About the paper
coauthors |
Klaus Scheicher |
|
Víctor F. Sirvent |
language |
English |
published in |
Ergodic Theory and Dynamical Systems 38, No. 3 (2016) |
pages |
924 to 943 |
DOI |
10.1017/etds.2014.84 |
Abstract
In the present article, we introduce beta-expansions in the ring
p of p-adic integers. We characterise the sets of numbers with eventually periodic and finite expansions.
References
-
S. Akiyama,
Pisot numbers and greedy algorithm.,
Number theory (Eger, 1996), 9—21, de Gruyter, Berlin, 1998.
-
S. Akiyama, T. Borbély, H. Brunotte, A. Pethő, J. M. Thuswaldner,
Generalized radix representations and dynamical systems I,
Acta Math. Hungar. 108 (2005), 207—238.
-
S. Akiyama, H. Brunotte, A. Pethő, J. M. Thuswaldner,
Generalized radix representations and dynamical systems II,
Acta Arith. 121 (2006), 21—61.
-
S. Akiyama, H. Brunotte, A. Pethő, J. M. Thuswaldner,
Generalized radix representations and dynamical systems III,
Osaka J. Math. 45 (2008), 347—374.
-
S. Akiyama, H. Brunotte, A. Pethő, J. M. Thuswaldner,
Generalized radix representations and dynamical systems IV,
Indag. Math. (N.S.) 19 (2008), 333—348.
-
S. Akiyama, H. Rao, W. Steiner,
A certain finiteness property of Pisot number systems,
J. Number Theory 107 (2004) 135—160.
-
S. Akiyama, K. Scheicher,
Symmetric shift radix systems and finite expansions,
Math. Pannon. 18 (2007), 101—124.
-
A. Bertrand,
Développements en base de Pisot et répartition modulo 1,
C. R. Acad. Sci. Paris Sér. A-B 285 (1977), A419—A421.
-
D. W. Boyd,
Salem numbers of degree four have periodic expansions,
Théorie des nombres (Quebec, PQ, 1987), 57—64, de Gruyter, Berlin, 1989
-
D. W. Boyd,
On the beta expansion for Salem numbers of degree 6,
Math. Comp. 65 (1996), 861—875, S29—S31.
-
H. Brunotte, P. Kirschenhofer, J. M. Thuswaldner,
Contractivity of three-dimensional shift radix systems with finiteness property,
J. Difference Equ. Appl. 18 (2012), 1077—1099.
-
C. Frougny, B. Solomyak,
Finite beta-expansions,
Ergod. Th. and Dynam. Sys. 12 (1992), 713—723.
-
M. Hbaib, M. Mkaouar,
Sur le bêta-développement de 1 dans le corps des séries formelles,
Int. J. Number Theory 2 (2006), 365—378.
-
A. Huszti, K. Scheicher, P. Surer, J. M. Thuswaldner,
Three-dimensional symmetric shift radix systems,
Acta Arith., 129 (2007), 147—166.
-
P. Kirschenhofer, J. M. Thuswaldner,
Shift radix systems - a survey,
RIMS Kôkyûroku Bessatsu, to appear.
-
J. Neukirch,
Algebraic number theory,
volume 322 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences].
Springer-Verlag, Berlin, 1999.
-
W. Parry,
On the β-expansions of real numbers,
Acta Math. Acad. Sci. Hungar. 11 (1960), 401—416.
-
A. Rényi,
Representations for real numbers and their ergodic properties,
Acta Math. Acad. Sci. Hungar. 8 (1957), 477—493.
-
K. Scheicher,
β-expansions in algebraic function fields over finite fields,
Finite Fields Appl. 13 (2007), 394—410.
-
K. Scheicher, P. Surer, J. M. Thuswaldner, C. van de Woestijne,
Digit systems over commutative rings,
Int. J. Number Theory 10 (2014), 1459—1483.
-
K. Scheicher, J. M. Thuswaldner,
Digit systems in polynomial rings over finite fields,
Finite Fields Appl. 9 (2003), 322—333.
-
K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers,
Bull. London Math. Soc., 12 (1980), 269—278.
-
P. Surer,
Characterisation results for shift radix systems,
Math. Pannon., 18 (2007), 265—297.
-
M. Weitzer,
Characterization algorithms for shift ratix systems with finiteness property,
submitted.
Links
Ergodic Theory and Dynamical Systems
Preprint on arXiv.org