D1, a1b1) ∈H1

1(bb) ∶D1 ∈∼ A+}.
Hence,

c2 ⊙ c1(ab) = ⋃
(D1,a1b1)∈H

1

1
(aa)

D1∈∼A
+

(∣σ2(D1)∣ + c2(a1b1))

∪ c2(a(−1)b(1)) ∪ ⋃
(D1,a1b1)∈H

1

1
(bb)

D1∈∼A
+

(∣σ2(D1)∣ + c2(a1b1)).

By applying (2.1) on c2(a(−1)b(1)) we immediately see that

c2 ⊙ c1(ab) = {k ∈ c2 ⊙ c1(aa) ∶ k < 0} ∪ {0} ∪ {k ∈ c2 ⊙ c1(bb) ∶ k > 0}.
�
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Remark 3.3. Note that the proof immediately implies the disjointness of the union (3.1).

The next result shows that the graph induced by c2 ⊙ c1 corresponds to a product graph of H1

and H2.

Corollary 3.4. Let H ∶=Hσ2○σ1,c2⊙c1
. Then for each ab ∈ A2 we have

H1(ab) = ⋃
(D1,a1b1)∈H1

1
(ab)

{(σ(D1)D2, a2b2) ∶ (D2, a2b2) ∈H1
1(a1b1)}.

Proof. Let ab ∈ A2. Theorem 2.3 shows that k ∈ c2⊙c1(ab) if and only if there are edges (D1, a1b1) ∈
H1

1(ab) and (D2, a2b2) ∈ H1
1(a1b1) such that ∣σ(D1)D2∣ = k. Thus, it suffices to show that (2.2)

holds.
Observe that ≺ is invariant with respect to the concatenation of words from the left and with

respect to the application of σ2. Thus, from σ2(ā1) ⪯D2ā2 ≺D2 ≺D2b2 ⪯ σ2(b1) it follows that

σ2(D1ā1) ⪯ σ2(D1)D2ā2 ≺ σ2(D1)D2 ≺ σ2(D1)D2b2 ⪯ σ2(D1b1)
while σ1(ā) ⪯D1ā1 ≺D1 ≺D1b1 ⪯ σ1(b) implies that

σ2 ○ σ1(ā) ⪯ σ2(D1ā1) ≺ σ2(D1) ≺ σ2(D1b1) ⪯ σ2 ○ σ1(b).
Proper combination of these two expressions yields

σ2 ○ σ1(ā) ⪯ σ2(D1)D2ā2 ≺ σ2(D1)D2 ≺ σ2(D1)D2b2 ⪯ σ2 ○ σ1(b).
�

We will apply Theorem 2.3 and Corollary 3.4 in Example 5.6.

Corollary 3.5. The binary operation ⊙ is associative.

Proof. For each j ∈ {1, 2, 3} let σj denote a substitution over the alphabet A and by cj a coding
prescription with respect to σj . Let a0b0 ∈ A2. We prove that (c3 ⊙ c2) ⊙ c1(a0b0) = c3 ⊙ (c2 ⊙

c1)(a0b0). For this reason let k ∈ (c3 ⊙ c2)⊙ c1(a0b0). Since both (c3 ⊙ c2)⊙ c1 and c3 ⊙ (c2 ⊙ c1)
are coding prescriptions, it suffices to show that k is also contained in c3 ⊙ (c2 ⊙ c1)(a0b0). By
considering Theorem 3.4 there exists for each j ∈ {1, 2, 3} an edge (Dj , ajbj) ∈ H1

σj ,cj
(aj−1bj−1)

such that k = ∣σ3 ○ σ2(D1) σ3(D2)D3∣ = ∣σ3(σ2(D1)D2)D3∣. Therefore, k ∈ c3⊙(c2⊙c1)(a0b0). �

3.2. Properties of composed coding prescriptions.

Lemma 3.6. Let (D−, a−b−), (D+, a+b+) ∈ H1
1(ab) the minimal and maximal edge and k−2 ∶=

min c2(a−b−), k+2 ∶= max c2(a+b+). Then for each k ∈ c2 ⊙ c1(ab) we have ∣σ2(D−)∣ + k−2 ≤ k ≤

∣σ2(D+)∣ + k+2 .

Proof. Each k ∈ c2 ⊙ c1(ab) is uniquely determined by an edge (D1, a1b1) ∈ H1
1(ab) and a k2 ∈

c(a1b1) such that k ∈ ∣σ2(D1)∣+k2. If D1 ∼D− then by the minimality of k−2 we have ∣σ2(D−)∣+k−2 ≤

k. If D− ≺ D1 then observe that k−2 ≤ 0. Thus, ∣σ2(D−)∣ + k−2 ≤ ∣σ2(D−)∣ ≤ k by Lemma 3.1. The
right hand inequality k ≤ ∣σ2(D+)∣ + k+2 can be shown analogously. �

When we consider the union (3.1) then the last lemma stated that the minimal (maximal,
respectively) element of c2 ⊙ c1(ab) is contained in the subset induced by the minimal (maximal,
respectively) edge of H1

1(ab). The next lemma we provides stronger result. If c2 is continuous we
will see that all subsets of the union (3.1) comply with the ordering ≺ on H1

1(ab). Recall that a
coding prescription c is called continuous if c(ab) is a set of consecutive integers for all ab ∈ A2.
By construction this is equivalent to the fact that c(xx) is a set of consecutive integers for each
x ∈ A.

