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Real expansions

Beta-expansions

For a real B with |3] > 1 and € € [0, 1) we define the beta-transformation (with
respect to the base 3 and the interval [—¢,1 — ¢)) by

Tge:[-e,1—€) — [—€,1—¢),x —Bx (mod1)
=Bx — |Bx +¢]
For x € [—¢,1 —¢) we let eg .(x) := (en)n>1 With e, = BT""1(x) — T"(x) €N

denote the digit sequence induced by the successive application of Tz . on x. We
have eg . (x) € N with

No {e€Z:—-Be<e<(1—¢)s} ifB>1,
Fe T Vfe€Z:(1—c)f<e< —Bet ifB<—1.

The beta-expansion of x (with respect to (3, ¢)) is the representation

X= =4 = 4 = 4 ... (beta-expansion).

We call an integer sequence (3, €)-admissible if it is produced by successive application
of Tg . on some x € [—¢,1 —¢).



Prominent settings

for 8 =q € N, e = 0 we obtain the g-ary expansions;

for3=3, ¢ % we obtain the balanced ternary expansion (Knuth);

for 8 > 1, e = 0 we obtain the classical beta-expansion (Rényi, Parry);
forg>1, ¢ % we obtain the symmetric beta-expansion (Akiyama-Scheicher);

for B <1, ¢ % we obtain the (—f)-expansion (lto-Sadahiro);



Complex expansions

Canonical number systems (cf. Katai, Kovacs, Kérnyei, Pethg, ...

Suppose that ¢ is an algebraic integers that induces a Canonical number system.

Then each complex number z can be represented with respect to ¢ and digit set

{07177‘C|_1}

Problems: the concept does not consider non-algebraic bases (,

It is difficult to obtain the representation for an (arbitrary) z € C.



Complex expansions

Rotational beta-expansions (Akiyama-Caalim - 2017)

Let ¢ = B - & such that 8 > 1 is a real number and ¢ € C \ R satisfies |§| = 1.
Furthermore, fix 6,71, m2 € C such that n1/n> ¢ R. Then

D :={0+ po-m + p1-n2: po,p1 € [0,1)} is a fundamental domain of the lattice £
generated by 71 and 7.

The rotational beta-transformation is defined by

S:D— D,z B¢ -z (modg).
For each z € D the rotational beta-expansion (with respect to S) is the representation

A, ds
=t e et

where d, = B¢S"71(z) — S"(z) € £ for each n > 1.

We are interested in rotational beta-expansions where 71 := -, n2 ;=1 and
6 := —e(n1 + n2) for an € € [0,1).



The zeta-expansion



Definition

Zeta-expansions

Let (€ C\R, e €]0,1) and
D¢ = {po(—C) + p1 : po, 1 € [—¢,1 —¢).
We define the zeta-transformation (with respect to the pair ({,)) by
S¢e:Dee — D¢ cyz— ¢ -z (mod L)

where £ is the lattice generated by —C and 1.

For an z € D¢ . we define the digit string produced by the successive application of
S¢,e by
dc,c(2) = (¢5"H(2) = 5"(2)) 5, € £

If || > 1 then the zeta-expansion of z (with respect to S¢ .) is the representation

where d¢ (2) = (dn)n>1-
We call an integer sequence (¢, €)-admissible if it is produced by successive application
of Sg . on some x € [—¢,1 —¢).



Example ¢ = _% + 3\?;
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Properties

We consider the complex plane as two dimensional vector space over R. We can

uniquely represent each z € C with respect to the base {—(,1}. Let

z—z z-(—z~§>

wC:C—>R2,z~>(uovu1)—<<<, c—¢

Then z = —Cuo + p1 and z € D . < ¢(2) € [—¢,1 — )2,

Let ap := —¢C and a3 := ¢ + ¢ and define

Aoy i [—6,1— )2 — [—&,1 —¢€)?, (o, p1) — (p1,a0p0 + a1pa)  (mod Z3).
Then ¢ 0 5S¢ (2) = S¢,e 0 P¢(2) for all z € De .
The map Azqy,a; corresponds to a piecewise affine map of the torus. For the case

[¢] = 1 this maps has interesting dynamical properties and applications in signal
processing (second order digital filters).



