About the paper
coauthors |
Manfred Madritsch |
|
Volker Ziegler |
language |
English |
published in |
Elsholtz C., Grabner P. |
|
Number Theory – Diophantine Problems, Uniform Distribution and Applications |
|
Springer, Cham (2017) |
ISBN
pages |
313 to 332 |
DOI |
10.1007/978-3-319-55357-3_16 |
supported by |
FWF, project P23990 |
Abstract
In the present paper we are interested in number systems in the ring of integers of
cyclotomic number fields in order to obtain a result equivalent to Cobham’s theorem.
For this reason we first search for potential bases. This is done in a very general way in
terms of canonical number systems. In a second step we analyse pairs of bases in view of their multiplicative independence.
In the last part we state an appropriate variant of Cobham’s theorem.
References
-
B. Adamczewski, J. Bell,
An analogue of Cobham’s theorem for fractals,
Trans. Am. Math. Soc. 363 (2011), 4421—4442.
-
S. Akiyama, A. Pethő,
On canonical number systems,
Theor. Comput. Sci. 270 (2002), 921—933.
-
S. Akiyama, H. Rao,
New criteria for canonical number systems,
Acta Arith. 111 (2004), 5—25.
-
S. Akiyama, H. Brunotte, A. Petho,
Cubic CNS polynomials, notes on a conjecture of W.J. Gilbert,
J. Math. Anal. Appl. 281 (2003), 402—415
-
S. Akiyama, T. Borbély, H. Brunotte, A. Pethő, J.M. Thuswaldner,
Generalized radix representations and dynamical systems I,
Acta Math. Hungar. 108 (2005), 207—238.
-
S. Akiyama, H. Brunotte, A. Pethő, J.M. Thuswaldner,
Generalized radix representations and dynamical systems II,
Acta Arith. 121 (2006), 21—61.
-
S. Akiyama, H. Brunotte, A. Pethő,
Reducible cubic CNS polynomials,
Period. Math. Hungar. 55 (2207), 177—183.
-
A. Bertrand-Mathis,
Comment écrire les nombres entiers dans une base qui n’est pas entière,
Acta Math. Hungar. 54 (1989), 237—241.
-
B. Boigelot, J. Brusten,
A generalization of Cobham’s theorem to automata over real numbers,
Theor. Comput. Sci. 410 (2009), 1694—1703.
-
A. Bremner,
On power bases in cyclotomic number fields,
J. Number Theory 28 (1988), 288—298.
-
H. Brunotte,
On trinomial bases of radix representations of algebraic integers,
Acta Sci. Math. Acta Sci. Math. (Szeged), 67 (2001), 521—527.
-
H. Brunotte,
Characterization of CNS trinomials,
Acta Sci. Math. (Szeged) 68 (2002), 673—679.
-
H. Brunotte,
On cubic CNS polynomials with three real roots,
Acta Sci. Math. (Szeged) 70 (2004), 495—504.
-
H. Brunotte,
Symmetric CNS trinomials,
Integers 9 (2009), 201—214.
-
H. Brunotte,
A unified proof of two classical theorems on CNS polynomials,
Integers 12 (2012), 709—721.
-
H. Brunotte,
Unusual CNS polynomials,
Math. Pannon. 24 (2013), 125—137.
-
H. Brunotte, A. Huszti, A. Pethő,
Bases of canonical number systems in quartic algebraic number fields,
J. Théor. Nombres Bordeaux 18 (2006), 537–557.
-
A. Cobham,
On the base-dependence of sets of numbers recognizable by finite automata,
Math. Syst. Theory 3 (1969), 186—192.
-
F. Durand,
Cobham’s theorem for substitutions,
J. Eur. Math. Soc. (JEMS) 13 (2011), 1799—1814.
-
F. Durand, M. Rigo,
On Cobham’s theorem,
in Handbook of Automata: From Mathematics to Applications (European Mathematical Society Publishing House, Zurich, 2017).
-
S. Eilenberg,
Automata, Languages, and Machines. Vol. A,
Pure and Applied Mathematics, vol. 58 (Academic Press, New York, 1974).
-
I. Gaál, L. Robertson,
Power integral bases in prime-power cyclotomic fields,
J. Number Theory 120 (2006), 372—384.
-
W.J. Gilbert,
Radix representations of quadratic fields,
J. Math. Anal. Appl. 83 (1981), 264—274.
-
G. Hansel, T. Safer,
Vers un théorème de Cobham pour les entiers de Gauss,
Bull. Belg. Math. Soc. Simon Stevin 10 (2003), 723—735.
