Representations for complex numbers with integer digits

Paul Surer

University of Natural Resources and Life Sciences (BOKU), Vienna

One world numeration seminar, October 20, 2020

Real expansions

Beta-expansions

For a real β with $|\beta|>1$ and $\varepsilon\in[0,1)$ we define the *beta-transformation* (with respect to the base β and the interval $[-\varepsilon,1-\varepsilon)$) by

$$T_{\beta,\varepsilon}: [-\varepsilon, 1-\varepsilon) \longrightarrow [-\varepsilon, 1-\varepsilon), x \longmapsto \beta x \pmod{1}$$

=\beta x - |\beta x + \varepsilon

For $x \in [-\varepsilon, 1-\varepsilon)$ we let $\mathbf{e}_{\beta,\varepsilon}(x) := (e_n)_{n \geq 1}$ with $e_n = \beta T^{n-1}(x) - T^n(x) \in \mathbb{N}$ denote the digit sequence induced by the successive application of $T_{\beta,\varepsilon}$ on x. We have $\mathbf{e}_{\beta,\varepsilon}(x) \in \mathcal{N}_{\beta,\varepsilon}$ with

$$\mathcal{N}_{eta,arepsilon} := egin{cases} \{ \mathsf{e} \in \mathbb{Z} : -eta arepsilon \le \mathsf{e} < (1-arepsilon)eta \} & ext{if } eta > 1, \ \{ \mathsf{e} \in \mathbb{Z} : (1-arepsilon)eta < \mathsf{e} \le -eta arepsilon \} & ext{if } eta < -1. \end{cases}$$

The beta-expansion of x (with respect to (β, ε)) is the representation

$$x = \frac{e_1}{\beta} + \frac{e_2}{\beta^2} + \frac{e_3}{\beta^3} + \cdots$$
 (beta-expansion).

We call an integer sequence (β, ε) -admissible if it is produced by successive application of $T_{\beta, \varepsilon}$ on some $x \in [-\varepsilon, 1 - \varepsilon)$.

Prominent settings

- lacktriangledown for $eta=q\in\mathbb{N}$, arepsilon=0 we obtain the q-ary expansions;
- for $\beta = 3$, $\varepsilon = \frac{1}{2}$ we obtain the balanced ternary expansion (Knuth);
- for $\beta > 1$, $\varepsilon = 0$ we obtain the classical beta-expansion (Rényi, Parry);
- lacksquare for eta>1, $arepsilon=rac{1}{2}$ we obtain the symmetric beta-expansion (Akiyama-Scheicher);
- for $\beta < 1$, $\varepsilon = \frac{\beta}{1-\beta}$ we obtain the $(-\beta)$ -expansion (Ito-Sadahiro);
-

Complex expansions

Canonical number systems (cf. Kátai, Kovács, Kőrnyei, Pethő, ...)

Suppose that ζ is an algebraic integers that induces a Canonical number system.

Then each complex number z can be represented with respect to ζ and digit set

$$\{0, 1, \ldots, |\zeta| - 1\}.$$

Problems: the concept does not consider non-algebraic bases $\zeta,\,$

It is difficult to obtain the representation for an (arbitrary) $z\in\mathbb{C}.$

Complex expansions

Rotational beta-expansions (Akiyama-Caalim - 2017)

Let $\zeta = \beta \cdot \xi$ such that $\beta > 1$ is a real number and $\xi \in \mathbb{C} \setminus \mathbb{R}$ satisfies $|\xi| = 1$.

Furthermore, fix $\theta, \eta_1, \eta_2 \in \mathbb{C}$ such that $\eta_1/\eta_2 \notin \mathbb{R}$. Then

 $D:=\{\theta+\mu_0\cdot\eta_1+\mu_1\cdot\eta_2:\mu_0,\mu_1\in[0,1)\}$ is a fundamental domain of the lattice $\mathfrak L$ generated by η_1 and η_2 .

The rotational beta-transformation is defined by

$$S: D \longrightarrow D, z \longmapsto \beta \xi \cdot z \pmod{\mathfrak{L}}.$$

For each $z \in D$ the *rotational beta-expansion* (with respect to S) is the representation

$$z = \frac{d_1}{\beta \xi} + \frac{d_2}{(\beta \xi)^2} + \frac{d_3}{(\beta \xi)^3} + \cdots$$

where $d_n = \beta \xi S^{n-1}(z) - S^n(z) \in \mathfrak{L}$ for each $n \ge 1$.

We are interested in rotational beta-expansions where $\eta_1:=-\overline{\zeta},\ \eta_2:=1$ and $\theta:=-\varepsilon(\eta_1+\eta_2)$ for an $\varepsilon\in[0,1)$.

