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X-ary expansion

Definitions
e [E a algebraic extension of Q of degree g,
@ & the ring of integers of E,
® P=pgx?+py_1x? 1+ + p1x+ po € E[X],
e R =¢&[x]/P(x)E[x],
e 7 : &[x] = R the canonical epimorphism,
@ X := 7(x) the image of X under the canonical epimorphism,
@ N a set of representatives of £/py (digit set), 0 € NV,
e |[N| = N(po) where N(po) is the algebraic norm of pq.
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X-ary expansion

Definitions

Definition
An A € R has a finite X-ary representation if there are ey, ..., e, € N

such that ,
A= X
i=0

and e, # 0. The pair (P,N) is called digit system in R if each A € R has
a finite X-ary representation.
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X-ary expansion
The backward division algorithm
The mapping T
T :£[x] — &[x],
n ) n—1 ) d—1 )
YDETES SRR pptt
i=0 i=0 i=0

where g = % € & with (uniquely determined) e € V.

Theorem

Let Q € E[x]. w(Q) has a finite X-ary expansion if and only if there exists
a k € N such that T*(Q) = 0.
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Canonical digit sets

Special case: CNS (g = 1)

We have
e £ =17,
o N(po) = {upo|0 < <1} NZ,
@ CNS can be described by using SRS.

One step in the backward division algorithm

Z n—1 d—1
i i i a
T(ZaiX):ZaH_lX—qZpi_,'_lx’q:\‘pZJ_
i=0 =0 i=0
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Canonical digit sets

Representation of [E as vector space

& can be represented as g-dimensional module over Z. Let
B = {b1,...,bg} abase of it. E can be represented as g-dimensional
vector space over Q, also with B as a base. Define

¢5:E— QF

the bijection, that assigns an element of E its corresponding vector. We
have

¢p' i QF — E,x =< (by,...,bg),x > .

¢Ble maps € onto Z#& in a bijective way.
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Canonical digit sets

¢ is homomorph with respect to the addition:
¢5(a) + ¢5(b) = ¢5(a + b) for p,q € E.

Let &5 : E — Q&*8 the embedding such that for p, g € E
(p) + ®5(q) = ®5(p +q),
o ¢5(p)®s(q ) ®5(pq),
o dp(p~t) = dp(p)
o ®5(p)os(q) = ¢8(Pq),
o det(®5(p)) = N(p).
Additionally ®3(p) € Z8*& for p € £.

o &p
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Canonical digit sets

Canonical digit set for general £

We define the digit set with respect to some base B.

Ni(po) = {95 P5(po) (11, - 1g) 10 < i <L(L < i < g)INE.

When we represent £ in a base B then
o5(NB(Po)) = {®5(Po) (11, - -, 1g) IO < i <1(1 < i < g)}NZE
is a representation of NVg(po) with respect to B. ©g(Np(po)) consist of

the integer points contained in the half opened g-dimensional
parallelepiped induced by ®5(po).
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Canonical digit sets

27i

Let £ the Eisenstein integers, thus £ = Z[Y] with Y = e’5
(Y24 Y +1=0). Suppose pp =3 +2Y. N(po) = det(®s(po)) = 7.

B = (1-2v. v}, 0m(pm) =

B={1,Y}
P5(po) = ( ; _12 )

7
14

=2
=38

)
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X-ary expansion with canonical digit sets

The backward division algorithm

With digit set AVg(po) we have

n n—1 d—1
T3 o) = 3 s~ 9 Yo pad
i=0 i=0 i=0

(2], (=(2)

where the floor function is applied separately on each component.

with

n n—1 d—1
e(T(O_aix')) => ep(ai)x’ = ®s(pit1)ax’,
i=0 i=0 i=0

q=|es(py a0)] -
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X-ary expansion with canonical digit sets

£=7[Y]with Y = 5, P=x2+ Yx+3+2Y. We want the X-ary
expansion of m(A) where A= Ag = x(—2Y) + 3 + Y with digit set
Np(3+2Y) for B={1,Y}.