Lemma 3.7. Let (D1, a1b1), (D′1, a′1b′1) ∈ H1
1(ab) such that D1 ≺ D′1. If c2 is continuous then

∣σ2(D1)∣ + k2 < ∣σ2(D′1)∣ + k′2 holds for all k2 ∈ c2(a1b1) and k′2 ∈ c2(a′1b′1).
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Proof. By definition we have D1 ≺ D1b1 and D′1ā′1 ≺ D′1. Thus, there are two possibilities: either
D1b1 ⪯D′1ā′1 or D1b1 ∼D′1 (and D1 ∼D′1ā′1).

In the first case we immediately see that

∣σ2(D1)∣ + k2 < ∣σ2(D1b1)∣ ≤ ∣σ2(D′1ā′1)∣ < ∣σ2(D′1)∣ + k′2

holds for all k2 ∈ c2(a1b1) and k′2 ∈ c2(a′1b′1).
Now we concentrate on the case D1b1 ∼D′1, hence, D′1 is the successor of D1 in the σ1(ā)-σ1(b)-

chain. Since D1 ∼ D′1b̄1 we have b1 = a′1. Thus, for each k2 ∈ c2(a1b1) we have k2 ≤ max c2(b1b1)
and for each k′2 ∈ c2(a′1b′1) we have k2 ≥min c2(a′1a′1) =min c2(b1b1). We obtain

(∣σ2(D′1)∣ + k′2) − (∣σ2(D1)∣ + k2) ≥∣σ2(D1b1)∣ +min c2(b1b1) − ∣σ2(D1)∣ −max c2(b1b1)
=∣σ2(b1)∣ −max c2(b1b1) +min c2(b1b1).

As c2 is continuous, c2(b1b1) is a set of ∣σ2(b2)∣ consecutive integers, and we have max c2(b1b1) −
min c2(b1b1) = ∣σ2(b1)∣ − 1. Therefore the difference above is strictly positive. �

The next lemma yields sufficient and necessary conditions for the composition c2 ⊙ c1 to be
continuous.

Lemma 3.8. Let x ∈ A. Then c2⊙c1(xx) is a set of consecutive integers if and only if c1(xx) and
c2(a−a−) are sets of consecutive integers where (D−, a−b−) is the minimal edge of H1

1(xx). (Note
that the continuity of c1 implies that a− = b+, where (D+, a+b+) is the maximal edge of H1

1(xx)).
Proof. Set k−1 ∶= min c1(xx) ≤ 0, k+1 ∶= max c1(xx) ≥ 0. Let σ1(x) = x1x2⋯xn. Then we have
D− ∼ x̄n⋯x̄n+k−

1
+1 and D+ ∼ x1⋯xk+

1
(for k−1 = 0 this means D− ∼ ε, analogously for k+1 = 0).

Furthermore, we have a− = xn+k−
1

and b+ = xk+
1
+1.

Set k−2 ∶= min c2(a−b−) ≤ 0 and k+2 ∶= max c2(a+b+) ≥ 0. By Lemma 3.6 we have k− ∶= ∣σ2(D−)∣ +
k−2 =min c2 ⊙ c1(xx) and k+ ∶= ∣σ2(D+)∣ + k+2 =max c2 ⊙ c1(xx).

Observe that c1(xx) is a set of consecutive integers if and only if k+1 − k−1 = ∣σ(x)∣ − 1 = n − 1.
At first we show that this condition is necessary. Indeed, suppose that c(xx) were not a set of
consecutive integers. Then k+1 − k−1 > n (equality cannot hold since k−1 and k+1 are not equivalent
modulo n). Furthermore, we must have k+1 , k−1 /= 0. We get

k+ − k− = ∣σ2(D+1 )∣ + k+2 − ∣σ2(D−1 )∣ − k−2 ≥ ∣σ2(D+1 )∣ − ∣σ2(D−1 )∣ = ∣σ2(x1⋯xk+
1
)∣ − ∣σ2(x̄n⋯x̄n+k−

1
+1)∣

= ∣σ2(x1⋯xk+
1
)∣ + ∣σ2(xn+k−

1
+1⋯xk+

1
)∣ + ∣σ2(xk+

1
+1⋯xn)∣ > ∣σ2(x1⋯xn)∣ = σ2 ○ σ1(x)

which shows that c2 ⊙ c1(xx) cannot be a set of ∣σ2 ○ σ1(x)∣ consecutive integers.
Thus, suppose that c1(xx) is a set of consecutive integers. From k+1 − k−1 = n − 1 we conclude

that a− = xn+k−
1
= xn+k+

1
−n+1 = xk+

1
+1 = b+. This yields σ(x) ∼D+a−D−. Therefore,

∣σ2 ○ σ1(x)∣ − k+ + k− = ∣σ2 ○ σ1(x)∣ − ∣σ2(D+1 )∣ + ∣σ2(D−1 )∣ − k+2 + k−2 = ∣σ2(a−1)∣ − k+2 + k−2 .

Since b+ = a− we have k+2 , k−2 ∈ c2(a−a−). Thus, the last expression is positive if and only if c2(a−a−)
is a set of consecutive integers. �

Corollary 3.9. The continuity of c1 and c2 is sufficient for the continuity of c2 ⊙ c1.

Now Theorem 2.4 follows as a corollary from the results of this section. Note that we explicitly
apply it in Example 5.3.

Proof of Theorem 2.4. From Corollary 3.4 we immediately see that c(2) = c⊙c and, more generally,
c(n) = c(n−1)

⊙c. Hence, c(n) is a coding prescription with respect to σn. The statement concerning
the continuity follows directly from Lemma 3.8. �

Observe that the disjointness of the union in Theorem 2.3 (cf. Remark 3.3) immediately implies
the disjointness of the union in Theorem 2.4.