The zeta-expansion

Definition

Zeta-expansions

Let $\zeta \in \mathbb{C} \setminus \mathbb{R}$, $\varepsilon \in [0,1)$ and

$$D_{\zeta,\varepsilon} := \{ \mu_0(-\overline{\zeta}) + \mu_1 : \mu_0, \mu_1 \in [-\varepsilon, 1-\varepsilon).$$

We define the zeta-transformation (with respect to the pair (ζ, ε)) by

$$S_{\zeta,\varepsilon}: D_{\zeta,\varepsilon} \longrightarrow D_{\zeta,\varepsilon}, z \longmapsto \zeta \cdot z \pmod{\mathfrak{L}}$$

where \mathfrak{L} is the lattice generated by $-\overline{\zeta}$ and 1.

For an $z\in D_{\zeta,\varepsilon}$ we define the digit string produced by the successive application of $S_{\zeta,\varepsilon}$ by

$$d_{\zeta,\varepsilon}(z) = \left(\zeta S^{n-1}(z) - S^n(z)\right)_{n>1} \in \mathfrak{L}^{\mathbb{N}}.$$

If $|\zeta|>1$ then the *zeta-expansion* of z (with respect to $S_{\zeta,arepsilon}$) is the representation

$$x = \frac{d_1}{\zeta} + \frac{d_2}{\zeta^2} + \frac{d_3}{\zeta^3} + \cdots$$

where $d_{\zeta,\varepsilon}(z)=(d_n)_{n\geq 1}$.

We call an integer sequence (ζ, ε) -admissible if it is produced by successive application of $S_{\beta,\varepsilon}$ on some $x \in [-\varepsilon, 1-\varepsilon)$.

Example $\zeta = -\frac{3}{2} + \frac{3\sqrt{3}i}{2}$

The fundamental domain $D_{\zeta,\varepsilon}$ for different choices of ε . Left: $\varepsilon=1$, centre: $\varepsilon=1/3$, right: $\varepsilon=1/2$

The zeta-transformation induces integer digits: Integer translates of the fundamental domain $D_{\zeta,1/2}$ completely cover $\zeta \cdot D_{\zeta,1/2}$.

Properties

We consider the complex plane as two dimensional vector space over \mathbb{R} . We can uniquely represent each $z\in\mathbb{C}$ with respect to the base $\{-\overline{\zeta},1\}$. Let

$$\psi_{\zeta}: \mathbb{C} \longrightarrow \mathbb{R}^2, z \longmapsto (\mu_0, \mu_1) = \left(\frac{z - \overline{z}}{\zeta - \overline{\zeta}}, \frac{z \cdot \zeta - \overline{z \cdot \zeta}}{\zeta - \overline{\zeta}}\right).$$

Then $z = -\overline{\zeta}\mu_0 + \mu_1$ and $z \in D_{\zeta,\varepsilon} \iff \psi_{\zeta}(z) \in [-\varepsilon, 1-\varepsilon)^2$.

Lemma

Let $a_0 := -\zeta \overline{\zeta}$ and $a_1 := \zeta + \overline{\zeta}$ and define

$$A_{a_0,a_1}: [-\varepsilon,1-\varepsilon)^2 \longrightarrow [-\varepsilon,1-\varepsilon)^2, (\mu_0,\mu_1) \longmapsto (\mu_1,a_0\mu_0+a_1\mu_1) \pmod{\mathbb{Z}^2}.$$

Then $\psi_{\zeta} \circ S_{\zeta,\varepsilon}(z) = S_{\zeta,\varepsilon} \circ \psi_{\zeta}(z)$ for all $z \in D_{\zeta,\varepsilon}$.

The map A_{a_0,a_1} corresponds to a piecewise affine map of the torus. For the case $|\zeta|=1$ this maps has interesting dynamical properties and applications in signal processing (second order digital filters).

Properties

We obtain that

$$\psi_{\zeta} \circ S_{\zeta,\varepsilon}(z) = (\mu_1, -\zeta\overline{\zeta} \cdot \mu_0 + (\zeta + \overline{\zeta})\mu_1 - d) \text{ with } d = \left\lfloor -\zeta\overline{\zeta} \cdot \mu_1 + (\zeta + \overline{\zeta})\mu_2 + \varepsilon \right\rfloor.$$

Proposition

Let $\zeta \in \mathbb{C} \setminus \mathbb{R}$ and $\varepsilon \in [0,1)$. For each $z \in D_{\zeta,\varepsilon}$ we have

$$S_{\zeta,\varepsilon}(z) = \zeta \cdot z - \left| \frac{z \cdot \zeta^2 - \overline{z \cdot \zeta^2}}{\zeta - \overline{\zeta}} + \varepsilon \right|.$$

