Non-monic digit systems, Part II

Paul Surer (joint work with K. Scheicher, J. M. Thuswaldner and C. Van de Woestijne)

Montanuniversität Leoben
Department of Mathematics and Information Technology
Chair of Mathematics and Statistics
8700 Leoben - AUSTRIA
Rome, February 2008

Supported by FWF, project S9610

Definitions

- \mathbb{E} a algebraic extension of \mathbb{Q} of degree g,
- \mathcal{E} the ring of integers of \mathbb{E},
- $P=p_{d} x^{d}+p_{d-1} x^{d-1}+\cdots+p_{1} x+p_{0} \in \mathcal{E}[x]$,
- $\mathcal{R}=\mathcal{E}[x] / P(x) \mathcal{E}[x]$,
- $\pi: \mathcal{E}[x] \rightarrow \mathcal{R}$ the canonical epimorphism,
- $X:=\pi(x)$ the image of X under the canonical epimorphism,
- \mathcal{N} a set of representatives of \mathcal{E} / p_{0} (digit set), $0 \in \mathcal{N}$,
- $|\mathcal{N}|=N\left(p_{0}\right)$ where $N\left(p_{0}\right)$ is the algebraic norm of p_{0}.

Definitions

Definition

An $A \in \mathcal{R}$ has a finite X-ary representation if there are $e_{0}, \ldots, e_{h} \in \mathcal{N}$ such that

$$
A=\sum_{i=0}^{h} e_{i} X^{i}
$$

and $e_{h} \neq 0$. The pair (P, \mathcal{N}) is called digit system in \mathcal{R} if each $A \in \mathcal{R}$ has a finite X-ary representation.

The backward division algorithm

The mapping T

$$
\begin{aligned}
& T: \mathcal{E}[x] \rightarrow \mathcal{E}[x], \\
& \quad \sum_{i=0}^{n} a_{i} x^{i} \rightarrow \sum_{i=0}^{n-1} a_{i+1} x^{i}-q \sum_{i=0}^{d-1} p_{i+1} x^{i}
\end{aligned}
$$

where $q=\frac{a_{0}-e}{p_{0}} \in \mathcal{E}$ with (uniquely determined) $e \in \mathcal{N}$.

Theorem

Let $Q \in \mathcal{E}[x] . \pi(Q)$ has a finite X-ary expansion if and only if there exists a $k \in \mathbb{N}$ such that $T^{k}(Q)=0$.

Special case: CNS $(g=1)$

We have

- $\mathcal{E}=\mathbb{Z}$,
- $\mathcal{N}\left(p_{0}\right)=\left\{\mu p_{0} \mid 0 \leq \mu<1\right\} \cap \mathbb{Z}$,
- CNS can be described by using SRS.

One step in the backward division algorithm

$$
T\left(\sum_{i=0}^{n} a_{i} x^{i}\right)=\sum_{i=0}^{n-1} a_{i+1} x^{i}-q \sum_{i=0}^{d-1} p_{i+1} x^{i}, q=\left\lfloor\frac{a_{0}}{p_{0}}\right\rfloor .
$$

Representation of \mathbb{E} as vector space

\mathcal{E} can be represented as g-dimensional module over \mathbb{Z}. Let $\mathcal{B}=\left\{b_{1}, \ldots, b_{g}\right\}$ a base of it. \mathbb{E} can be represented as g-dimensional vector space over \mathbb{Q}, also with \mathcal{B} as a base. Define

$$
\phi_{\mathcal{B}}: \mathbb{E} \rightarrow \mathbb{Q}^{g}
$$

the bijection, that assigns an element of \mathbb{E} its corresponding vector. We have

$$
\phi_{\mathcal{B}}^{-1}: \mathbb{Q}^{g} \rightarrow \mathbb{E}, \mathrm{x} \mapsto<\left(b_{1}, \ldots, b_{g}\right), \mathrm{x}>.
$$

$\left.\phi_{\mathcal{B}}\right|_{\mathcal{E}}$ maps \mathcal{E} onto \mathbb{Z}^{g} in a bijective way.
$\phi_{\mathcal{B}}$ is homomorph with respect to the addition: $\phi_{\mathcal{B}}(a)+\phi_{\mathcal{B}}(b)=\phi_{\mathcal{B}}(a+b)$ for $p, q \in \mathbb{E}$.