In the last statement of this section we want to present a special setting that shows that a
statement analogue to Lemma 3.7 also may hold for non-continuous coding prescriptions. We will
refer to this result in the proof of Proposition 2.7 in the next section.
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Lemma 3.10. Let σ be a substitution over an alphabet A such that ∣σ(x)∣ ≡ 1 (mod 2) for all
x ∈ A. The map c that assigns to each pair ab ∈ A2 the set

{−∣σ(a)∣ + 1,−∣σ(a)∣ + 3, . . . ,−2, 0, 2, . . . , ∣σ(b)∣ − 1}
is a coding prescription and for all n ∈ N and ab ∈ A2 the set c(n)(ab) consists of even integers
only.

Furthermore, for all ab ∈ A2, n ≥ 1, (Dj , ajbj), (D′j , a′jb′j) ∈Hn
σ,c(ab) we have

n

∑
j=1

∣σn−j(Dj)∣ <
n

∑
j=1

∣σn−j(D′j)∣⇐⇒ (Dj)nj=1 ≺lex (D′j)nj=1.

Proof. It is easy to see that c is a coding prescription with respect to σ. Now observe that from
the condition it follows that ∣σn(x)∣ ≡ 1 (mod 2) for each x ∈ A ∪ A and each n ∈ N. Thus,
∣σk(X)∣ ≡ ∣X ∣ (mod 2) for each X ∈ (A ∪A)∗ and each n ∈ N.

Now let ab ∈ A2, n ∈ N and k ∈ c(n)(ab). Then there exists a path (Dj , ajbj)nj=1 ∈Hn(ab) with

k =
n

∑
j=1

∣σn−j(Dj)∣.

Since ∣Dj ∣ ≡ 0 (mod 2) for all j ∈ {1, . . . , n} we clearly have k ≡ 0 (mod 2).
Consider another path (D′j , a′jb′j)nj=1 ∈ Hn(ab) and k′ ∶= ∑n

j=1 ∣σn−j(D′j)∣. Suppose that k /= k′.
By the disjointness of the union in Theorem 2.4 this immediately shows that the corresponding

paths are not identical. If Dj ≺ D′j then, as ∣D′j∣ − ∣Dj ∣ ≥ 2, there exists a D ∈ A∗ ∪ A∗ with

Dj ≺ D ≺ D′j . Since k, k′ ∈ c(n)(ab) = c(n−1)
⊙ c(ab) we see by Lemma 3.1 that k < k′. On the

other hand, if D′j ≺ Dj then we immediately see that k′ < k. If D1 = D′1 then a1b1 = a′1b′1, hence,

(Dj , ajbj)nj=2, (D′j , a′jb′j)nj=2 ∈ Hn−1
σ,c (a1b1) and we can compare D2 and D′2 in the same way. This

immediately yields that k < k′ if and only if (Dj)nj=1 ≺lex (D′j)nj=1. �

4. Representing integers

We now use the results obtained so far to represent integers. Thus, in the present section we
concentrate on substitutions over A that satisfy (2.3) for a pair of letters ab ∈ A2. Let c denote a
coding prescription with respect to σ and, for convenience, H ∶=Hσ,c. Recall that we defined

Zab = ⋃
n≥1

c(n)(ab).

Lemma 4.1. For each n ∈ N we have c(n)(ab) ⊂ c(n+1)(ab).
Proof. Since 0 ∈ c(ab) and σ(ā) ≺ ā ≺ ε ≺ b ≺ σ(b) we have (ε, ab) ∈ H1(ab). Thus, since

c(n+1)
= c(n) ⊙ c for each n ∈ N, we immediately see that σ(ε) + c(n)(ab) ⊂ c(n+1)(ab). �

Proof of Theorem 2.5. Let N ∈ Zab. For convenience set c(0)(ab) ∶= {0} and H0(ab) ∶= ∅. Let

n0 ∶=min{n ≥ 0 ∶ N ∈ c(n)(ab)} and (Dj , ajbj)n0

j=1 ∈Hn0(ab) such that

N =
n0

∑
j=1

∣σn0−j(Dj)∣.

Then this is obviously a representation (2.4) of N . At first note that (Dj , ajbj)n0

1=j is the only

path of length n0 with this property. Furthermore observe that, by Lemma 4.1, D1 /∼ ε, otherwise
N ∶= ∑n0−1

j=1 ∣σn0−1−j(Dj+1)∣ ∈ c(n0−1)(ab), which contradicts the minimality of n0.

Now, let (D′j , a′jb′j)nj=1 ∈ Hn(ab) such that N = ∑n
j=1 ∣σn−k(D′j)∣ with n > n0. Then clearly N ∈

c(n)(ab) and, hence, we necessarily have that (modulo ∼) (D′j , a′jb′j) = (ε, ab) for j ∈ {1, . . . n − n0}
and (D′j , a′jb′j) = (Dj−n+n0

, aj−n+n0
bj−n+n0

) for j ∈ {n−n0 + 1, . . . n} since each element of c(n)(ab)
corresponds to a unique path in Hn(ab). This shows that D′1 ∼ ε.

Thus, the representation (2.4) is unique if we require that D1 /∼ ε. �

We now turn to the structure of Zab and Proposition 2.6. We will divide the proof into several
parts.
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Lemma 4.2. The set Zab contains positive (negative, respectively) integers if and only if c(ab)
contains a least one positive (negative, respectively) integer.

Proof. If c(ab) contains one positive integer then Zab also contains this integer (in fact, one easily
verifies that in this case Zab contains infinitely many positive integers). On the other hand, suppose
that c(ab) does not contain any positive integer. Then (ε, ab) ∈H1(ab) is the maximal edge and,
hence, (ε, ab)n ∈Hn(ab) is the maximal path of length n for all n ∈ N. By Lemma 3.6 we see that

k ≤ 0 for each k ∈ c(n)(ab) and, hence, N ≤ 0 for all N ∈ Zab. The negative analogue of the lemma
can be shown in a similar way. �

Lemma 4.3. The set Zab contains all positive (negative, respectively) integers if and only if
1 ∈ c(ab) (−1 ∈ c(ab), respectively).