Therefore, $d_{\zeta,\varepsilon}(z)$ is a sequence of integers that are contained in the set of digits

$$\mathcal{N}_{\zeta,\varepsilon} = \left\{ d \in \mathbb{Z} : (\varepsilon - 1)|\zeta - 1|^2 < d \le \varepsilon|\zeta - 1|^2 \right\}$$
 if Re $(\zeta) \le 0$,
$$\mathcal{N}_{\zeta,\varepsilon} = \left\{ d \in \mathbb{Z} : (\varepsilon - 1)|\zeta - 1|^2 - 2\operatorname{Re}(\zeta) < d < \varepsilon|\zeta - 1|^2 + 2\operatorname{Re}(\zeta) \right\}$$
 if Re $(\zeta) > 0$.

$$a_0 = -\zeta \overline{\zeta} = -|\zeta|^2 = -9$$
 $a_1 = \zeta + \overline{\zeta} = \text{Re}(\zeta) = -3$ $(t - \zeta)(t - \overline{\zeta}) = t^2 - a_1 t - a_0$ $|\zeta - 1|^2 = 1 - a_1 - a_0 = 13$ $\mathcal{N}_{\zeta,\varepsilon} = \{-6, -5, \dots, 5, 6\}$

We consider z = 1/4, hence $\psi(z) = (0, 1/4)$.

We see that $oldsymbol{d}_{\zeta,arepsilon}(z)=(-1,-3,-2,1,3,2)^\omega$ and

$$z = \frac{1}{4} = \frac{-1}{\zeta} + \frac{-3}{\zeta^2} + \frac{-2}{\zeta^3} + \frac{1}{\zeta^4} + \frac{3}{\zeta^5} + \frac{2}{\zeta^6} + \frac{-1}{\zeta^7} + \cdots$$

Z	$\psi_{\zeta}(z)$	$ extbf{ extit{d}}_{\zeta,arepsilon}(z)$
1/4	(0, 1/4)	$(-1,-3,-2,1,3,2)^{\omega}$
$-\frac{1}{4}$	(0,-1/4)	$(1,3,2,-1,-3,-2)^\omega$
$\frac{-\frac{1}{4}}{\frac{1}{3}}$	(0, 1/3)	$-1,-3,$ (0) $^\omega$
$-\frac{1}{2} - \frac{\sqrt{3}i}{2}$	(-1/3,0)	$3,(0)^{\omega}$
$\frac{1}{6}-\frac{\sqrt{3}i}{6}$	(-1/9, 1/3)	$0,-3,(0)^\omega$
$-\frac{5}{26} - \frac{5\sqrt{3}i}{26}$	$\left(-1/13,-1/13\right)$	$(1)^{\omega}$
$-\frac{1}{14} - \frac{5\sqrt{3}i}{14}$	(-1/7, 1/7)	$(1,-1)^\omega$
$-\frac{1}{2}$	(0,-1/2)	$(2,6,5)^{\omega}$
$ \frac{-\frac{1}{14} - \frac{5\sqrt{3}i}{14}}{-\frac{1}{2}} \\ -\frac{3}{4} - \frac{3\sqrt{3}i}{4} \\ -\frac{5}{4} - \frac{3\sqrt{3}i}{4} $	(-1/2,0)	$(5,2,6)^{\omega}$
$-\frac{5}{4} - \frac{3\sqrt{3}i}{4}$	(-1/2, -1/2)	$(6,5,2)^{\omega}$
$\frac{-\frac{1}{4} - \frac{3\sqrt{3}i}{4}}{\frac{1}{24} + \frac{3\sqrt{3}i}{8}}$	(1/4, -1/3)	$-1, 4, (3, 2, -1, -3, -2, 1)^{\omega}$

Admissible sequences and soficness

Admissible sequences for the beta-transformation

Proposition

Let $\beta\in\mathbb{R}$ with $|\beta|>1$ and $\varepsilon\in[0,1)$. An integer sequence $(e_n)_{n\geq 1}$ is (β,ε) -admissible if and only if for all $m\geq 0$ we have

$$\sum_{n>1}e_{n+m}\beta^{-n}\in[-\varepsilon,1-\varepsilon).$$

Admissible sequences for the zeta-transformation

For each $n \in \mathbb{Z}$ let

$$P_n(\zeta) := \frac{\zeta^n - \overline{\zeta}^n}{\zeta - \overline{\zeta}}.$$

We have $P_n(\zeta) = |\zeta|^{2n} P_{-n}(\zeta)$ and $P_n(\zeta) = 2 \operatorname{Re}(\zeta) P_{n-1}(\zeta) - |\zeta|^2 P_{n-2}(\zeta)$.