Let $\Phi_{\mathcal{B}}: \mathbb{E} \mapsto \mathbb{Q}^{g \times g}$ the embedding such that for $p, q \in \mathbb{E}$

- $\Phi_{\mathcal{B}}(p)+\Phi_{\mathcal{B}}(q)=\Phi_{\mathcal{B}}(p+q)$,
- $\Phi_{\mathcal{B}}(p) \Phi_{\mathcal{B}}(q)=\Phi_{\mathcal{B}}(p q)$,
- $\Phi_{\mathcal{B}}\left(p^{-1}\right)=\Phi_{\mathcal{B}}(p)^{-1}$,
- $\Phi_{\mathcal{B}}(p) \phi_{\mathcal{B}}(q)=\phi_{\mathcal{B}}(p q)$,
- $\operatorname{det}\left(\Phi_{\mathcal{B}}(p)\right)=N(p)$.

Additionally $\Phi_{\mathcal{B}}(p) \in \mathbb{Z}^{g \times g}$ for $p \in \mathcal{E}$.

Canonical digit set for general \mathcal{E}

We define the digit set with respect to some base \mathcal{B}.

$$
\mathcal{N}_{\mathcal{B}}\left(p_{0}\right)=\left\{\phi_{\mathcal{B}}^{-1} \Phi_{\mathcal{B}}\left(p_{0}\right)\left(\mu_{1}, \ldots, \mu_{g}\right)^{T} \mid 0 \leq \mu_{i}<1(1 \leq i \leq g)\right\} \cap \mathcal{E}
$$

When we represent \mathcal{E} in a base \mathcal{B} then

$$
\varphi_{\mathcal{B}}\left(\mathcal{N}_{\mathcal{B}}\left(p_{0}\right)\right)=\left\{\Phi_{\mathcal{B}}\left(p_{0}\right)\left(\mu_{1}, \ldots, \mu_{g}\right)^{T} \mid 0 \leq \mu_{i}<1(1 \leq i \leq g)\right\} \cap \mathbb{Z}^{g}
$$

is a representation of $\mathcal{N}_{\mathcal{B}}\left(p_{0}\right)$ with respect to \mathcal{B}. $\varphi_{B}\left(\mathcal{N}_{\mathcal{B}}\left(p_{0}\right)\right)$ consist of the integer points contained in the half opened g-dimensional parallelepiped induced by $\Phi_{\mathcal{B}}\left(p_{0}\right)$.

Example

Let \mathcal{E} the Eisenstein integers, thus $\mathcal{E}=\mathbb{Z}[Y]$ with $Y=e^{\frac{2 \pi i}{3}}$ $\left(Y^{2}+Y+1=0\right)$. Suppose $p_{0}=3+2 Y . N\left(p_{0}\right)=\operatorname{det}\left(\Phi_{\mathcal{B}}\left(p_{0}\right)\right)=7$.

$$
\mathcal{B}=\{1, Y\}
$$

$$
\mathcal{B}^{\prime}=\{1-2 Y, Y\}, \Phi_{\mathcal{B}^{\prime}}\left(p_{0}\right)=\left(\begin{array}{cc}
7 & -2 \\
14 & -3
\end{array}\right)
$$

$$
\Phi_{\mathcal{B}}\left(p_{0}\right)=\left(\begin{array}{cc}
3 & -2 \\
2 & 1
\end{array}\right)
$$

$$
\mathcal{B}^{\prime \prime}=\{1-3 Y, Y\}, \Phi_{\mathcal{B}^{\prime \prime}}\left(p_{0}\right)=\left(\begin{array}{cc}
9 & -2 \\
26 & -5
\end{array}\right)
$$

The backward division algorithm

With digit set $\mathcal{N}_{\mathcal{B}}\left(p_{0}\right)$ we have

$$
T\left(\sum_{i=0}^{n} a_{i} x^{i}\right)=\sum_{i=0}^{n-1} a_{i+1} x^{i}-q \sum_{i=0}^{d-1} p_{i+1} x^{i}
$$

with

$$
q=\left\lfloor\frac{a_{0}}{p_{0}}\right\rfloor_{\mathcal{B}}=\varphi_{\mathcal{B}}^{-1}\left(\left\lfloor\varphi_{\mathcal{B}}\left(\frac{a_{0}}{p_{0}}\right)\right\rfloor\right)
$$

where the floor function is applied separately on each component.

$$
\begin{aligned}
\varphi_{\mathcal{B}}\left(T\left(\sum_{i=0}^{n} a_{i} x^{i}\right)\right)= & \sum_{i=0}^{n-1} \varphi_{\mathcal{B}}\left(a_{i+1}\right) x^{i}-\sum_{i=0}^{d-1} \Phi_{\mathcal{B}}\left(p_{i+1}\right) \mathbf{q} x^{i} \\
\mathbf{q} & =\left\lfloor\varphi_{\mathcal{B}}\left(p_{0}^{-1} a_{0}\right)\right\rfloor
\end{aligned}
$$