Properties

We obtain that

e © Sc,e(2) = (1, —CC - pio + (¢ + C)ua — d) with d = | (T pa + (¢ + Oz +¢| -

Let ( € C\R and € € [0,1). For each z € D¢ . we have

Sc’e(Z)ZCIZ{MHJ’

¢(—¢

Therefore, d¢ -(z) is a sequence of integers that are contained in the set of digits
Nee={d€Z:(e-1)¢C-12<d<el¢—1} if Re(¢) <0,
Nee={d€Z:(e—1)[(—17-2Re(¢) <d<el¢—1>+2Re(¢)} ifRe(¢)>0.



Example: ¢ = —% + 37\/‘5” €= %

=—¢C=—l¢P=-9 a1 =C+ ¢ =Re(¢) = -3

(t—CO)(t—C) =t —art — ap [C—12=1—a; —ao =13
Nee={-6,-5,...,5,6}

We consider z = 1/4, hence (z) = (0, 1/4).

e (2) =(0,Y/4)  +—(Y/4,-9-0-3/a—[-9.0—3/a+1/2])

= 3/, ~a— | -Ya) = (1/a,3/8)  dy=-1
P(S¢.e(2))= (Y4, Y/a) > (Y4, =94 —3/a — | —9/4 —3/a 1+ 1/2|)

= (Y4, -3 — [5/2]) = (¥/4,0) d» =—3
tbg(Sg (2))= (Y/4,0)  +—> (0,92 — [-7/4]) = (0, —Y/4) d3 ==2
¢g(535(2)) (0,=Y4)  +— (=1/2,3/4 = |5/4]) = (=/2, —1/a) da= 1
P (S¢ (2))= (=4, —Y/a)— (=1/4,3 — [7/2]) = (~1/4,0) d3= 3
pe(Se, E(Z)) (=%/4,0)  — (0,94 — [1%/a]) = (0,%/4) d3 = 2

We see that d¢ .(z) = (—1,-3,-2,1,3,2) and
1 -3 1.3 2
27177+?+F+F+E+E+?+



Example: ¢ = —3 + 3V3i o = %

z Pe(2) d; -(2)
3 (0,1/4) (-1,-3,-2,1,3,2)*
-3 (0, —1/a) (1,3,2,—1,-3,-2)*
% (07 1/3) _17 _37(0)w
-3 (=1/3,0) 3,(0)*
i (—1/5,%/3) 0,-3,(0)"
— % (-Y13,-113) (1)
— = (=Y, /7) (1, 1)
-3 (0,—/2) (2,6,5)
- (=1/2,0) (5,2,6)"
5 (—Y2,-12) (6.5.2)
L4 3 (1/a, —1/3) ~1,4,(3,2,-1, -3,




Admissible sequences and soficness



Admissible sequences for the beta-transformation

Let 8 € R with |3| > 1 and € € [0,1). An integer sequence (en)p>1 is
(8,¢)-admissible if and only if for all m > 0 we have

Z en+mﬁ_n S [757 1-— 5)'

n>1



Admissible sequences for the zeta-transformation

For each n € Z let

—=n

¢"—¢
Pn = =
©==%
We have Pn(C) = ‘Clznp—n(C) and Pn(C) =2Re (C) Pnfl(C) - K|2Pn72(<)-

For n > 1:
Pn(¢) = En(2Re (€), [¢%) = [¢|Un(Re (¢) - 1¢]71),

where E, is the nth Dickson polynomial of the second kind and U, is the nth
Chebyshev polynomial of the second kind.

Let € C\R and € € [0,1). An integer sequence (dn),>1 is (¢, €)-admissible if and
only if for all m > 0 we have

Z dn+mcin S DC,E

n>1

which is in turn equivalent to the fact that for all m > 0 we have

Z dn+mP—n(C) S [757 1-— 5)'

n>1



Soficness of the underlying shift

Let 8 € R be a Pisot number and ¢ € [0,1) N Q(3). Then the shift space (beta-shift)

Qg :={egc(x): x€[-e,1—-¢)}

is sofic.