For $n \ge 1$:

$$P_n(\zeta) = E_n \left(2 \mathrm{Re} \left(\zeta \right), |\zeta|^2 \right) = |\zeta| U_n \left(\mathrm{Re} \left(\zeta \right) \cdot |\zeta|^{-1} \right),$$

where E_n is the *n*th Dickson polynomial of the second kind and U_n is the *n*th Chebyshev polynomial of the second kind.

Proposition

Let $\zeta \in \mathbb{C} \setminus \mathbb{R}$ and $\varepsilon \in [0,1)$. An integer sequence $(d_n)_{n \geq 1}$ is (ζ,ε) -admissible if and only if for all m > 0 we have

$$\sum_{n\geq 1} d_{n+m} \zeta^{-n} \in D_{\zeta,\varepsilon}$$

which is in turn equivalent to the fact that for all $m \ge 0$ we have

$$\sum_{n>1} d_{n+m} P_{-n}(\zeta) \in [-\varepsilon, 1-\varepsilon).$$

Soficness of the underlying shift

Proposition

Let $\beta \in \mathbb{R}$ be a Pisot number and $\varepsilon \in [0,1) \cap \mathbb{Q}(\beta)$. Then the shift space (beta-shift)

$$\Omega_{eta,arepsilon}:=\overline{\{m{e}_{eta,arepsilon}(x):x\in[-arepsilon,1-arepsilon)\}}$$

is sofic.

Proposition (Akiyama-Caalim - 2017)

Let $\zeta = \beta \xi \in \mathbb{C} \setminus \mathbb{R}$ such that β is a Pisot number and ξ is a root of unity. Furthermore, suppose that $\operatorname{Re}(\zeta) \in \mathbb{Q}(\beta)$ and $\varepsilon \in [0,1) \cap \mathbb{Q}(\beta)$. Then the shift space (zeta-shift)

$$\Omega_{\zeta,\varepsilon}:=\overline{\{oldsymbol{d}_{eta,arepsilon}(z):z\in D_{\zeta,arepsilon}\}}$$

is sofic.

Extension to the entire complex

plane

Extension to the entire real line

Theorem

Let $\beta \in \mathbb{R}$ with $\beta > 1$ and $\varepsilon \in (0,1)$ and suppose that

$$\beta^{-1} \cdot [-\varepsilon, 1-\varepsilon) \subset [-\varepsilon, 1-\varepsilon).$$

Then for each real number $x \in \mathbb{R} \setminus \{0\}$ there exists an integer m and a (β, ε) -admissible sequence $(e_n)_{n \geq 1}$, both uniquely determined, that satisfy $e_1 \neq 0$ and

$$x = \sum_{n \ge 1} e_n \beta^{-n+m}.$$

We write

$$(x)_{\zeta,\varepsilon} = \left\{ \begin{array}{c} 0 \bullet \underbrace{0 \cdots 0}_{m} e_{1} e_{2} \cdots & \text{if } m \geq 0, \\ e_{1} e_{2} \cdots e_{-m} \bullet e_{-m+1} e_{-m+2} \cdots & \text{if } m < 0. \end{array} \right.$$

For x = 0 we write $(0)_{\zeta,\varepsilon} = 0 \bullet \dot{0}$.

Extension to the entire complex plane

We want to extend our representation to the entire complex plane. We require $\varepsilon \neq 0$ and

$$\zeta^{-1}D_{\zeta,\varepsilon}\subset D_{\zeta,\varepsilon}.$$

Theorem

Let $\zeta \in \mathbb{C} \setminus \mathbb{R}$ with $|\zeta| > 1$ and $\varepsilon \in [0,1)$ such that $\zeta^{-1}D_{\zeta,\varepsilon} \subset D_{\zeta,\varepsilon}$. Then for each complex number $z \in \mathbb{C} \setminus \{0\}$ there exists an integer m and a (ζ,ε) -admissible sequence $(d_n)_{n \geq 1}$, both uniquely determined, that satisfy $d_1 \neq 0$ and

$$z=\sum_{n\geq 1}d_n\zeta^{-n+m}.$$

We write

$$(z)_{\zeta,\varepsilon} = \left\{ \begin{array}{cc} 0 \bullet \underbrace{0 \cdots 0}_{m} d_1 d_2 \cdots & \text{if } m \geq 0, \\ d_1 d_2 \cdots d_{-m} \bullet d_{-m+1} d_{-m+2} \cdots & \text{if } m < 0. \end{array} \right.$$

For z = 0 we write $(0)_{\zeta,\varepsilon} = 0 \bullet \dot{0}$.

