REAL SETS INDUCED BY ENDOMORPHISMS OF THE FREE MONOID

Paul Surer

Institut für Mathematik Universität für Bodenkultur

Salzburg, September 2017

Definitions and Notations

```
\begin{array}{ll} \mathcal{A} = \{1,2,\ldots,m\} & \text{finite alphabet} \\ \mathcal{A}^* = \mathcal{A}^+ \cup \{\varepsilon\} & \text{free monoid over } \mathcal{A} \text{ consisting of the set of nonempty words } \mathcal{A}^+ \text{ and the empty word } \varepsilon \text{ (neutral element)} \\ \overline{\mathcal{A}} = \{\overline{1},\overline{2},\ldots,\overline{m}\} & \text{set of inverse letters} \\ \overline{\mathcal{A}}^* := \overline{\mathcal{A}}^+ \cup \{\varepsilon\} & \text{free monoid over } \overline{\mathcal{A}} \\ (\mathcal{A} \cup \overline{\mathcal{A}})^* & \text{finite words over } \mathcal{A} \cup \overline{\mathcal{A}} \\ \sim & \text{equivalence relation on } (\mathcal{A} \cup \overline{\mathcal{A}})^* \text{ induced by the cancellation law } x\overline{x} \sim \varepsilon \sim \overline{x}x \text{ (for } x \in \mathcal{A}) \\ \text{Observe that } (\mathcal{A} \cup \overline{\mathcal{A}})^*/\sim \text{ is the free group over } \mathcal{A}. \text{ For} \\ \end{array}
```

 $X = x_1 x_2 \dots x_n \in (A \cup \overline{A})^*$ the word $\overline{X} := \overline{x}_m \dots \overline{x}_1 \in (A \cup \overline{A})^*$ is

the inverse of X (modulo \sim) where $\overline{\bar{x}} = x$ for all $x \in A$.

Definitions and Notations

For $X = x_1 x_2 \dots x_n \in (\mathcal{A} \cup \overline{\mathcal{A}})^*$ and $y \in \mathcal{A}$ define

$$|X|_{y} = \# \{j \in \{1, \dots, n\} : x_{j} = y\} - \# \{j \in \{1, \dots, n\} : x_{j} = \bar{y}\}$$
$$|X| = \sum_{y \in \mathcal{A}} |X|_{y}$$
$$I(X) = (|X|_{1}, |X|_{2}, \dots, |X|_{m}).$$

We denote by \leq the partial ordering on $(A \cup \overline{A})^*$ induced by the prefix-condition:

$$X \preceq Y \Longleftrightarrow \overline{X}Y \in \mathcal{A}^* \pmod{\sim},$$

 $X \prec Y \Longleftrightarrow \overline{X}Y \in \mathcal{A}^+ \pmod{\sim}.$

Note that for $A, B \in (A \cup \overline{A})^*$ with $A \prec B$ the set

$$\{X \in (A \cup \overline{A})^* / \sim : A \leq X \leq B\}$$

is a ≺-chain.

Morphisms of the free monoid

Denote by $\sigma: \mathcal{A}^* \longmapsto \mathcal{A}^*$ a primitive morphism (substitution), hence, there exists a positive integer n such that $|\sigma^n(y)|_x \geq 1$ for all $x, y \in \mathcal{A}$.

We define

$$\mathbf{M} := (|\sigma(y)|_x)_{1 \le x, y \le m}$$

 $\theta > 1$

the incidence matrix of σ ; the dominant Perron-Frobenius eigenvalue of \mathbf{M} ;

$$\mathbf{v} = (v_1, \dots, v_m)$$

a strictly positive left eigenvector of M with respect to θ .

We can extend σ easily to $(A \cup \overline{A})^*$ by defining $\sigma(\overline{x}) = \overline{\sigma(x)}$ for all $x \in A$.

Coding prescriptions

Definition

A coding prescription (with respect to σ) is a function c with domain \mathcal{A}^2 that assigns to each pair of letters a finite set of integers such that

- 1. for each $x \in \mathcal{A}$ the set c(xx) is a complete residue system modulo $|\sigma(x)|$ such that for all $k \in c(xx)$ we have $-|\sigma(x)| < k < |\sigma(x)|$;
- 2. for all $ab \in A^2$ we have $c(ab) = \{k \in c(aa) : k < 0\} \cup \{0\} \cup \{k \in c(bb) : k > 0\}.$

We call a coding prescription *continuous* if c(ab) consists of consecutive integers for each $ab \in A^2$.

Graph associated to a coding prescription

We associate to a coding prescription a finite graph $H_{\sigma,c}$ with vertex set \mathcal{A}^2 and an edge from ab to a_1b_1 labelled by (D,a_1b_1) with $D \in \mathcal{A}^* \cup \overline{A}^*$ whenever $|D| \in c(ab)$ and $\overline{\sigma(a)} \preceq D\bar{a}_1 \prec D \prec Db_1 \preceq \sigma(b)$.

Observe that each each vertex ab has exactly |c(ab)| outgoing edges.