Proposition (Akiyama-Caalim - 2017)

Let ¢ = B¢ € C\ R such that 8 is a Pisot number and ¢ is a root of unity.
Furthermore, suppose that Re (¢) € Q(8) and € € [0,1) N Q(B). Then the shift space
(zeta-shift)

Q¢e i ={dg(2):z€ D¢}

is sofic.



Extension to the entire complex
plane



Extension to the entire real line

Let 3 € R with 8 > 1 and € € (0,1) and suppose that
Bl [—e,1—¢) C[-5,1—¢).

Then for each real number x € R\ {0} there exists an integer m and a
(B, €)-admissible sequence (en),>1, both uniquely determined, that satisfy e; # 0 and

X = Z en3TM.

n>1
We write .
0e0---0eren--- if m>0,
(X)C,s = m
€162 - e_me®e_mi1€_mi2--- if m<O.

For x = 0 we write (0)¢,. =0 0.



Extension to the entire complex plane

We want to extend our representation to the entire complex plane. We require £ # 0
and
-1
(" D¢ CDge-

Let { € C\R with [¢| > 1 and € € [0,1) such that (71D . C D¢ . Then for each

complex number z € C\ {0} there exists an integer m and a (¢, €)-admissible
sequence (dn),>1, both uniquely determined, that satisfy di # 0 and

z=" d,¢T".

n>1
We write
0e0:---0dids - - if m>0,
——
(Z)C,S = m
didy---d_pmed_pi1d_pmy2- - if m < 0.

For z =0 we write (0)¢,. =0e0.

We have z € D if and only if the zeta-expansion of z has no integer part, i.e. it starts
with QOe.



Settings that satisfy D¢ . C D¢

Proposition (cf. Dombek-Masakova-Pelantova - 2011)

For 3 < —1 we have 37! -[~¢,1 —¢€) C [~¢,1 — ¢) if and only if

1 8
=€ [6+1’1 ,8+1)

Let ¢ € C\ R with |[¢| > 1. Then ¢ - D¢ . C D¢ . if and only if
1 1
[‘4_1‘2 ,1— \C—l\z] for Re (¢) > 0,

2 2
[1 - e, %) for Re (¢) < 0.



Settings that satisfy D¢ . C D¢ .

Corollary

Let € € (0,1). Then ¢ - D¢ . C D¢ if and only if

=12 >e? ACH+HA =) P >(1—e)e2 ifee(0,1)2),
IC—1P> (1 —e) *AlC+e(l—e) P >e(l —e)"2 ifec[i/21).
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Grey: the set of “forbidden” bases ¢ for e = 1/3 (left) and € = 1/2 (right)



Example: C——f 3—\[’ 5:%
z ¢ (2) (2)¢e
i (0,1/4) 0e(-1)(=3)(-2)132
: (0,1/3) 0e(—1)(—3)0
—3 4 33 (1,-3) 1000
—3 _ 33 (-1,0) 0e(—1)(—3)0
20 (0,20) 11320
2020 (0,2020) 3133134 ¢ 0
2000 (0,2000) 3132002 ¢ 0
12 4 8LV31 (27/7, -15/7) 45 e35204(—1)




Relations between complex and real
expansions



Relations between real expansions with integer base

Proposition

Let 6=NcZ\{-1,0,1} and ¢ € [0,1). A sequence (e;),>1 of bounded integers is
(N, e)-admissible if and only if (Ne2n—1 + €2n)n>1 and (Nea, 4 e2p41)n>1 are
(N2, ¢)-admissible.

Example: The binary system ((2, 0)-expansion) can easily be transferred into the
hexadecimal system ((16, 0)-expansion) by joining digits.