We have $z \in D$ if and only if the zeta-expansion of z has no integer part, i.e. it starts with $0 \bullet$.

Settings that satisfy $D_{\zeta,arepsilon}\subset D_{\zeta,arepsilon}$

Proposition (cf. Dombek-Masáková-Pelantová - 2011)

For $\beta<-1$ we have $\beta^{-1}\cdot[-\varepsilon,1-\varepsilon)\subset[-\varepsilon,1-\varepsilon)$ if and only if

$$arepsilon \in \left[rac{1}{eta+1}, 1 - rac{eta}{eta+1}
ight)$$

Proposition

Let $\zeta\in\mathbb{C}\setminus\mathbb{R}$ with $|\zeta|>1$. Then $\zeta\cdot D_{\zeta,arepsilon}\subset D_{\zeta,arepsilon}$ if and only if

$$\varepsilon \in \begin{cases} \left[\frac{1}{|\zeta - 1|^2}, 1 - \frac{1}{|\zeta - 1|^2} \right] & \text{for } \operatorname{Re}\left(\zeta\right) > 0, \\ \left[1 - \frac{|\zeta|^2}{|\zeta - 1|^2}, \frac{|\zeta|^2}{|\zeta - 1|^2} \right) & \text{for } \operatorname{Re}\left(\zeta\right) \le 0. \end{cases}$$

Settings that satisfy $D_{\zeta,arepsilon}\subset D_{\zeta,arepsilon}$

Corollary

Let $\varepsilon \in (0,1)$. Then $\zeta \cdot D_{\zeta,\varepsilon} \subset D_{\zeta,\varepsilon}$ if and only if

$$\begin{split} |\zeta-1|^2 &\geq \varepsilon^{-1} & \wedge |\zeta+(1-\varepsilon)\varepsilon^{-1}|^2 \geq (1-\varepsilon)\varepsilon^{-2} & \text{if } \varepsilon \in (0,1/2), \\ |\zeta-1|^2 &\geq (1-\varepsilon)^{-1} \wedge |\zeta+\varepsilon(1-\varepsilon)^{-1}|^2 > \varepsilon(1-\varepsilon)^{-2} & \text{if } \varepsilon \in [1/2,1). \end{split}$$

Grey: the set of "forbidden" bases ζ for $\varepsilon=1/3$ (left) and $\varepsilon=1/2$ (right)

Z	$\psi_{\zeta}(z)$	$(z)_{\zeta,arepsilon}$
$\frac{1}{4}$	(0, 1/4)	$0 \bullet \overline{(-1)(-3)(-2)132}$
1/3	(0, 1/3)	0 • (−1)(−3)0
$-\frac{3}{2}+\frac{3\sqrt{3}i}{2}$	(1, -3)	10 • Ö
$-\frac{3}{2}-\frac{3\sqrt{3}i}{2}$	(-1, 0)	0 • (−1)(−3)0
20	(0, 20)	1132 • Ö
2020	(0, 2020)	3133134 • 0
2000	(0, 2000)	3132002 • 0
$-\frac{12}{7} + \frac{81\sqrt{3}i}{14}$	(27/7, -15/7)	45 ● 35204(-1)

Relations between complex and real expansions

Relations between real expansions with integer base

Proposition

Let $\beta=N\in\mathbb{Z}\setminus\{-1,0,1\}$ and $\varepsilon\in[0,1)$. A sequence $(e_n)_{n\geq 1}$ of bounded integers is (N,ε) -admissible if and only if $(Ne_{2n-1}+e_{2n})_{n\geq 1}$ and $(Ne_{2n}+e_{2n+1})_{n\geq 1}$ are (N^2,ε) -admissible.

Example: The binary system ((2,0)-expansion) can easily be transferred into the hexadecimal system ((16,0)-expansion) by joining digits.

Multiples of fourth roots of unity

If $\zeta=\beta\cdot i$ is an imaginary base $(\beta\in\mathbb{R})$ and $z=-\overline{\zeta}\mu_0+\mu_1$ then we can study the imaginary part $-\beta\mu_0$ and the real part μ_1 separately:

$$\mathbf{e}_{-\beta^2,\epsilon}(\mu_0) = d_1, \qquad d_3, \qquad d_5, \qquad \cdots$$

$$\mathbf{d}_{\zeta,\epsilon}(-\overline{\zeta}\mu_0 + \mu_1) = d_1, d_2, d_3, d_4, d_5, d_6, \qquad \cdots$$

$$\mathbf{e}_{-\beta^2,\epsilon}(\mu_1) = d_2, \quad d_4, \quad d_6, \quad \cdots$$

Theorem

Let $\beta>1$ be a real number, $\zeta=\pm\beta i,\ \varepsilon\in[0,1)$ and $(d_n)_{n\geq 1}$ an integer sequence. Then the following assertions are equivalent.