Proof. At first observe that 1 ∈ c(ab) means that (b, bb1) ∈H1(ab) (for some b1 ∈ A). We show by
induction that for each n ≥ 1 we have

{0, . . . , ∣σn−1(b)∣} ⊂ c(n)(ab).
The case n = 1 holds by assumption. Now suppose that we have already proved the assertion for
n − 1. By the definition of ⊙ and Lemma 4.1 we have

c(n)(ab) = c(n−1)
⊙ c(ab) ⊃{k ∶ k ∈ c(n−1)(ab), k ≥ 0} ∪ σn−1(b) + {k ∶ k ∈ c(n−1)(bb1), k ≤ 0}

={k ∶ k ∈ c(n−1)(bb), k ≥ 0} ∪ {k + σn−1(b) ∶ k ∈ c(n−1)(bb), k ≤ 0}
={0, . . . , ∣σn(b)∣}.

The requirement b ≺ σ(b) together with the fact that σ is non-erasing yields that limn→∞ ∣σn(b)∣ =
∞, thus, Zab contains all positive integers.

On the other hand suppose that 1 /∈ c(ab). By the definition of a coding prescription this is
equivalent to 1 /∈ c(bb) which is in turn equivalent to −∣σ(b)∣ + 1 ∈ c(bb) (note that −∣σ(b)∣ + 1 is
the minimum of c(bb)). The corresponding edge in H1(bb) is given by (D, bb1) with D ∼ σ(b̄)b.

Since b ≺ σ(b) we have D ∈∼ A
+

and, hence, (D, bb1) ∈H1(bb1). Therefore, for each n ≥ 2 the path

(D, bb1)n is contained in Hn
σ,c(bb) and, thus, c(n)(bb) contains

n−1

∑
j=0

∣σn(D)∣ =
n−1

∑
j=0

(∣σj+1(b̄)∣ + ∣σj(b)∣) = −∣σn(b)∣ + 1.

Since c(n) is a coding prescription with respect to σn we conclude that c(n)(bb) and c(n)(ab) do
not contain 1 for each n ≥ 1. This implies that Zab does not contain 1 and, hence, Zab does not
contain all positive integers.

The negative analogue of the lemma can be shown similarly. �

Lemma 4.4. Let σ be primitive and c not continuous. If c(ab) contains negative integers such that
max{k ∈ c(ab) ∶ k < 0} ≤ −3 then Zab ∩ (−∞, 0) contains gaps of arbitrary large size. Analogously,
if c(ab) contains positive integers such that min{k ∈ c(ab) ∶ k > 0} ≥ 3 then Zab ∩ (0,∞) contains
gaps of arbitrary large size.

Proof. Let (D1, a1b1) ∈ H1(ab) the edge with ∣D1∣ = max{k ∈ c(ab) ∶ k < 0} ≤ −3. Set D ∶= D1b1

and observe that D1 ≺D ≺ a ≺ ε.
We claim that for each n ≥ 1 and for all j ≥ 1 we have

{∣σj(D)∣, . . . , ∣σj(a)∣} ∩ c(n)(ab) = ∅. (4.1)

We will show this by induction on n. For n = 1 we have by assumption that {∣D∣, . . . , ∣a∣}∩c(ab) = ∅
which shows the case j = 1. By the definition of coding prescriptions we have k > −∣σ(a)∣ for all
k ∈ c(ab). Thus, (4.1) also holds for j > 1.

Now we want to show (4.1) for arbitrary n where we may suppose that our claim holds for n−1.

For j ≥ n this is clear since c(n) is a coding prescription with respect to σn and, thus, all elements
of c(n)(ab) are strictly larger than ∣σn(a)∣. Thus, we concentrate on the case j ≤ n − 1. We have

c(n) = c(n−1)
⊙ c. Therefore, each element k ∈ c(n)(ab) is given by an edge (D′1, a′1b′1) ∈ H1(ab)



12 PAUL SURER

and a k′ ∈ c(n−1)(a′1b′1) such that k = ∣σn−1(D′1)∣ + k′. If D′1 ∈∼ A+ then k > 0 by Lemma 3.1. If

D1 ∼ ε then a1b1 = ab and, hence, k = k′ ∈ cn−1(ab). By the assumption on the induction we have

k /∈ {∣σj(D)∣, . . . , ∣σj(a)∣} for any j ∈ N. If D1 ∈∼ A
+

then we necessarily have D′1 ⪯D1 ≺D. Thus,

by Lemma 3.1, k = ∣σn−1(D′1)∣ + k′ < ∣σn−1(D)∣ ≤ ∣σj(D)∣ for all j ≤ n − 1.

Finally, we observe that the primitivity of σ ensures that ∣σj(a)∣ − ∣σj(D)∣ becomes arbitrary

large since D ≺ a and, hence, Da ∈∼ A+.
The positive analogue of the lemma can be shown in the same way. �

Proof of Proposition 2.6. The items (1) and (2) correspond to Lemma 4.2 and Lemma 4.3, respec-
tively. Lemma 4.4 immediately implies Item 3. Finally, Item 4 follows from Lemma 3.10. �

Proof of Proposition 2.7. The equivalence of (2) and (3) follows from the fact that ∣⋅∣ is an order
preserving isomorphism between the σ(ā)-σ(b)-chain and the ≤-chain {−∣σ(a)∣, . . . , ∣σ(b)∣}.