Example

$\mathcal{E}=\mathbb{Z}[Y]$ with $Y=e^{\frac{2 \pi i}{3}}, P=x^{2}+Y x+3+2 Y$. We want the X-ary expansion of $\pi(A)$ where $A=A_{0}=x(-2 Y)+3+Y$ with digit set $\mathcal{N}_{\mathcal{B}}(3+2 Y)$ for $\mathcal{B}=\{1, Y\}$.

$$
\begin{aligned}
& q=\left\lfloor\frac{3+Y}{3+2 Y}\right\rfloor_{\mathcal{B}}=\left\lfloor\frac{5-3 Y}{7}\right\rfloor_{\mathcal{B}}=\varphi_{\mathcal{B}}^{-1}\left\lfloor\binom{\frac{5}{7}}{-\frac{3}{7}}\right\rfloor=-Y \\
& \Rightarrow \\
& A_{1}=T\left(A_{0}\right)=-2 Y-q(x+Y)=x Y+(-3 Y-1), \\
& \quad e_{0}=3+Y-q(3+2 Y)=1+2 Y .
\end{aligned}
$$

Continuing in the same manner yields

$$
\begin{aligned}
& A_{2}=x(1+Y)+(-1+Y) \\
& e_{1}=0
\end{aligned}, \begin{aligned}
& A_{3}=1+Y \\
& e_{2}=-1+Y
\end{aligned}, \begin{aligned}
& A_{4}=0 \\
& e_{3}=1+Y
\end{aligned} .
$$

$$
\Rightarrow \pi(A)=(1+2 Y)+X^{2}(-1+Y)+X^{3}(2 Y)+X^{4}(-1+Y)+X^{5}(1+Y)
$$

Example

Now we calculate the X-ary expansion of $\pi(A), A=A_{0}=x(-2 Y)+3+Y$ with digit set $\mathcal{N}_{\mathcal{B}^{\prime}}(3+2 Y)$ for $\mathcal{B}^{\prime}=\{1-2 Y, Y\}$.

$$
\begin{aligned}
& q=\left\lfloor\frac{3+Y}{3+2 Y}\right\rfloor_{B^{\prime}}=\left\lfloor\frac{5-3 Y}{7}\right\rfloor_{\mathcal{B}^{\prime}}=\varphi_{\mathcal{B}^{\prime}}^{-1}\left\lfloor\binom{\frac{5}{7}}{1}\right\rfloor=Y \\
& \Rightarrow A_{1}=T\left(A_{0}\right)=-2 Y-q(x+Y)=x(-Y)+(1-Y), \\
& e_{0}=3+Y-q(3+2 Y)=5 . \\
& A_{2}=x(1-Y)+1+Y, \begin{array}{l}
A_{3}=x(-1)+2, \\
e_{2}=3
\end{array}, \begin{array}{l}
A_{4}=-Y \\
e_{3}=2
\end{array} \\
& A_{5}=x(1-Y)+1+2 Y, \begin{array}{l}
A_{6}=x(-2 Y)+3+Y \\
e_{5}=5
\end{array} \\
& e_{4}=5
\end{aligned} .
$$

Thus the backward division algorithm ends up periodically.

$$
\mathbf{R}=\left(R_{0}, R_{1}, \ldots, R_{d-1}\right) \in \mathbb{R}^{g \times g \times d}
$$

Each of the R_{i} is a $g \times g$ matrix.

$$
\begin{aligned}
& \omega_{\mathrm{R}}: \mathbb{Z}^{g \times d} \rightarrow \mathbb{Z}^{g \times d} \\
& \quad\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{d-1}\right) \mapsto\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{d-1},-\lfloor\mathrm{Rx}\rfloor\right),
\end{aligned}
$$

where $\mathrm{Rx}=\sum_{i=0}^{d-1} R_{i} \mathrm{x}_{i}$.

Definition

ω is called a square shift radix system (2SRS) if for all $x \in \mathbb{Z}^{g \times d}$ there exists a $k \in \mathbb{N}$ such that $\omega_{\mathbf{R}}^{k}(\mathbf{x})=\mathbf{0}$.

$$
\begin{aligned}
& \mathcal{T}_{g, d}:=\left\{\mathrm{R} \in \mathbb{R}^{g \times g \times d} \mid \omega_{\mathbf{R}} \text { is ultimately periodic } \forall \mathrm{x} \in \mathbb{Z}^{g \times d}\right\} \\
& \mathcal{T}_{g, d}^{0}:=\left\{\mathrm{R} \in \mathbb{R}^{g \times g \times d} \mid \omega_{\mathrm{R}} \text { is a } 2 \text { SRS }\right\} .
\end{aligned}
$$

Basic properties of square shift radix systems

Lemma

Let $\mathbf{R}:=\left(R_{0}, \ldots, R_{d-1}\right) \in \mathbb{R}^{g \times g \times d}$ and
$Q(\lambda)=\operatorname{det}\left(\lambda^{d} I_{d}+\lambda^{d-1} R_{d-1}+\cdots+\lambda R_{1}+R_{0}\right) \in \mathbb{R}[\lambda]$ $(\operatorname{deg}(Q(\lambda))=g d)$.