- The sequence $(d_n)_{n>1}$ is (ζ, ε) -admissible.
- The sequences $(d_{2n-1})_{n\geq 1}$ as well as $(d_{2n})_{n\geq 1}$ are $(-\beta^2,\varepsilon)$ -admissible.

Multiples of third and sixth roots of unity

Theorem

Let $N \in \mathbb{Z} \setminus \{-1,0,1\}$, $\zeta = Ne^{\pm 2\pi i/3}$, $\varepsilon \in [0,1)$, and $(d_n)_{n\geq 1}$ be a sequence of bounded integers. Then the following assertions are equivalent.

- The sequence $(d_n)_{n\geq 1}$ is (ζ, ε) -admissible.
- For each $k \in \{0,1,2\}$ the sequence $(e_n^{(k)})_{n\geq 1}$ is (N^3,ε) -admissible, where $e_n^{(k)} := -Nd_{3n-2+k} + d_{3n-1+k}$.

Example:
$$\zeta = -\frac{3}{2} + \frac{3\sqrt{3}i}{2}$$
, $\varepsilon = \frac{1}{2}$

We have $\zeta=3\cdot e^{2\pi/3}$, therefore the complex zeta-transformation $S_{\zeta,\varepsilon}$ is related with the real beta-transformation $T_{27,\varepsilon}$.

We have $\mathbf{e}_{27,1/2}(-\frac{1}{2})=(-13)^{\omega}$. Therefore, an integer sequence $(e_n)_{n\geq 1}$ is (27,-1/2)-admissible if and only if

$$\forall m \geq 1: \quad (-13)^{\omega} \leq_{\mathrm{lex}} (e_n)_{n \geq m} <_{\mathrm{lex}} (13)^{\omega}.$$

An integer sequence $(d_n)_{n\geq 1}$ is $(\zeta,1/2)$ -admissible if and only if

$$\begin{array}{lll} \forall m \geq 1: & (-13)^{\omega} \leq_{\mathrm{lex}} & (-3d_{3n-2} + d_{3n-1})_{n \geq m} & <_{\mathrm{lex}} & (13)^{\omega} \\ \forall m \geq 1: & (-13)^{\omega} \leq_{\mathrm{lex}} & (-3d_{3n-1} + d_{3n})_{n \geq m} & <_{\mathrm{lex}} & (13)^{\omega} \\ \forall m \geq 1: & (-13)^{\omega} \leq_{\mathrm{lex}} & (-3d_{3n} + d_{3n+1})_{n \geq m} & <_{\mathrm{lex}} & (13)^{\omega} \end{array}$$

 $\Longrightarrow (4,6,5)^{\omega}$ is $(\zeta,1/2)$ -admissible

 $\Longrightarrow (-4,1,-2)^\omega$ is not $(\zeta,1/2)$ -admissible

$$(\mu_0)_{27,1/2} = 0 \qquad 0 \qquad 0 \qquad \bullet \qquad 0$$

$$(z)_{\zeta,1/2} = 0 \qquad 3 \qquad 1 \qquad 3 \qquad 3 \qquad 1 \qquad 3 \qquad 4 \qquad \bullet \qquad 0$$

$$(\mu_1)_{27,1/2} = 3 \qquad -6 \qquad -5 \qquad \bullet \qquad 0$$

$$\mu_0 = 0$$
 $\mu_1 = 3 \cdot 27^2 - 6 \cdot 27 - 5 = 2020$

$$z = ?$$

$$z = -\frac{12}{7} + \frac{81\sqrt{3}i}{14} = -\overline{\zeta} \cdot \frac{27}{7} - \frac{15}{7} \implies \begin{array}{c} \mu_0 = \frac{27}{7} \\ \mu_1 = -\frac{15}{7} \end{array}$$

$$(\mu_0)_{27,1/2} = \begin{array}{c} 4 \\ -3 \end{array} \qquad \begin{array}{c} -4 \\ -3 \end{array} \qquad \begin{array}{c} 4 \\ -3 \end{array} \qquad \begin{array}{c} -3 \end{array} \qquad \begin{array}$$

Eighth roots of unity

Theorem

Let $N \in \mathbb{Z} \setminus \{0\}$, $\zeta = \sqrt{2} N e^{\pm \pi i/4}$, $\varepsilon \in [0,1)$, and $(d_n)_{n \geq 1}$ be a sequence of bounded integers.. Then the following assertions are equivalent.

