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Abstract

The number of electronic systems in cars is continuously growing. Electronic sys-
tems, consisting of so-called electronic control units (ECUs) interconnected by a com-
munication network, account for up to 30% of a modern car’s worth. Consequently,
software plays an ever more important role, both for the implementation of functions
and the infrastructure.

In order to benefit from the reuse of software modules, the major automotive com-
panies have standardized (in the context of different consortia) a large number of these
modules in form of layered architectures of software modules.

In this chapter we will present the most important consortia dealing with the spec-
ification of automotive standard system software, and we will describe their output,
the standardized software architectures/modules.

1 Introduction

In the last decade the percentage of electronic components in today’s cars has been ever
increasing. According to the Hansen Report [15], the S-Class Mercedes, for example, utilizes
seven communication buses and 72 micro-controllers.

Since 1993 major automotive companies have been striving for the deployment of stan-
dard software modules in their applications as the potential benefits of using standard soft-
ware modules are huge [14]. While the functional software heavily depends on the actual
system and is a discriminating factor of competitive importance, this does not apply to the
software infrastructure. Furthermore with continuously shortened development cycles, es-
pecially in the electronics area, requirements arise concerning compatibility, reusability, and
increased test coverage that can only be fulfilled by setting standards for the various system
levels.

This trend has been a key motivation for the formation of several consortia like the
OSEK/VDX (“Offene Systeme und deren Schnittstellen für die Elektronik im Kraftfahrzeug
– Vehicle Distributed Executive”)1 consortium [5] in 1993/94, the HIS (“Herstellerinitiative

1Translated into English: “Open Systems and the Corresponding Interfaces for Automotive Electronics”
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Software”)2 group [3], the JasPar (“Japan Automotive Software Platform Architecture”)
consortium [4] in 2004, the EASIS (“Electronic Architecture and System Engineering for
Integrated Safety Systems”) project consortium [2] in 2003, and last but not least the AU-
TOSAR (“Automotive Open System Architecture”) consortium [11] in 2003.

This chapter provides an overview of today’s state-of-the-art in standardization of au-
tomotive software infrastructures. The chapter is structured as follows: Section 2 provides
a short overview of the automotive hardware architecture. Section 3 provides information
on the software modules specified by the German working groups OSEK/VDX. Section 4
describes the software modules defined by the HIS group. Section 5 illustrates the software
modules standardized by the ISO. Section 7 deals with the AUTOSAR initiative. Section 8
focuses on the Japanese counterpart to AUTOSAR named JasPar, and Section 9 provides a
short summary, concluding the chapter.

2 Hardware Architecture

The hardware architecture of automotive systems can be viewed at different levels of abstrac-
tion. On the highest level of abstraction, the system level, an automotive system consists of
a number of networks interconnected via gateways (see Figure 1). In general, these networks
correspond to the different functional domains that can be found in today’s cars (i.e., chassis
domain, power train domain, body domain).

Figure 1: Hardware Architecture – System and Network Level

The networks themselves comprise a number of electronic control units (ECUs) which are
interconnected via a communication media (see zoom-in on network A and D in Figure 1).
The physical topology used for the interconnection is basically arbitrary; however, bus, star,
and ring topologies are the most common topologies in today’s cars. – This network level
represents the medium level of abstraction.

On the lowest level of abstraction, the ECU level (Figure 2), the major parts of an
ECU are of interest. An ECU comprises one or more micro controller units (MCUs) as
well as one or more communication controllers (CCs). In most cases, exactly one MCU
and one CC are used to build up an ECU. In order to be able to control physical processes
in the car (e.g., control the injection pump of an engine), the ECU’s MCU is connected

2Translated into English: “Manufacturers’ Software Initiative”
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to actuators via the MCU’s analog or digital output ports. To provide means to obtain
environmental information, sensors are connected to the MCUs analogue or digital input
ports. We call this interface the ECU’s environmental interface. The CC(s) facilitate(s) the
physical connectivity of the ECU to the respective network(s). We call this interface of an
ECU the ECU’s network interface.

Figure 2: Hardware Architecture – ECU Level

3 OSEK/VDX

The OSEK/VDX standard was the result of the endeavors of major car manufacturers and
their suppliers to create a standardized software infrastructure for automotive electronics.
This standard was initially designed for applications in the area of automotive body elec-
tronics or for the power train where autonomous control units build up a loosely-coupled
network. It comprises the following standardized components:

OSEK OS: The OSEK OS is an event-driven operating system intended for hard real-time
applications. OSEK provides services for task management, inter-task communication
by means of messages, events, resources, alarms, and interrupt handling.