For σ and c as in (4) of Proposition 2.6 we showed the equivalence of (1) and (2) in Lemma 3.10.
For continuous coding prescription this can be shown analogously by using Lemma 3.7. �

5. Examples, applications and open problems

5.1. Relation with the results of J.M. Dumont and A. Thomas. In [1] we find the following
approach for representing non-negative integers: for a substitution σ over the alphabet A we define
the prefix graph H̃ = H̃σ to be the directed graph with vertex set A and an edge from x to x1

labelled by (P, x1) ∈ A∗ ×A if Px1 ⪯ σ(x).
Theorem 5.1 (cf [1, 1.5. Théorème]). Let σ be a substitution over the alphabet A (which is
supposed to be primitive) and x ∈ A such that x ≺ σ(x). For each integer N > 1 there exists a
unique path (Pj , xj)nj=1 ∈ H̃n

σ (x) with P1 /= ε such that

N =
n

∑
j=1

∣σn−j(Pj)∣. (5.1)

We clearly see the parallels to our results and, in fact, the above statement corresponds to
Theorem 2.5 for a special coding prescription.

Lemma 5.2. Let c be the coding prescription that assigns to each pair ab ∈ A2 a set of non-negative
integers and H ∶=Hσ,c. Then the following items hold:

● Let ab ∈ A2 and (D, a1b1) ∈H1(ab). Then (D, b1) ∈ H̃1(b) (modulo ∼).
● Let x ∈ A and (P, x1) ∈ H̃1(x). Then for each a we have (P, a1x1) ∈H1(ax) where a1 ∈ A

such that σ(ā) ⪯ P ā1 (thus, if P /= ε then a1 does not depend on a).

Proof. The proof is straightforward and is left to the reader. �

We clearly see that if the substitution σ satisfies (2.3) then Theorem 5.1 and Theorem 2.5 (for
the special coding prescription) are equivalent, that is representations (5.1) and (2.4) of equal
length are identical.

On the other hand, the conditions of Theorem 5.1 are weaker than (2.3). To recover the
representation (5.1) from Theorem 2.5 we have to consider higher powers of σ since there exists
an integer n > 1 and a letter a ∈ A such that σn(ā) ≺ ā (see Example 5.3).

5.2. Examples concerning Fibonacci numbers. Consider the sequence (Fj)j≥1 of Fibonacci
numbers defined by F0 = 0, F1 = 1, and Fj = Fj−1 + Fj−2 for j > 1. Each positive integer can
be uniquely represented by the sum of pairwise not consecutive Fibonacci numbers of index at
least 2 (Zeckendorf representation, cf. [9]). The Fibonacci expansion is the encoding of the Zeck-
endorf representation as a 0-1 sequence where the rightmost digit corresponds to F2. Clearly, the
Fibonacci expansion of any integer does not contain consecutive occurrences of 1.

Now let σ be the Fibonacci-substitution defined by σ ∶ 1↦ 12, 2↦ 1 over the alphabetA = {1, 2}.
It is well known (see the examples in [1]) that for this substitution (5.1) corresponds exactly to the
Zeckendorf representation. This is easy to see by considering the prefix-graph H̃σ (see Figure 1)
and the observation ∣σi(1)∣ = Fi+2 and ∣σi(2)∣ = Fi+1 for each i ∈ N.
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In the following examples we want to study integer numeration with respect to the Fibonacci
numbers from the point of view of Theorem 2.5. Observe that we cannot apply it directly to the
Fibonacci substitution since neither σ(1̄) ≺ 1̄ nor σ(2̄) ≺ 2̄ holds. We rather consider σ2

∶ 1 ↦
121, 2↦ 12 since then (2.3) is satisfied for ab = 11 as well as ab = 12.

Example 5.3. The Fibonacci substitution possesses only two different coding prescriptions, namely
c1, that assigns to each pair ab ∈ A2 a set of non-negative integers, and c2 that assigns to each pair
ab ∈ A2 a set of non-positive integers. In the present example we are interested in the first one,
that is c1(11) = c1(21) = {0, 1} and c1(22) = c1(12) = {0}. The associated graph Hσ,c1

is depicted
in Figure 1 (centre). We see that the prefix graph left of it can be obtained by projecting each
pair ab ∈ A2 onto its right component b. Note that in Example 5.6 we will use c2.

The coding prescription c
(2)
1 with respect to σ2 can be easily obtained by considering the paths

of length 2 in Hσ,c1
(see Theorem 2.4). Less surprisingly, c

(2)
1 also assigns to each pair of letters a

set of non-negative integers. We find the associated graph H ∶=H
σ2,c

(2)
1

on the right in Figure 1.

1 11 21 11 21

2 12 22 12 22

(1, 2) (ε, 1)

(ε, 1)

(ε,2
1) (1,12)

(ε, 21)

(1, 12)
(ε, 11)

(ε,11)

(ε, 11)

(1, 12)

(12, 21)

(1, 12)(ε, 11) (ε,12)

(ε, 21)
(12, 21)

(ε, 11)

(1, 12)

Figure 1. Graphs related with the Fibonacci substitution σ ∶ 1↦ 12, 2↦ 1. Left:
the prefix graph H̃σ; centre: the graph Hσ,c1

for c1 the coding prescription that
assigns to each pair a set of non-negative integers; right: the graph H

σ2,c
(2)
1

.

Now we apply Theorem 2.5. By comparing Hn(11) and Hn(21) for each n ≥ 1 one easily verifies
that the choice of the initial point is irrelevant. We choose ab = 11. We have Z11 = {0, 1, 2 . . . ,}
(since c(11) consists of non-negative integers only and 1 ∈ c(11)). For each N ∈ Z11 there is a
uniquely determined path (Dj , ajbj)nj=1 ∈Hn(11) with D1 /∼ ε that satisfies

N =
n

∑
j=1

∣σ2(n−j)(Dj)∣.