- The sequence $(d_n)_{n>1}$ is (ζ, ε) -admissible.
- For each $k \in \{0, 1, 2, 3\}$ the sequence $(e_n^{(k)})_{n \ge 1}$ is $(-4N^4, \varepsilon)$ -admissible, where $e_n^{(k)} := 2N^2d_{4n-3+k} + 2Nd_{4n-2+k} + d_{4n-1+k}$.

Zeta-expansions and Canonical number systems

Example:
$$\zeta = -\frac{3}{2} + \frac{3\sqrt{3}i}{2}$$
, $\varepsilon = \frac{1}{2}$

Theorem (e.g. Kátai-Kőrnyei - 1992)

Each complex number z can be represented as

$$z=\sum_{n\geq 1}d_n\zeta^{-n+m}, \qquad d_n\in\{-4,\dots,4\}.$$

The representation is (up to leading zeros) unique for almost all $z \in \mathbb{C}$.

The set

$$C := \left\{ \sum_{n \geq 1} d_n \zeta^{-n} : (d_n)_{n \geq 1} \in \{-4, -3, \dots, 4\}^{\mathbb{N}} \right\}$$

of numbers with zero integer part is self-similar and satisfies the iterated function system

$$C = \bigcup_{d \in \{-4,...,4\}} \zeta^{-1}(C+d)$$

Example:
$$\zeta = -\frac{3}{2} + \frac{3\sqrt{3}i}{2}$$
, $\varepsilon = \frac{1}{2}$

Theorem

Each complex number z can be represented as

$$z = \sum_{n \geq 1} d_n \zeta^{-n+m}, \qquad d_n \in \{-6, \dots, 6\}, -13 \leq -3d_n + d_{n+1} \leq 13.$$

The representation is (up to leading zeros) unique for almost all $z \in \mathbb{C}$. We obtain complete uniqueness by requiring that that $(-3d_{3n-k}+d_{3n-k+1})_{n\geq \ell}<_{\text{lex}}(13)^{\omega}$ holds for all $\ell\geq 1$, $k\in\{0,1,2\}$.

The set

$$\overline{D_{\zeta,\varepsilon}} := \Big\{ \sum_{n \ge 1} d_n \zeta^{-n} : (d_n)_{n \ge 1} \in \{-6, -3, \dots, 6\}^{\mathbb{N}}$$
$$\forall n \ge 1 : -13 \le -3d_n + d_{n+1} \le 13 \Big\}$$

is the union of the invariant set list $\{D^{(-6)},\dots,D^{(6)}\}$ of the graph directed iterated function system

$$D^{(d)} = igcup_{egin{array}{c} -\mathbf{6} \le -\mathbf{3}d + d' \le \mathbf{6} \ d \in \mathcal{N}_{\zeta,arepsilon} \end{array}} \zeta^{-1} \cdot \left(d + D^{(d')}
ight) \qquad (d \in \mathcal{N}_{\zeta,arepsilon}).$$

We have $\sum_{n\geq 1} d_n \zeta^{-n} \in \partial(D_{\zeta,\varepsilon})$ if and only if $(-3d_{3n-2}+d_{3n-1})_{n\geq 1}=(\pm 13)^\omega$ or $(-3d_{3n-1}+d_{3n})_{n\geq 1}=(\pm 13)^\omega$.

Left: the fundamental domains for the Canonical number system; Right: the fundamental domains for the zeta-expansion

Periodicity and Finiteness properties

Definitions

Definition

Let $\beta>1$ be a real algebraic integer and $\varepsilon\in[0,1)$. For the pair (β,ε) we define the periodicity property (P-beta) and the finiteness property (F-beta) by

$$\forall \mathsf{x} \in [-\varepsilon, 1-\varepsilon) \cap \mathbb{Q}(\beta) : \left\{ T_{\beta,\varepsilon}^n(\mathsf{x}) : n \in \mathbb{N} \right\} \text{ is finite} \tag{P-beta}$$

$$\forall x \in [-\varepsilon, 1-\varepsilon) \cap \mathbb{Z}[\beta^{-1}] : \left\{ T_{\beta,\varepsilon}^n(x) : n \in \mathbb{N} \right\} \text{ contains 0}$$
 (F-beta)