OSEK NM: OSEK NM provides network management facilities which take care of a con-
trolled coordinated startup and shutdown of the communication of multiple ECUs
within a network.

OSEK COM: OSEK COM offers services to transfer data between different tasks and/or
interrupt service routines (ISRs) residing on the same ECU (internal communication)
or possibly being distributed over several ECUs (external communication).

OSEKtime OS: OSEKtime OS is a time-driven operating system designed for minimal
operating system footprint and deployment in safety-related applications.

OSEKtime FTCom: OSEKtime FTCom is the fault-tolerant communication layer accom-
panying OSEKtime OS.

In order to minimize the memory footprint as well as the required central processing unit
(CPU) time, each of these components is configured upon design time via a configuration
file in OSEK implementation language (OIL) syntax [10]. Using a generation tool, the
appropriate data structures in the used programming language are created based on this
configuration file. Thus, none of the components provides services for dynamic resource
allocation (like task creation, memory allocation, a.s.o.).

In the following each of the listed OSEK/VDX components is described briefly.
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3.1 OSEK OS

OSEK OS [30] is an event-driven single chip real-time operating system which is statically
configured (as far as available tasks, used resources, etc. are concerned) and thus does not
provide dynamic resource allocation. The OS itself defines three different processing levels:
interrupt level, logical level for the scheduler itself, and task level. For the task scheduling
OSEK OS uses a priority-based scheduling strategy. Based on the OS configuration, this
scheduling strategy is either preemptive or non-preemptive. The main OS entities of execution
are tasks in OSEK OS. – Hereby OSEK OS distinguishes between basic tasks (which do not
use any blocking inter process communication (IPC) constructs) and extended tasks (which
are allowed to use blocking IPC constructs). The second entity of execution in OSEK OS
are interrupt service routines (ISRs). – OSEK OS distinguishes between category 1 and
category 2 ISRs. Whereas the former are not allowed to call operating system services, the
latter are allowed to do so. Depending on the chosen scheduling strategy, an OSEK OS task
can be in one of the states depicted in Figure 3.

(a) Extended Task Model (b) Basic Task Model

Figure 3: OSEK OS Task States

Hereby Figure 3(a) illustrates the task states for the extended task model (which exhibits
an additional Waiting state) whereas Figure 3(b) depicts the tasks states for basic task
model. Synchronization between extended tasks in OSEK OS is performed via events. In
case extended tasks can wait for an event, they remain in a Waiting task state until the event
is set by some other extended task. Mutual exclusion between extended tasks is performed
by means of resources. In order to prevent deadlocks and priority inversion, OSEK OS
implements the priority ceiling protocol [13] for resources. Communication between tasks
in OSEK OS is performed by means of messages. – A detailed description of the OSEK
communication primitives is provided in the section on OSEK COM (Section 3.3). For
cyclic operations, OSEK OS provides the OS entities counters and alarms. Counters are
represented by a counter value. Hereby OSEK OS takes care of periodically incrementing
this counter value. In case the counter value reaches a defined threshold, an alarm, which is
linked to the counter, can be triggered. – This alarm can, for example, set an event or activate
a suspended task. In order to account for different modes of operations of an automotive
real-time system, OSEK OS provides different application modes. – Each application mode
owns its own subset of operating system entities (e.g., tasks, interrupt service routines (ISRs),
etc.). – During operation a switch between these application modes is possible.
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3.2 OSEK NM

Network management (NM) in the automotive area handles the controlled coordinated startup
and shutdown of the communication of multiple ECUs within a network. The shutdown of the
network (and the accompanying transitions of the ECUs into a low-power or even a power-
down mode) is in general done to reduce the network’s power consumption in situations
when the functions performed by the respective ECUs are not required (e.g., when the
car is safely stored in a garage). Additionally OSEK NM [21] provides (weakly-agreed)
information on which ECUs within a network are participating in the OSEK NM. – This
service is called node monitoring in OSEK NM. In order to realize these two services, OSEK
NM establishes a logical ring among all ECUs participating in OSEK NM. Along this ring
OSEK NM ring messages are passed between the participating ECUs. These ring messages
contain information on whether the sending ECUs desires to perform a transition into a
low-power sleep mode. In case all ECUs along the logical ring agree on this transition (i.e.,
no ECU objects), a coordinated transition into the sleep mode is performed. In case any
ECU objects to this decision because it still requires network operation, a transition into
the sleep mode is prevented. Wakeup of a sleeping network is triggered by any traffic on the
network. Figure 4 depicts the state automaton of OSEK NM.