(m)2,0 =00116001001000011111101101010
N N A A A A A~
(m)160= 3 ¢ 2 4 3 F 6 A



Multiples of fourth roots of unity

If ¢ =B -iis an imaginary base (8 € R) and z = —Cuo + p1 then we can study the
imaginary part —(Buo and the real part puj separately:

e_ fz_,(}lo)— d1. d3. d5.
de (—Cpo + p1) = di, da, ds, da, ds, de,

e fz_((;ll) dg, d4, d@.

Let 8 > 1 be a real number, ( = £/, ¢ € [0,1) and (dn),>1 an integer sequence.
Then the following assertions are equivalent.

m The sequence (dn),>1 is (¢, €)-admissible.

m The sequences (d2p—1),>; as well as (d2p),~; are (—32,€)-admissible.



Multiples of third and sixth roots of unity

Let N € Z\ {—1,0,1}, { = Ne**™/3, ¢ € [0,1), and (dn)n>1 be a sequence of
bounded integers. Then the following assertions are equivalent.

m The sequence (dn),>1 is (¢, €)-admissible.

m For each k € {0, 1,2} the sequence (e,(f)),,21 is (N3, €)-admissible, where

e = —Nd3, 24k + d3p_14k-



Example: ¢ = —% + 37‘/‘5” €= %

We have ( =3- €2™/3 therefore the complex zeta-transformation S¢,e is related with
the real beta-transformation T7 ..

.

We have e27,1/2(—%) = (—13)¥. Therefore, an integer sequence (en),>1 is
(27, —1/2)-admissible if and only if

VYm>1: (=13)“ <jex (€n)n>m <lex (13)“.

An integer sequence (dn)n>1 is (¢, 1/2)-admissible if and only if

Vm 2 1: (_13)w Slex (_3d3n—2 + d3n—1)n2m <lex (13)w
Vm>1: (713)w Slex (73d3n71 + d3n)n2m <lex (13)w
Ym>1: (—13)¥ <iex  (=3d3n+ dBnt1)n>m  <iex (13)¥




(dﬂ)nzl = 4) 67 57 47 67 57 47
A 4
RN R
&0 — —6 -6
-3 -3
oM — -13 —-13
@ _ 1 “11

= (4,6,5)% is (¢, 1/2)-admissible



(dﬂ)nzl = _47 17 _27 -

il \’\13/ | |

oM — -5 -5

e? = 2 2

= (—4,1,—2)% is not (¢, 1/2)-admissible



(k0)27,1/2 = 0 0 e 0

A
li /1/ l\_ 6/ l\_ 5//

(p1 )27,1/2 = 3

* 0

o =0
p1 =327 —6-27 — 5 = 2020

z ="
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Eighth roots of unity

Let N € Z\ {0}, ¢ = V2Net™"* ¢ € [0,1), and (dn),>1 be a sequence of bounded
integers.. Then the following assertions are equivalent.

m The sequence (dn),>1 is (¢, €)-admissible.
m For each k € {0,1,2,3} the sequence (e,(,k)),,21 is (—4N*, €)-admissible, where
k
el = 2N2dyy—34k + 2Ndap—_24k + dan—14k-



Zeta-expansions and Canonical
number systems



Example: ( = —3 3—\['

™
I
N[

Theorem (e.g. Katai-Kérnyei - 1992)
Each complex number z can be represented as

z= d,¢", d, € {—4,...,4}.

n>1
The representation is (up to leading zeros) unique for almost all z € C.

The set
Ci={ D dnC™" (du)uz1 € {~4,-3,...,4)"}

n>1

of numbers with zero integer part is self-similar and satisfies the iterated function
system
C= U <¢HCc+a)

de{—4,...,4}



Example: ¢ = —% + 37\/‘;" e = %

Each complex number z can be represented as

2= di(""™,  dp€{-6,...,6},—13 < —3dy + dns1 < 13.
n>1

The representation is (up to leading zeros) unique for almost all z € C. We obtain
complete uniqueness by requiring that that (=3dz,—x + d3n—k+1)n>r <iex (13)“
holds for all £ > 1, k € {0,1,2}.

