New characterisation results for Shift Radix Systems

Paul Surer

Montanuniversität Leoben

Department of Mathematics and Information

Technology

Chair of Mathematics and Statistics

8700 Leoben - AUSTRIA

Liège, May 2006

Research supported by FWF Project Nr. S9610-N13

Shift Radix System

Generalised definition: Fix $0 \le \epsilon \le \frac{1}{2}$. Let $\mathbf{r} \in \mathbb{R}^d$ and

$$\tau_{\mathbf{r}}: \mathbb{Z}^d \to \mathbb{Z}^d, \mathbf{x} = (x_1, \dots, x_d) \to (x_2, \dots, x_d, -\lfloor \mathbf{r} \mathbf{x} + \epsilon \rfloor).$$

 τ_r is called a shift radix system (SRS) if

$$\forall \mathbf{x} \in \mathbb{Z}^d : \exists n \in \mathbb{N} \text{ such that } \tau^n_{\mathbf{r}}(\mathbf{x}) = \mathbf{0}.$$

 $\epsilon = 0$: classical SRS

 $\epsilon = \frac{1}{2}$: symmetric shift radix systems (SSRS)

$$\mathcal{D}_{d}(\epsilon) := \{\mathbf{r} \in \mathbb{R}^{d} | \forall \mathbf{x} \in \mathbb{Z}^{d} \exists n, l \in \mathbb{N} :$$

$$\tau_{\mathbf{r}}^{k}(\mathbf{x}) = \tau_{\mathbf{r}}^{k+l}(\mathbf{x}) \ \forall k \geq n \}$$

$$\mathcal{D}_{d}^{0}(\epsilon) := \{\mathbf{r} \in \mathbb{R}^{d} | \tau_{\mathbf{r}} \text{ is SRS} \}$$

Obviously $\mathcal{D}_d^0 \subset \mathcal{D}_d$.

Problem: Characterisation of \mathcal{D}_d^0 and \mathcal{D}_d .

Interpretation and Related Systems

 β -expansion: (Rényi, Parry) Let $\beta \in \mathbb{R} \setminus \mathbb{Z}$, $\beta > 1$. Then any $\gamma \in [0, \infty)$ has a unique representation of the form

$$\gamma = a_m \beta^m + a_{m-1} \beta^{m-1} + \cdots$$

with

$$a_i \in \mathcal{A} = \{0, 1, \dots, \lfloor \beta \rfloor\}, \ 0 \le \gamma - \sum_{i=n}^m a_i \beta^i < \beta^n.$$

 β has Property (F) $\Leftrightarrow \beta$ -expansion is finite for all $\gamma \in \mathbb{Z}[\frac{1}{\beta}]$ (only possible for Pisot-number (Frougny, Solomyak)).

Relation with SRS ($\epsilon = 0$):

Theorem 1. Let β be a Pisot-number with minimal polynomial $(x-\beta)(x^{d-1}+r_{d-2}x^{d-2}+\cdots+r_2x+r_0)$. Then β has property (F) if and only if $(r_0,r_2,\ldots,r_{d-2})\in\mathcal{D}_d^0$.

 $\epsilon > 0$: this corresponds to a shift of the set of digits : $\mathcal{A} = \{\lfloor -\beta \epsilon \rfloor, \ldots, \lfloor \beta (1 - \epsilon) \rfloor \}$

Canonical Number Systems: (Pethő) Let $P(X) = X^d + p_{d-1}X^{d-1} + \cdots + p_1X + p_0 \in \mathbb{Z}[X]$ with $|p_0| \geq 2$ and $R := \mathbb{Z}[X]/P(X)\mathbb{Z}[X]$ the quotient ring. Further let

$$x = X(P(X)Z[X]) \in R.$$

If every $A(x) \in R$ can be written in the form

$$A(x) = \sum_{i=0}^{n} a_i x^i, \ a_i \in \mathcal{N} := \{0, 1, \dots, |p_0| - 1\},$$

then $(P(X), \mathcal{N})$ is called a Canonical Number System (CNS) and P(X) a CNS Polynomial.

Relation with SRS ($\epsilon = 0$):

Theorem 2. P(X) is a CNS Polynomial if and only if $(\frac{1}{p_0}, \frac{p_{d-1}}{p_0}, \dots, \frac{p_1}{p_0}) \in \mathcal{D}_d^0$.