355, )

= A1 =T(A) =-2Y —qg(x+ Y)=xY +(-3Y —-1),
e0=3+Y—q(3+2Y)=1+2V.

Continuing in the same manner yields

A=x(14+Y)+(-14+Y) A=1+4+Y As=0
e1=0 T e=—14+Y ' e=1+Y"

= m(A) = (14+2Y)+ X3(=14+ Y)+ X32Y) + X*(-1+ Y) + X3(1+Y)

v
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X-ary expansion with canonical digit sets

Now we calculate the X-ary expansion of 7(A), A= Ag = x(—2Y)+3+Y

with digit set Nz (3 +2Y) for B = {1 — 2V, Y1.
3+Y | 5-3Y | (2| _
q_{3+2yJB'_{ 7 JB/_@B/ {( )J_Y

S A = T(A) = =2Y —q(x+ Y) = x(=Y) + (1 = Y),
e=3+Y—q(3+2Y)=5.

—~

Ar=x(1=Y)+1+Y As=x(—-1)+2 Ay=-Y

e1=06 T e=3 T oe3=2
As=x(1—-Y)+1+2Y As=x(-2Y)+3+Y
e4:5 ’ e5:5 ’

Thus the backward division algorithm ends up periodically.
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Square shift radix systems
R=(Ro,Ry,...,Ry_1) € RE*&xd
Each of the R; is a g X g matrix.
wr :Z8*9 — 78%d,

(X07X17 cee )Xd—l) = (X17X27 -y Xd—1, — LRXJ))

where Rx = Zflz_ol Rix;.

Definition
w is called a square shift radix system (2SRS) if for all x € Z&8*9 there
exists a k € N such that wg(x) = 0.

W) = {R € R&*8%9 | p is ultimately periodic Vx € Zng}

70 ={R € RE&& fug is a 25RS | .
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Square shift radix systems

Basic properties of square shift radix systems

Lemma

Let R := (Ro, T Rd—l) c Rex&xd apd

Q(\) =det(A\ ¥y + X"1Ry_; +--- + ARL + Ro) € R[]

(deg(Q(A)) = &d).
o IfR € Tz 4 then all roots of Q have modulus smaller or equal 1,
e If all roots of Q have modulus smaller 1 then R € T, 4.

Lemma
Dd = 7—1,d and DO = ,Tl?d

Theorem

For R € int(7Z, g4) there exists an algorithm to verifies whether R € T;w
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Square shift radix systems

Representation of K(R)

Let
Wo ‘= Pd, Wk = XWk,:l + pd,k(l < k < d)

{wo,...,wy_1} is a base of K(R).

d-1

K(R) ={>_ wiailai € £}.

i=0

Theorem

Let B a base of £, R = (®5(pa)®s(py ), - - P5(p1)®s(py 1)),

a= Zf:ol wiaj € K(R) and T(a) = Z:-tol w;a, with digit set N(po).
Then we have

(e8(ap), - - - v8(ay_1)) = wr(es(ao), . -, v8(ad—1))-
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Square shift radix systems

Theorem
Let B a base of £. (P,Ng(po)) is a digit set if and only if

(®5(papy 1), - P5(P1pp ) € Toy-

v

Let £ = Z[Y] with Y2+ Y +1=0and P =x2+ Yx +3+2V.

o Let B={L,Y).
)(§00)) e
Thus (P, Ng) is a digit system.

e For B'={1—-2Y, Y} we already know that (P, Np') is no digit
system.

(@5(p5). P5(prps ) = ((

~[GNIN
~w~NIN
~=~w
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Open Questions

Problems and Thanks

@ For which pg there exists a base B such that N(pg) C Z?
o Characterise 7, 4 or even Tgod.

@ We know that SRS can be used to describe the G-expansion. Which
dynamical systems can be described by 2SRS?

The research was supported by the FWF, project S9610
The slides are (soon) available : www.palovsky.com
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