We clearly have that ∣σ2(n−j)(1)∣ = F2(n−j)+2 and ∣σ2(n−j)(12)∣ = ∣σ2(n−j)
○ σ(1)∣ = F2(n−j)+3 for

each j ≥ 1. Therefore, the setting also yields the Zeckendorf representation. Each edge represents
two digits of the Fibonacci expansion: (Djajbj) corresponds to 00 if Dj ∼ ε, Dj ∼ 1 yields the
string 01 and Dj ∼ 12 gives 10. One easily verifies that no consecutive digits 1 can occur.

Of course, applying Theorem 5.1 on σ2 would have led to the same result as in our previous
example. Hence, the coding prescription c(2) is less interesting. Fortunately there are all in all 8
different coding prescriptions with respect to σ2. For each of them Theorem 2.5 yields a different
way of representing integers. We study two more settings explicitly. It will turn out that they
behave completely differently.

Example 5.4. Let c(11) = c(12) ∶= {−1, 0, 1} and c(21) = c(22) ∶= {0, 1}. Clearly, c is a coding
prescription with respect to σ2. Less obvious, c is actually a composition of the two coding
prescriptions with respect to σ. More precisely, one readily verifies that c = c1⊙c2 (cf. Example 5.3).
The associated graph H =Hσ2,c is depicted in Figure 2 (left).

Due to Proposition 2.6 we have Z11 = Z and Z21 = {0, 1, 2, . . .}. By comparing the finite paths
with initial points 11 and 21 we see that starting in 21 does not yield alternative representations.
Thus, we apply Theorem 2.5 on ab = 11. This allows us to represent each integer N ∈ Z11 = Z as

N =
n

∑
j=1

∣σ2(n−j)(Dj)∣
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where (Dj , ajbj)nj=1 ∈ Hn(11). By removing leading occurrences of ε we obtain the unique rep-

resentation. Since Dj ∈∼ {1̄, ε, 1} we have ∣σ2(n−j)(Dj)∣ ∈ {−F2(n−j+1), 0, F2(n−j+1)}, thus, N is
represented as sum of positive or negative Fibonacci numbers of even index. We also see that the
sum does not contain both −F2i and −F2i+2, for any positive integer i.

Note that c is continuous. Hence, if

N ′ =
n

∑
j=1

∣σ2(n−j)(D′j)∣

for a path (D′j , a′jb′j)nj=1 ∈Hn(11) then

N < N ′ ⇐⇒ (Dj)nj=1 ≺lex (D′j)nj=1.

11 21 11 21

12 22 12 22

(ε, 11)

(1, 12)

(1̄, 21)

(1, 12)
(ε, 11) (̄1,21)

(1,12)

(ε, 21)

(ε, 11)

(1, 12)

(ε, 11)

(21, 12)
(1, 12)

(12, 21)

(21, 12)(ε, 11)

(ε, 21)
(12, 21)

(ε, 11)

(1, 12)

Figure 2. Graphs associated with coding prescriptions with respect to σ2, the
square of the Fibonacci substitution. Left: Hσ2,c for c ∶ 11 ↦ {−1, 0, 1}, 22 ↦
{0, 1}; right: Hσ2,c for c ∶ 11↦ {−2, 0, 2}, 22↦ {0, 1}.

Example 5.5. We consider the coding prescription c with respect to σ2 defined by c(11) ∶=
{−2, 0, 2}, c(22) ∶= {0, 1} (thus, c(12) = {−2, 0, 1}, c(21) = {0, 2}). As in the previous example
we can concentrate on the vertex 11. By Proposition 2.6 Z11 contains negative integers as well as
positive ones but not all all of them.

A more exact characterisation of Z11 is a little tricky. We will deduce some properties by
analysing H =Hσ2,c. Consider a finite path (Dj , ajbj)nj=1 ∈Hn(11) and

D ∶= σ2n−2(D1)σ2n−4(D2)⋯σ2(Dn−1)Dn,

thus ∣D∣ ∈ c(n)(11). We clearly have that the first occurrence of a non-empty word decides whether

D ∈∼ A+ (and ∣D∣ > 0) or D ∈∼ A+ (and ∣D∣ < 0). Especially, D ∈∼ A+ if and only if anbn = 21 and by

definition this is equivalent to ε ⪯ D1̄ ≺ D ≺ D2 ⪯ σ2n(1). Thus, each positive element of c(n)(11)
corresponds to an occurrence of 21 in σ2n(1). Now observe that (2.3) ensures the existence of an
infinite word (Fibonacci word) (uj)j≥1 over A that starts with σ2n(1) for any n. By the above
considerations we see that for a positive integer N ∈ Z11 we clearly have uN uN+1 = 21. This shows
that Z11 does not contain consecutive integers.

On the other hand, c(n) is a coding prescription for each n ≥ 1. Therefore,

{k − ∣σ2n(1)∣ ∶ k ∈ c(n)(11), k > 0} ∪ {k ∈ c(n)(11) ∶ k ≤ 0} = {−∣σ2n(1)∣ + 1,−∣σ2n(1)∣ + 2, . . . ,−1, 0}
(where the union is disjoint). This immediately shows that the difference between two consecutive
negative elements in Z11 is at most 2.