For each positive integer n we denote by $H^n_{\sigma,c}(ab)$ the set of paths of length n that start in ab. Analogously $H^\infty_{\sigma,c}(ab)$ is the set of infinite walks that start in ab.

Finite paths

Theorem 1

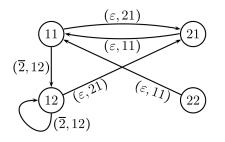
Let n be a positive integers and define the function $c^{(n)}$ on \mathcal{A}^2 by

$$c^{(n)}(ab):=\left\{\sum_{j=1}^n |\sigma^{n-j}(D_j)|: (D_j,a_jb_j)_{j=1}^n\in H^n_{\sigma,c}(ab)
ight\}\subset \mathbb{Z}.$$

Then $c^{(n)}$ is a coding prescription with respect to σ^n .

Example (Fibonacci substitution)

$$\sigma(1) = 12,$$
 $c(11) = c(12) = \{-1, 0\},$ $\sigma(2) = 1.$ $c(21) = c(22) = \{0\}.$



We have $\sigma^2: 1 \mapsto 121, 2 \mapsto 12$ and $\sigma(\bar{2}) = \bar{1}$, therefore

$$c^{(2)}(11) = c^{(2)}(12) = \{-2, -1, 0\}, c^{(2)}(21) = c^{(2)}(22) = \{-1, 0\}.$$

Infinite paths

For each $ab \in A^2$ define

$$I_{ab}:=\left\{\sum_{j\geq 1}\langle \mathbf{I}(D_j),\mathbf{v}
angle heta^{-j}:(D_j,a_jb_j)_{j\geq 1}\in H^\infty_{\sigma,c}(ab)
ight\}\subset \mathbb{R}.$$

Note that always $0 \subseteq I_{ab}$ where equality may hold.

Problem

Characterise the sets I_{ab} (in terms of c and σ).

Some fundamental properties

Lemma 2

There exists a positive constant $K \in \mathbb{R}$ such that for each $ab \in \mathcal{A}^2$

$$I_{ab} = K \cdot \lim_{n \to \infty} \theta^{-n} c^{(n)}(ab)$$

(the limit with respect to the Hausdorff metric).

Proposition 3

For each $ab \in A^2$

- 1. I_{ab} is a compact set;
- 2. $I_{ab} \subseteq [-v_a, v_b]$;
- 3. $I_{ab} = (I_{aa} \cap (-\infty, 0)) \cup \{0\} \cup (I_{bb} \cap (0, \infty));$
- 4.

$$I_{ab} = igcup_{(D,a_1b_1)\in H^1_{\sigma,c}(ab)} heta^{-1}(\langle \mathsf{I}(D),\mathsf{v}
angle + I_{a_1b_1}).$$

Continuous coding prescriptions

Proposition 4

Suppose that c is continuous.

- ▶ For each $ab \in A^2$ we have $I_{ab} = [-v_a^-, v_b^+]$ with $v_a^-, v_b^+ \ge 0$.
- $(v_1^-, \ldots, v_m^-) + (v_1^+, \ldots, v_m^+) = (v_1, \ldots, v_m).$
- ▶ For each $ab \in A^2$ the particular subsets in the union

$$I_{ab} = igcup_{(D, a_1b_1) \in H^1_{\sigma,c}(ab)} heta^{-1}(\langle \mathbf{I}(D), \mathbf{v}
angle + I_{a_1b_1})$$

have pairwise disjoint interior.

A special case

Proposition 5

Suppose that $|\sigma(x)| \equiv 1 \pmod 2$ for all $x \in \mathcal{A}$ and $c(ab) \subset 2\mathbb{Z}$ for all $ab \in \mathcal{A}^2$. Then the following items hold for all $ab \in \mathcal{A}^2$.

- $I_{ab} = [-v_a, v_b].$
- ▶ The particular subsets in the union

$$I_{ab} = igcup_{(D, \mathsf{a}_1 b_1) \in H^1_{\sigma, c}(ab)} heta^{-1}(\langle \mathsf{I}(D), \mathsf{v}
angle + I_{\mathsf{a}_1 b_1})$$

have pairwise disjoint interior.

Questions

Question 1

For which setting is I_{ab} an interval?

Question 2

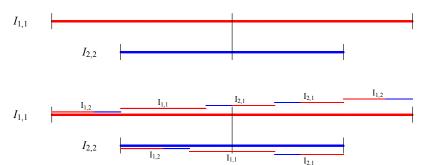
For which setting do the subsets in the union (4. of Proposition 3) have disjoint interior? Alternatively, which setting corresponds to a graph directed iterated function system?

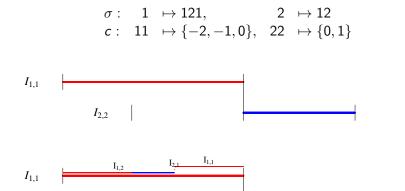
Question 3

What is the Lebesuge measure of I_{ab} ?

$$\sigma: 1 \mapsto 12112, 2 \mapsto 121$$

 $c: 11 \mapsto \{-4, -2, 0, 2, 4\}, 22 \mapsto \{-2, 0, 2\}$





 $I_{2,2}$