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X -ary expansion

Definitions

E a algebraic extension of Q of degree g ,
E the ring of integers of E,
P = pdxd + pd−1xd−1 + · · ·+ p1x + p0 ∈ E [x ],
R = E [x ]/P(x)E [x ],
π : E [x ] → R the canonical epimorphism,
X := π(x) the image of X under the canonical epimorphism,
N a set of representatives of E/p0 (digit set), 0 ∈ N ,
|N | = N(p0) where N(p0) is the algebraic norm of p0.
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X -ary expansion

Definitions

Definition
An A ∈ R has a finite X -ary representation if there are e0, . . . , eh ∈ N
such that

A =
h∑

i=0

eiX i

and eh 6= 0. The pair (P,N ) is called digit system in R if each A ∈ R has
a finite X -ary representation.
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X -ary expansion

The backward division algorithm

The mapping T

T :E [x ] → E [x ],

n∑
i=0

aix i →
n−1∑
i=0

ai+1x i − q
d−1∑
i=0

pi+1x i

where q = a0−e
p0

∈ E with (uniquely determined) e ∈ N .

Theorem
Let Q ∈ E [x ]. π(Q) has a finite X -ary expansion if and only if there exists
a k ∈ N such that T k(Q) = 0.
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Canonical digit sets

Special case: CNS (g = 1)

We have
E = Z,
N (p0) = {µp0| 0 ≤ µ < 1} ∩ Z,
CNS can be described by using SRS.

One step in the backward division algorithm

T (
n∑

i=0

aix i ) =
n−1∑
i=0

ai+1x i − q
d−1∑
i=0

pi+1x i , q =

⌊
a0

p0

⌋
.
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Canonical digit sets

Representation of E as vector space

E can be represented as g -dimensional module over Z. Let
B = {b1, . . . , bg} a base of it. E can be represented as g -dimensional
vector space over Q, also with B as a base. Define

φB : E → Qg

the bijection, that assigns an element of E its corresponding vector. We
have

φ−1
B : Qg → E, x 7→< (b1, . . . , bg ), x > .

φB|E maps E onto Zg in a bijective way.
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Canonical digit sets

φB is homomorph with respect to the addition:
φB(a) + φB(b) = φB(a + b) for p, q ∈ E.

Let ΦB : E 7→ Qg×g the embedding such that for p, q ∈ E
ΦB(p) + ΦB(q) = ΦB(p + q),
ΦB(p)ΦB(q) = ΦB(pq),
ΦB(p−1) = ΦB(p)−1,
ΦB(p)φB(q) = φB(pq),
det(ΦB(p)) = N(p).

Additionally ΦB(p) ∈ Zg×g for p ∈ E .
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Canonical digit sets

Canonical digit set for general E

We define the digit set with respect to some base B.

NB(p0) = {φ−1
B ΦB(p0)(µ1, . . . , µg )T |0 ≤ µi < 1 (1 ≤ i ≤ g)} ∩ E .

When we represent E in a base B then

ϕB(NB(p0)) = {ΦB(p0)(µ1, . . . , µg )T |0 ≤ µi < 1 (1 ≤ i ≤ g)} ∩ Zg

is a representation of NB(p0) with respect to B. ϕB(NB(p0)) consist of
the integer points contained in the half opened g -dimensional
parallelepiped induced by ΦB(p0).
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Canonical digit sets

Example

Let E the Eisenstein integers, thus E = Z[Y ] with Y = e
2πi
3

(Y 2 + Y + 1 = 0). Suppose p0 = 3 + 2Y . N(p0) = det(ΦB(p0)) = 7.

B = {1, Y }

ΦB(p0) =

(
3 −2
2 1

)
B′ = {1− 2Y , Y },ΦB′(p0) =

(
7 −2
14 −3

)

B′′ = {1−3Y , Y },ΦB′′(p0) =

(
9 −2
26 −5

)
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X -ary expansion with canonical digit sets

The backward division algorithm

With digit set NB(p0) we have

T (
n∑

i=0

aix i ) =
n−1∑
i=0

ai+1x i − q
d−1∑
i=0

pi+1x i

with

q =

⌊
a0

p0

⌋
B

= ϕ−1
B

(⌊
ϕB

(
a0

p0

)⌋)
where the floor function is applied separately on each component.

ϕB(T (
n∑

i=0

aix i )) =
n−1∑
i=0

ϕB(ai+1)x i −
d−1∑
i=0

ΦB(pi+1)qx i ,

q =
⌊
ϕB(p−1

0 a0)
⌋
.
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X -ary expansion with canonical digit sets

Example

E = Z[Y ] with Y = e
2πi
3 , P = x2 + Yx + 3 + 2Y . We want the X -ary

expansion of π(A) where A = A0 = x(−2Y ) + 3 + Y with digit set
NB(3 + 2Y ) for B = {1, Y }.

q =

⌊
3 + Y
3 + 2Y

⌋
B

=

⌊
5− 3Y

7

⌋
B

= ϕ−1
B

⌊( 5
7
−3

7

)⌋
= −Y

⇒ A1 = T (A0) = −2Y − q(x + Y ) = xY + (−3Y − 1),
e0 = 3 + Y − q(3 + 2Y ) = 1 + 2Y .