-
I. Kátai, B. Kovács,
Kanonische Zahlensysteme in der Theorie der quadratischen algebraischen Zahlen,
Acta Sci. Math. (Szeged) 42 (1980), 99—107.
-
I. Kátai, B. Kovács,
Canonical number systems in imaginary quadratic fields,
Acta Math. Acad. Sci. Hungar. 37 (1981), 159—164.
-
I. Kátai, J. Szabó,
Canonical number systems for complex integers,
Acta Sci. Math. (Szeged) 37 (1975), 255—260.
-
S.I. Khmelnik,
Specialized digital computer for operations with complex numbers,
Quest. Radio Electronics XII (1964), 60—82. In Russian.
-
P. Kirschenhofer, J.M. Thuswaldner,
Shift radix systems—a survey,
RIMS K%circo;ky&circu;roku Bessatsu B46 (2014), 1—59.
-
D.E. Knuth,
A imaginary number system,
CACM 3 (1960), 245—247.
-
D.E. Knuth,
The Art of Computer Programming, vol. 2: Seminumerical Algorithms,
3rd ed., Addison-Wesley, London, 1998.
-
B. Kovács,
Canonical number systems in algebraic number fields,
Acta Math. Hungar. 37 (1981), 405—407.
-
B. Kovács, A. Pethő,
Number systems in integral domains, especially in orders of algebraic number fields,
Acta Sci. Math. (Szeged) 55 (1981), 287—299.
-
B. Kovács, A. Pethő,
On a representation of algebraic integers,
Studia Sci. Math. Hungar. 27 (1992), 169—172.
-
M.G. Madritsch, V. Ziegler,
An infinite family of multiplicatively independent bases of number systems in cyclotomic number fields,
Acta Sci. Math. (Szeged) 81 (2015), 33—44.
-
M.G. Madritsch, V. Ziegler,
On multiplicatively independent bases in cyclotomic number fields,
Acta Math. Hungar. 146 (2015), 224—239.
-
W. Penney,
A "binary" system for complex numbers,
J. ACM 12(1965), 247—249.
-
A. Pethő,
On a polynomial transformation and its application to the construction of a public key cryptosystem,
in: Computational Number Theory, Debrecen, 1989, de Gruyter, Berlin, 1991, 31—43.
-
A. Pethő, R.F. Tichy,
S-unit equations, linear recurrences and digit expansions,
Math. Debr. 42 (1993), 145—154.
-
G. Ranieri,
Générateurs de l’anneau des entiers d’une extension cyclotomique,
J. Number Theory 128 (2008), 1576—1586.
-
L. Robertson,
Power bases for cyclotomic integer rings,
J. Number Theory 69 (1998), 98—118.
-
L. Robertson,
Power bases for 2-power cyclotomic fields,
J. Number Theory 88 (2001), 196—209.
-
L. Robertson,
Monogeneity in cyclotomic fields,
Int. J. Number Theory 6 (2010), 1589—1607.
-
L. Robertson, R. Russell,
A hybrid Gröbner bases approach to computing power integral bases,
Acta Math. Hungar. 147 (2015), 427—437.
-
J. Sakarovitch,
Elements of Automata Theory
Cambridge University Press, Cambridge, 2009.
-
H.P. Schlickewei,
Linear equations in integers with bounded sum of digits,
J. Number Theory 35 (1990), 335—244.
-
K. Scheicher, J.M. Thuswaldner,
On the characterization of canonical number systems,
Osaka J. Math. 41 (2004), 327—351.
-
K. Scheicher, P. Surer, J.M. Thuswaldner, C.E. van de Woestijne,
Digit systems over commutative rings,
Int. J. Number Theory 10 (2004), 1459—1483.
-
H.G. Senge, E.G. Straus,
PV-numbers and sets of multiplicity,
Period. Math. Hungar. 3 (1973), 93—100.
-
C.L. Stewart,
On the representation of an integer in two different bases,
J. Reine Angew. Math. 319 (1980), 63—72.
-
M. Waldschmidt,
Diophantine Approximation on Linear Algebraic Groups,
Grundlehren der Mathematischen Wissenschaften, vol. 326 (Springer, Berlin, 2000)
Links
Information on the entire collection at Springer
Austrian Science Foundation (FWF)