- If $\mathrm{R} \in \mathcal{T}_{g, d}$ then all roots of Q have modulus smaller or equal 1 ,
- If all roots of Q have modulus smaller 1 then $\mathbf{R} \in \mathcal{T}_{g, d}$.

Lemma

$$
\mathcal{D}_{d}=\mathcal{T}_{1, d} \text { and } \mathcal{D}_{d}^{0}=\mathcal{T}_{1, d}^{0} .
$$

Theorem

For $\mathbf{R} \in \operatorname{int}\left(\mathcal{T}_{g, d}\right)$ there exists an algorithm to verifies whether $\mathbf{R} \in \mathcal{T}_{g, d}^{0}$.

Representation of $K(\mathcal{R})$

Let

$$
w_{0}:=p_{d}, w_{k}:=X w_{k-1}+p_{d-k}(1 \leq k<d) .
$$

$\left\{w_{0}, \ldots, w_{d-1}\right\}$ is a base of $K(\mathcal{R})$.

$$
K(\mathcal{R})=\left\{\sum_{i=0}^{d-1} w_{i} a_{i} \mid a_{i} \in \mathcal{E}\right\}
$$

Theorem

Let \mathcal{B} a base of $\mathcal{E}, \mathbf{R}=\left(\Phi_{\mathcal{B}}\left(p_{d}\right) \Phi_{\mathcal{B}}\left(p_{0}^{-1}\right), \ldots, \Phi_{\mathcal{B}}\left(p_{1}\right) \Phi_{\mathcal{B}}\left(p_{0}^{-1}\right)\right)$, $a=\sum_{i=0}^{d-1} w_{i} a_{i} \in K(\mathcal{R})$ and $T(a)=\sum_{i=0}^{d-1} w_{i} a_{i}^{\prime}$ with digit set $\mathcal{N}_{\mathcal{B}}\left(p_{0}\right)$.
Then we have

$$
\left(\varphi_{\mathcal{B}}\left(a_{0}^{\prime}\right), \ldots, \varphi_{\mathcal{B}}\left(a_{d-1}^{\prime}\right)\right)=\omega_{\mathbf{R}}\left(\varphi_{\mathcal{B}}\left(a_{0}\right), \ldots, \varphi_{\mathcal{B}}\left(a_{d-1}\right)\right) .
$$

Theorem

Let \mathcal{B} a base of $\mathcal{E} .\left(P, \mathcal{N}_{\mathcal{B}}\left(p_{0}\right)\right)$ is a digit set if and only if

$$
\left(\Phi_{\mathcal{B}}\left(p_{d} p_{0}^{-1}\right), \ldots, \Phi_{\mathcal{B}}\left(p_{1} p_{0}^{-1}\right)\right) \in \mathcal{T}_{g, d}^{0}
$$

Example

Let $\mathcal{E}=\mathbb{Z}[Y]$ with $Y^{2}+Y+1=0$ and $P=x^{2}+Y x+3+2 Y$.

- Let $B=\{1, Y\}$.

$$
\left(\Phi_{\mathcal{B}}\left(p_{0}^{-1}\right), \Phi_{\mathcal{B}}\left(p_{1} p_{0}^{-1}\right)\right)=\left(\left(\begin{array}{cc}
\frac{1}{7} & \frac{2}{7} \\
-\frac{2}{7} & \frac{3}{7}
\end{array}\right),\left(\begin{array}{cc}
\frac{2}{7} & -\frac{3}{7} \\
\frac{3}{7} & -\frac{1}{7}
\end{array}\right)\right) \in \mathcal{T}_{2,2}^{0} .
$$

Thus $\left(P, \mathcal{N}_{\mathcal{B}}\right)$ is a digit system.

- For $\mathcal{B}^{\prime}=\{1-2 Y, Y\}$ we already know that $\left(P, \mathcal{N}_{\mathcal{B}^{\prime}}\right)$ is no digit system.

Problems and Thanks

- For which p_{0} there exists a base \mathcal{B} such that $\mathcal{N}_{\mathcal{B}}\left(p_{0}\right) \subset \mathbb{Z}$?
- Characterise $\mathcal{T}_{g, d}$ or even $\mathcal{T}_{g, d}^{0}$.
- We know that SRS can be used to describe the β-expansion. Which dynamical systems can be described by 2SRS?

The research was supported by the FWF, project S9610 The slides are (soon) available : www.palovsky.com E-mail: me@palovsky.com