Continuing in the same manner yields

A2=x(1 + Y ) + (−1 + Y )
e1=0

,
A3=1 + Y
e2=−1 + Y

,
A4=0
e3=1 + Y

.

⇒ π(A) = (1+ 2Y )+X 2(−1+Y )+X 3(2Y )+X 4(−1+Y )+X 5(1+Y ).
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X -ary expansion with canonical digit sets

Example

Now we calculate the X -ary expansion of π(A), A = A0 = x(−2Y ) + 3 + Y
with digit set NB′(3 + 2Y ) for B′ = {1− 2Y , Y }.

q =

⌊
3 + Y
3 + 2Y

⌋
B′

=

⌊
5− 3Y

7

⌋
B′

= ϕ−1
B′

⌊( 5
7
1

)⌋
= Y

⇒A1 = T (A0) = −2Y − q(x + Y ) = x(−Y ) + (1− Y ),

e0 = 3 + Y − q(3 + 2Y ) = 5.

A2=x(1− Y ) + 1 + Y
e1=6

,
A3=x(−1) + 2
e2=3

,
A4=−Y
e3=2

A5=x(1− Y ) + 1 + 2Y
e4=5

,
A6=x(−2Y ) + 3 + Y
e5=5

.

Thus the backward division algorithm ends up periodically.
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Square shift radix systems

R = (R0, R1, . . . , Rd−1) ∈ Rg×g×d

Each of the Ri is a g × g matrix.

ωR :Zg×d → Zg×d ,

(x0, x1, . . . , xd−1) 7→ (x1, x2, . . . , xd−1,−bRxc),

where Rx =
∑d−1

i=0 Rixi .

Definition

ω is called a square shift radix system (2SRS) if for all x ∈ Zg×d there
exists a k ∈ N such that ωk

R(x) = 0.

Tg ,d :=
{
R ∈ Rg×g×d

∣∣∣ωR is ultimately periodic ∀x ∈ Zg×d
}

T 0
g ,d :=

{
R ∈ Rg×g×d |ωR is a 2SRS

}
.
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Square shift radix systems

Basic properties of square shift radix systems

Lemma

Let R := (R0, . . . , Rd−1) ∈ Rg×g×d and
Q(λ) = det(λd Id + λd−1Rd−1 + · · ·+ λR1 + R0) ∈ R[λ]
(deg(Q(λ)) = gd).

If R ∈ Tg ,d then all roots of Q have modulus smaller or equal 1,
If all roots of Q have modulus smaller 1 then R ∈ Tg ,d .

Lemma

Dd = T1,d and D0
d = T 0

1,d .

Theorem

For R ∈ int(Tg ,d ) there exists an algorithm to verifies whether R ∈ T 0
g ,d .
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Square shift radix systems

Representation of K (R)

Let
w0 := pd , wk := Xwk−1 + pd−k(1 ≤ k < d).

{w0, . . . , wd−1} is a base of K (R).

K (R) = {
d−1∑
i=0

wiai |ai ∈ E}.

Theorem

Let B a base of E , R = (ΦB(pd )ΦB(p−1
0 ), . . . ,ΦB(p1)ΦB(p−1

0 )),
a =

∑d−1
i=0 wiai ∈ K (R) and T (a) =

∑d−1
i=0 wia′i with digit set NB(p0).

Then we have

(ϕB(a′0), . . . , ϕB(a′d−1)) = ωR(ϕB(a0), . . . , ϕB(ad−1)).
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Square shift radix systems

Theorem
Let B a base of E . (P,NB(p0)) is a digit set if and only if

(ΦB(pdp−1
0 ), . . . ,ΦB(p1p−1

0 )) ∈ T 0
g ,d .

Example

Let E = Z[Y ] with Y 2 + Y + 1 = 0 and P = x2 + Yx + 3 + 2Y .
Let B = {1, Y }.

(ΦB(p−1
0 ),ΦB(p1p−1

0 )) =

(( 1
7

2
7

−2
7

3
7

)
,

( 2
7 −3

7
3
7 −1

7

))
∈ T 0

2,2.

Thus (P,NB) is a digit system.
For B′ = {1− 2Y , Y } we already know that (P,NB′) is no digit
system.
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Open Questions

Problems and Thanks

For which p0 there exists a base B such that NB(p0) ⊂ Z?
Characterise Tg ,d or even T 0

g ,d .
We know that SRS can be used to describe the β-expansion. Which
dynamical systems can be described by 2SRS?

The research was supported by the FWF, project S9610
The slides are (soon) available : www.palovsky.com
E-mail: me@palovsky.com

Paul Surer (MU Leoben) Digit Systems Rome, February 2008 17 / 17


	X-ary expansion
	Canonical digit sets
	X-ary expansion with canonical digit sets
	Square shift radix systems
	Open Questions