In fact, Z11 ∩ (0,∞) contains gaps of arbitrary large size. To see this we need another strategy.
Consider again an arbitrary path (Dj , ajbj)nj=1 ∈ Hn(11). Then the path corresponds to a non-

negative element of c(n)(11) if and only if Dj ∈∼ {ε, 12} holds for all j ∈ {1, . . . , n}. Therefore the

largest element of c(n)(11) is given by the path (12, 21)n that yields (since σi(12) = Fi+3 for i ≥ 0)

max c(n)(11) =
n

∑
j=1

∣σ2(n−j)(12)∣ =
n

∑
j=1

F2j+1 = F2n+2 − F2 = F2n+2 − 1,

while the smallest positive integer in c(n+1)(11) ∖ c(n)(11) obviously corresponds to the path
(12, 21), (ε, 21)n and, thus, equals ∣σ2n(12)∣ = F2n+3 > F2n+2 −1. We see that Z11 does not contain
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integers between F2n+2 −1 and F2n+3 for any n ≥ 1. As F2n+3 −F2n+2 = F2n+1 we conclude that for
growing n this gap becomes arbitrary large.

Without any problem we can define Fibonacci numbers with negative indices in the same way,
thus, by setting Fn = Fn−1 + Fn−2 for all n ∈ Z (with F0 = 0, F1 = 1). One easily verifies that
F−n ∶= (−1)n−1Fn holds for all n ∈ Z. The Fibonacci numbers with negative indices are known as
the negaFibonacci numbers. Knuth states in [4] that each integer can be represented uniquely as a
sum of pairwise not consecutively indexed negaFibonacci numbers. The negaFibonacci expansion
is the corresponding 0 − 1-string where the rightmost digit corresponds to F−1 = 1. In the last
example concerning Fibonacci numbers we will see that Theorem 2.5 also covers the representation
by negaFibonacci numbers.

Example 5.6. Let σ′ ∶ 1 ↦ 21, 2 ↦ 1 denote the flipped Fibonacci substitution. Note that for each
integer i > 1 we have ∣σ′i(1)∣ = ∣σi(1)∣ = Fi+2 and ∣σ′i(2)∣ = ∣σi(2)∣ = Fi+1. The function c′ with

domain {1, 2}2 defined by c′(11) = c′(21) ∶= {0, 1}, c′(12) = c′(22) ∶= {0} is obviously a coding
prescription with respect to σ′.

We again need the Fibonacci-substitution σ ∶ 1 ↦ 12, 2 ↦ 1 and the coding prescription c2

defined by c2(11) = {−1, 0} and c2(22) = {0} (cf. Example 5.3). We easily see that σ′ ○ σ(1) = 211
and σ′ ○ σ(2) = 21. For determining the coding prescription c′ ⊙ c2 with respect to σ′ ○ σ we need
the graph associated with c2 (see Figure 3 left). We obtain

c′ ⊙ c2(11) =σ′(2) + c′(12) ∪ σ′(ε) + c′(21) = {−1} ∪ {0, 1} = {−1, 0, 1},
c′ ⊙ c2(12) =σ′(2) + c′(12) ∪ σ′(ε) + c′(21) = {−1} ∪ {0, 1} = {−1, 0, 1},
c′ ⊙ c2(21) =σ′(ε) + c′(11) = {0, 1} = {0, 1},
c′ ⊙ c2(22) =σ′(ε) + c′(11) = {0, 1} = {0, 1}.

The right part in Figure 3 shows the associated graph H ∶=Hσ′○σ,c′⊙c2
.

11 21 11 21

12 22 12 22

(2, 12)

(ε, 21)

(2, 12)

(ε,21)

(ε, 11)

(ε,11)

(1, 11)

(ε, 12)

(2, 21)

(ε, 12)
(1, 11) (2,21)

(ε,12)

(2, 21)

(2, 11)

(ε, 12)

Figure 3. On the left the graph Hσ,c2
is depicted, on the right we see the graph

associated with the composed coding prescription c′ ⊙ c2 with respect to σ′ ○ σ.

Condition (2.3) holds for ab = 12, thus, we can apply Theorem 2.5 in order to represent integers.
As c′ ⊙ c2(12) = {−1, 0, 1} we see that Z12 = Z, hence, we can represent all integers by paths that
start in 12. Consider a path (Dj , ajbj)nj=1 ∈Hn(12). The corresponding integer is given by

N ∶=
n

∑
j=1

∣(σ′ ○ σ)n−j(Dj)∣. (5.2)

We have Dj ∈∼ {1̄, ε, 2} for all j ∈ {1, . . . , n}. Now observe that

∣(σ′ ○ σ)n−j(2)∣ =∣σ2(n−j)(2)∣ = F2n−2j+1 = F−(2n−2j+1),

∣(σ′ ○ σ)n−j(1̄)∣ =∣σ2(n−j)(1̄)∣ = −F2n−2j+2 = F−(2n−2j+2).

We also see that if Dj ∼ 2 then Dj+1 /∼ 1̄, thus, two consecutively indexed negaFibonacci numbers
cannot occur in the sum. Thus, if we remove the leading empty words in (5.2) we obtain the
negaFibonacci representation due to uniqueness. Each addend in (5.2) represents two digits in the
negaFibonacci expansion. To recover it (from left to right) we have to replace 1̄ by 10, ε by 00,
and 2 by 01. Since c′⊙c2 is continuous we also see by Proposition 2.7 that comparing two integers
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corresponds to the (lexicographical) comparison of pairs of digits in the negaFibonacci expansions
(where, loosely speaking, 10 < 00 < 01 holds).

5.3. Expansions with respect to a linear recurrence. Instead of the Fibonacci sequence we
can also consider another linear recurrent sequence. For example, define (Gj)j≥0 by G0 ∶= 1, G1 ∶= 5
and Gj = 4Gj−1 + 3Gj−2 for j > 1. Following [5], each positive integer N can be expressed by its
G-ary representation

N =
n

∑
j=1

djGn−j dj ∈ {0, . . . , 4}

such that djdj+1 ≤lex 4, 2 holds for all j ∈ {1, . . . , n − 1}. The integers dj are the so-called G-
ary digits. Due to [2] we can recover the G-ary representation by applying Theorem 5.1 on the
substitution 1↦ 11112, 2↦ 111.