An $\epsilon > 0$ corresponds to a shift of the set of digits: $\mathcal{N} = \{n \in \mathbb{Z} | -\epsilon p_0 \leq n < (1-\epsilon)p_0\}$

Visualization

$$\mathcal{E}_d(1) = \{(v_0,\dots,v_{d-1}) \in \mathbb{R}^d \mid \|x\| < 1 \forall x \text{ with } x^d + v_{d-1}x^{d-1} + \dots + v_0 = 0\}$$

Theorem 3. $\mathcal{E}_d(1) \subset \mathcal{D}_d \subset \overline{\mathcal{E}}_d(1)$

int $(\mathcal{D}_d(\epsilon_1)) = \operatorname{int}(\mathcal{D}_d(\epsilon_2))$ but in general $\partial \mathcal{D}_d(\epsilon_1) \neq \partial \mathcal{D}_d(\epsilon_2)$ for $\epsilon_1 \neq \epsilon_1!$ (Partial results concerning $\partial \mathcal{D}_2$ for $\epsilon = 0$ from Akiyama, Brunotte, Pethő, Steiner)

The sets $\mathcal{E}_d(1)$ are known (Schur, Takagi)

$$\mathcal{E}_{2}(1) = \{(x, y) \in \mathbb{R}^{2} | |x| < 1, |y| < x + 1\}$$

$$\mathcal{E}_{3}(1) = \{(x, y, z) \in \mathbb{R}^{3} | |z| < 3,$$

$$y - xz < 1 - x^{2}, |x + z| < y + 1\}$$

 \mathcal{D}_d^0 is gained by cutting out polyhedra from \mathcal{D}_d . A polyhedron corresponds to a period of $\tau_{\mathbf{r}}$ of integers.

A period a_0, \ldots, a_{l-1} of length l induces a system of inequalities

$$0 \le a_i x_1 + \dots, a_{i+d-1} x_d + \epsilon < 1, i = 0, \dots, l-1$$
 with the indices of a taken modulo l . Such a system describes a (possibly degenerated) polyhedron.

$$\mathcal{D}_d^0 = \{(r_1, \dots, r_d) \in \mathbb{R}^d | (0, r_1, \dots, r_d) \in \mathcal{D}_{d+1}^0 \}$$

Current situation

 $\mathcal{D}_2^0, \epsilon = 0$: (results of Akiyama, Brunotte, Pethő, Thuswaldner and Surer)

- We know more than 500 cutout polyhedra fully characterising more than 98% of the entire area. Problem: regions near the right boundary.
- The points (1,0) and (1,1) are critical points (points, where any neighbourhood cannot be described by cutting only finitely many polyhedra).
- There are two explicitly known infinite families of cutouts.
- There are periods of arbitrary length and arbitrary size of their entries.

$$\mathcal{D}_2^0, \epsilon = 0$$

Current situation

$$\mathcal{D}_2^0, \epsilon = \frac{1}{2}$$
:

fully characterised (Akiyama, Scheicher)

$$\frac{\overline{\mathcal{E}_2(1)}}{2} \setminus (L_1 \cup L_2)$$

with

$$L_1 = \{(x, y) \in \mathbb{R}^2 | |x| \le \frac{1}{2}, y = -x - \frac{1}{2} \},$$

$$L_2 = \{(\frac{1}{2}, y) \in \mathbb{R}^2 | \frac{1}{2} < y < 1 \}$$

- ullet full characterisation possible because the set \mathcal{D}_2^0 is away from the boundary of \mathcal{D}_2 .
- 9 cutout polyhedra are sufficient
- The lengths l of the corresponding periods do not exceed 12, the maximum of the absolutes of the entries is 2 at most.

$$\mathcal{D}_2^0, \epsilon = \frac{1}{2}$$

Current situation

 \mathcal{D}_3^0 , $\epsilon = \frac{1}{2}$:

fully characterised (Huszti, Scheicher, Surer, Thuswaldner)

- ullet full characterisation possible because the set \mathcal{D}_3^0 is away from the boundary of \mathcal{D}_3 .
- composition of three convex bodies
- 43 cutout polyhedra are sufficient
- The lengths l of the corresponding periods do not exceed 22, the maximum of the absolutes of the entries is 2 at most.

$$\mathcal{D}_3^0, \epsilon = \frac{1}{2}$$

Some open questions

- Classification of the critical points ($\epsilon = 0$).
- Relationship between the length l and $\sum_{i=0}^{l-1} a_i$ of a period.
- Are finitely many cutouts sufficient for n>3 $(\epsilon=\frac{1}{2})$?
- Situation for $\epsilon \in (0, \frac{1}{2})$. Is the mapping $\epsilon \mapsto \mathcal{D}_d^0(\epsilon)$ continuous in ϵ ?.