The set
Dc. = {Z dnC" (dn)p>1 € {—6,-3,...,6}"
n>1
Vn>1:-13 < —3dy + dps1 < 13}
is the union of the invariant set list {D(*ﬁ)7 e D(G)} of the graph directed iterated
function system
D(d) = U <—1 . <d+ D(d/)) (d GNQS)'
—6<—3d+d’ <6
d’eN¢ .

We have >, dn(™" € O(D¢,c) if and only if (—3d3n—2 + d3p—1)n>1 = (£13) or
(=3d3n—1 + d3n)s>1 = (£13)*.
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The fundamental domains.
Left: the fundamental domains for the Canonical number system; Right: the
fundamental domains for the zeta-expansion




Periodicity and Finiteness properties



Definitions

Let B > 1 be a real algebraic integer and € € [0,1). For the pair (8,¢) we define the
periodicity property (P-beta) and the finiteness property (F-beta) by

Vx € [-¢,1— )N Q(B) : {Tg’s(x) ne N} is finite (P-beta)

Vx € [—e,1—e)NZ[B7Y]: {Tgys(x) ine N} contains 0 (F-beta)

Definition
Let ¢ € C\ R be an algebraic integer and € € [0, 1). For the pair (¢, ) we define the
periodicity property (P-zeta) and the finiteness property (F-zeta) by

Vz € D¢ e NQ(C) : {Sgﬁg(z) ‘ne N} is finite (P-zeta)

Vz € D¢ NZ[CTY : {Sgys(z) ‘née N} contains 0 (F-zeta)



Pisot and Salem numbers

Definition

An algebraic integer 3 > 1 is a Pisot number if all algebraic conjugates different from
3 are located in the open unit disk. We call 8 a Salem number if all Galois conjugates
different from 3 are contained in the closed unit disk where at least one such
conjugate is located at the unit circle.

Definition

An algebraic integer ¢ € C\ R is a complex Pisot number if all algebraic conjugates
different from ¢ and ( are located in the open unit disk. We call { a complex Salem
number if all algebraic conjugates different from ¢ and ¢ are contained in the closed
unit disk where at least one such conjugate is located at the unit circle.



The periodicity property

Proposition (Bertrand - 1977, Schmidt - 1980)

Let SR be an algebraic integer and € € [0,1). If 8 is a Pisot number then (3, ¢)
satisfies (P-beta). On the other hand if (8, €) satisfies (P-beta) then 3 is a Pisot
number or Salem number.

Proposition

Let ¢ € C be an algebraic integer and € € [0,1). If ¢ is a complex Pisot number then
(¢, ) satisfies (P-zeta). On the other hand if (¢, ¢) satisfies (P-zeta) then ¢ is a
complex Pisot number or complex Salem number.



Shift radix systems

Definition (Akiyama-Borbély-Brunotte-Peth&-Thuswaldner - 2005)
Let € € [0,1), r = (ro,...,r4—1) € R and define the map Tre: 74 — 79 by

‘r.,,E:Zd—>Zd7
d-1
(%0, Xd—1) = [ xa, o xam,— | Do rx+e
=0

We call the dynamical system (Z9, T, ) a shift radix system if for each x € Z9 the
orbit {7/ .(x) : n € N} contains 0.



The finiteness property

Theorem (Akiyama-Borbély-Brunotte-Peths-Thuswaldner - 2005)

Let 8 > 1 be a real algebraic integer with minimal polynomial
(x¥ +rg_1x? 4 4 1) (x — B)

and ¢ € [0,1). Then the pair (3, €) satisfies (F-beta) if and only if (Z9, 7v . ), with
r=(ro,...,r4q—1), is a shift radix system.

Let ¢ € C\ R be an algebraic integer with minimal polynomial
(x? + ra—1x?™ 4+ 0)(x = O (x = Q)

and € € [0,1). Then the pair (¢, ¢) satisfies (F-zeta) if and only if (Z9,7v.c), with
r=(ro,...,r4q—1), is a shift radix system.



The end

Some literature
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