Now let σ ∶ 1↦ 11121, 2↦ 111 and observe that ∣σj(1)∣ = Gj+1. Since 1 ≺ σ(1) and σ(1̄) ≺ 1̄ we
can apply Theorem 2.5 with the initial vertex 11. In the following examples we do this for two
different coding prescriptions in order to represent integers with respect to our recurrent sequence
(Gj)j≥0 in an alternative way.

Example 5.7. In the first example we consider the coding prescription c defined by c(11) =
{−1, 0, 1, 2, 3} and c(22) = {0, 1, 2}. Since −1, 1 ∈ c(11) we have Z11 = Z, hence, for each inte-
ger N there exists a unique path (Dj , ajbj)nj=1 ∈Hn

σ,c(11) with Dj /∼ ε such that

N =
n

∑
j=1

∣σn−j(Dj)∣.

Now observe that, by construction, 1̄ ⪯ Dj ⪯ 111 for each j ∈ {1, . . . n}. Thus, ∣σn−j(Dj)∣ =
∣Dj ∣Gn−j . In other words, the sequence (kj)nj=1 with kj = ∣Dj ∣ for each j ∈ {1, . . . , n} is a digit
sequence, analogue to the G-ary digits, but with digits from −1 to 3.

To characterise the digit strings that may occur we consider the graph Hσ,c. and replace each
label (D, ab) by the corresponding digit ∣D∣. It is depicted below. Observe that we skipped the
vertex 22 since it is not reachable from 11. Furthermore, we joined edges with the same origin
end destination.

21 11 12

0, 1, 2

3−1

0, 1, 2

−1

0, 1, 2

3

Without any difficulty we see that the digit sequences comply with the lexicographical order
condition: for each N ∈ Z there is exactly one sequence (kj)nj=1 ∈ {−1, . . . , 3}∗ with k1 /= 0 and

−1, 0 ≤lex kj , kj+1 ≤lex 3, 2 for each j ∈ {1, . . . , n − 1} such that N = ∑n
j=1 kjGn−j . On the other

hand, each digit sequence with these properties really occurs as a path that starts in 11.
Note that c is continuous, hence, the canonical ordering of the integers is reflected by the

lexicographical ordering of the corresponding digit sequences (where we possibly have to fill up
with leading zeros to obtain sequences of the same length).

Example 5.8. For the same substitution we now consider the coding prescription c(11) =
{−1, 0, 1, 2, 3} and c(22) = {−2, 0, 2}. There are a lot of parallels to the previous example. As
before we can apply Theorem 2.5 with initial point 11 and since c(11) did not change we have
Z11 = Z.

Each label of Hσ,c has the shape (D, ab) with 1̄1̄ ⪯D ⪯ 111, thus, ∣σj(D)∣ = ∣D∣Gj and −2 ≤ ∣D∣ ≤
3. Again we obtain a digit representation with respect to the linear recurrent sequence (Gj)j≥1.
The graph for the digit sequences has a similar shape as in Example 5.7, however, we see that the
digit sequences are not characterised by a lexicographical order condition.

21 11 12

0, 1, 2

3−1

0, 2

−1

−2, 0, 1, 2

3
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Since c is not continuous we cannot expect that the lexicographical order of the digit sequences
corresponds to the canonical order of the integers. Indeed, when we consider the digit sequences
3, 2 and 1,−1,−2 then we clearly have 0, 3, 2 <lex 1,−1,−2. But obviously

3G1 + 2G0 = 15 + 2 = 17 > G3 − 1G2 − 2G1 = 23 − 5 − 2 = 16.

5.4. Decomposition of coding prescriptions. In this last subsection we want to state some
questions that arise in context with the composition of coding prescriptions. In fact, we already
touched on this problem in Example 5.4. Consider a substitution σ and two different coding
prescriptions c1, c2 with respect to σ. Then ⊙ yields 4 coding prescriptions with respect to σ2,

namely, σ
(2)
1 , σ

(2)
2 , σ1⊙σ2 and σ2⊙σ1. In general these coding prescriptions are pairwise different

(but it is not clear whether this is always the case). However, there are other coding prescriptions
with respect to σ2 that are not given as an ⊙-product of coding prescriptions with respect to σ.

These considerations can be extended to any arbitrary power of σn. Therefore, it seems to be
reasonable to call a coding prescription c with respect to σn reducible (over σ) when there exist
coding prescriptions c1 and c2 with respect to σn1 and σn2 , respectively, with n1 + n2 = n and
c1 ⊙ c2 = c. We call a coding prescription with respect to σn irreducible when it is not reducible.
Our first question concerns the characterisation of irreducible coding prescriptions.

Problem 5.9. Give a characterisation of the irreducible coding prescriptions with respect to a
substitution σn.

Note that the coding prescriptions that assign to each pair a set of non-negative (non-positive,
respectively) integers are clearly reducible. Beside this obvious fact there does not seem to be an
easy answer to this question.

The distinction between reducible and irreducible coding prescriptions allows us to represent
each coding prescription c with respect to σn as ⊙-product of irreducible coding prescriptions.
More precisely, there exist irreducible coding prescriptions c1, . . . , cj with respect to σn1 , . . . , σnj

and positive powers p1, . . . , pj such that c = c
(p1)
1 ⊙ c

(p2)
2 ⊙⋯c

(pj)
j (hence, n = k1n1 +⋯kjnj). Note

that this product is in general not commutative. The coding prescription c is itself irreducible if
and only if j = 1, n1 = n and p1 = 1.

Problem 5.10. Is this decomposition unique?
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