Definition

Let $\zeta\in\mathbb{C}\setminus\mathbb{R}$ be an algebraic integer and $\varepsilon\in[0,1)$. For the pair (ζ,ε) we define the periodicity property (P-zeta) and the finiteness property (F-zeta) by

$$\forall z \in D_{\zeta,\varepsilon} \cap \mathbb{Q}(\zeta) : \left\{ S_{\zeta,\varepsilon}^n(z) : n \in \mathbb{N} \right\} \text{ is finite} \tag{P-zeta}$$

$$\forall z \in D_{\zeta,\varepsilon} \cap \mathbb{Z}[\zeta^{-1}] : \left\{ S_{\zeta,\varepsilon}^n(z) : n \in \mathbb{N} \right\} \text{ contains } 0$$
 (F-zeta)

Pisot and Salem numbers

Definition

An algebraic integer $\beta>1$ is a *Pisot number* if all algebraic conjugates different from β are located in the open unit disk. We call β a *Salem number* if all Galois conjugates different from β are contained in the closed unit disk where at least one such conjugate is located at the unit circle.

Definition

An algebraic integer $\underline{\zeta} \in \mathbb{C} \setminus \mathbb{R}$ is a *complex Pisot number* if all algebraic conjugates different from ζ and $\overline{\zeta}$ are located in the open unit disk. We call ζ a *complex Salem number* if all algebraic conjugates different from ζ and $\overline{\zeta}$ are contained in the closed unit disk where at least one such conjugate is located at the unit circle.

The periodicity property

Proposition (Bertrand - 1977, Schmidt - 1980)

Let $\beta\mathbb{R}$ be an algebraic integer and $\varepsilon \in [0,1)$. If β is a Pisot number then (β,ε) satisfies (P-beta). On the other hand if (β,ε) satisfies (P-beta) then β is a Pisot number or Salem number.

Proposition

Let $\zeta\in\mathbb{C}$ be an algebraic integer and $\varepsilon\in[0,1)$. If ζ is a complex Pisot number then (ζ,ε) satisfies (P-zeta). On the other hand if (ζ,ε) satisfies (P-zeta) then ζ is a complex Pisot number or complex Salem number.

Shift radix systems

Definition (Akiyama-Borbély-Brunotte-Pethő-Thuswaldner - 2005)

Let $\varepsilon \in [0,1)$, ${\pmb r}=(r_0,\dots,r_{d-1})\in \mathbb{R}^d$ and define the map ${\pmb au}_{r,\varepsilon}:\mathbb{Z}^d\longrightarrow \mathbb{Z}^d$ by

$$au_{r,\varepsilon}: \mathbb{Z}^d \to \mathbb{Z}^d,$$

$$(x_0, \dots, x_{d-1}) \mapsto \left(x_1, \dots, x_{d-1}, -\left|\sum_{i=0}^{d-1} r_i x_i + \varepsilon\right|\right).$$

We call the dynamical system $(\mathbb{Z}^d, \tau_{r,\varepsilon})$ a *shift radix system* if for each $\mathbf{x} \in \mathbb{Z}^d$ the orbit $\{\boldsymbol{\tau}_{r,\varepsilon}^n(\mathbf{x}) : n \in \mathbb{N}\}$ contains 0.

The finiteness property

Theorem (Akiyama-Borbély-Brunotte-Pethő-Thuswaldner - 2005)

Let $\beta>1$ be a real algebraic integer with minimal polynomial

$$(x^d + r_{d-1}x^{d-1} + \cdots + r_0)(x - \beta)$$

and $\varepsilon \in [0,1)$. Then the pair (β,ε) satisfies (F-beta) if and only if $(\mathbb{Z}^d,\tau_{r,\varepsilon})$, with $r=(r_0,\ldots,r_{d-1})$, is a shift radix system.

Theorem

Let $\zeta \in \mathbb{C} \setminus \mathbb{R}$ be an algebraic integer with minimal polynomial

$$(x^{d} + r_{d-1}x^{d-1} + \cdots + r_{0})(x - \zeta)(x - \overline{\zeta})$$

and $\varepsilon \in [0,1)$. Then the pair (ζ, ε) satisfies (F-zeta) if and only if $(\mathbb{Z}^d, \tau_{r,\varepsilon})$, with $r = (r_0, \dots, r_{d-1})$, is a shift radix system.

Some literature

- Akiyama, Caalim: Rotational beta expansion: ergodicity and soficness.
 J. Math. Soc. Japan 69, 397–415 (2017)
- Akiyama, Caalim: Invariant measure of rotational beta expansion and Tarski's Plank problem.
 Discrete Comput. 681 Geom. 57, 357–370 (2017)
- Dombek, Masáková, Pelantová: Number representation using generalized (-β)-transformation.
 Theor. Comput. Sci. 412, 6653–6665 (2011)
- S.: Representations for complex numbers with integer digits. to appear in Res. Number Theory.

Thank you for your interest