Figure 4: OSEK NM State Automaton

In case an ECU which is currently not a member of the logical ring, wants to join the ring
in order to participate in OSEK NM, the ECU’s NM module send a so-called alive message
in order to introduce itself (sub-state NmReset). Once the new ECU has joined the ring, it
participates in transmission of the ring messages (sub-state NmNormal). In case an ECU fails
to receive any ring messages while residing in NmNormal state, the ECU NM module transits
into NmLimpHome state where the ECU sends limp home messages until ring messages are
received again.

Figure 5: OSEK NM Message Format

Figure 5 depicts the message format of OSEK NM’s messages. A source and a destination
ID field uniquely identify the sending and the receiving ECU in the network. The OP code
field defines whether the message is a ring message, a limp home message, or an alive message.
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An optional data field may carry additional data from higher layers that is transferred along
the ring.

3.3 OSEK COM

OSEK COM [9] provides a uniform communication environment for automotive control
unit applications by offering services for data transfer among tasks and/or interrupt service
routines. Hereby tasks and ISRs can be located on either the same ECU (internal communi-
cation) or on different ECUs (external communication). OSEK COM supports both cyclic
time-driven communication as well as event-driven communication. Additionally OSEK
COM provides mechanisms for transmission and reception timeout monitoring (e.g., in case
the transmission of a signal triggered by the call of an OSEK COM Application Program-
ming Interface (API) service does not take place within a statically configurable interval a
transmission timeout is signaled to the layers located on-top of OSEK COM).

In case of external communication, the interaction sub-layer of OSEK COM takes care of
the representational issues of signals like byte ordering and alignment. On the sender’s side,
this layer converts signals from the byte order of the sending ECU into the network byte
order. Furthermore, the interaction layer packs multiple signals into a single communication
frame in order to reduce communication bandwidth consumption. On the receiver’s side,
this layer extracts multiple signals from a single communication frame and performs a byte
order conversion from the network byte order to the byte order of the receiving ECU.

3.4 OSEKtime OS

OSEKtime OS [6] is designed as a statically configured time-driven single chip operating
system for distributed embedded systems. Just like OSEK OS OSEKtime OS provides two
entities of execution, namely interrupt service routines and tasks. Interrupt service routines
(ISRs) execute interrupt related services. Tasks, however, are started at defined points in
time and have one of three different states. In the Running state, the CPU is assigned to the
task and its commands are executed. Only one task can reside in this state at any point in
time while all other states can be adopted simultaneously by several tasks. The Preempted

state is reached by a task that has been in the Running state and was preempted by another
task that is to be activated. A task can leave the Preempted state only if the preempting
task changes into the Suspended state. An inactive task that can be activated is in the
Suspended state. The state changes described so far are depicted in Figure 6.

Figure 6: OSEKtime Task States

The activation times of the tasks are stored in a dispatcher table before compile time. The
dispatcher is the central component of the OSEKtime OS and is responsible for activating
the tasks according to their activation times. The processing of the dispatcher table is done
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cyclically. A complete cycle of the dispatcher table is called a dispatcher round. If a time-
driven task is still in the state Running when the activation time of another time-driven
task is reached, the first task passes over to the Preempted state and stays there until the
interrupting task is finished. This kind of scheduling is called stack-based scheduling ; no
priorities are assigned to the tasks – only the activation times define the precedence between
different tasks.

3.5 OSEKtime FTCom

OSEKtime FTCom [28] is the fault-tolerant real-time communication layer that accompanies
OSEKtime OS. – Similar to OSEK COM, OSEKtime FTCom can be used for both external
as well as internal communication. – In contrast to OSEK COM, OSEKtime FTCom solely
supports time-driven signal transmission.

In case of external communication the interaction sub-layer of OSEKtime FTCom takes
care of the representational issues of signals like byte ordering and alignment. On the
sender’s side, this layer converts signals from the byte order of the sending ECU into the
network byte order. On the receiver’s side a conversion from the network byte order into
the byte order of the receiving ECU takes place. Furthermore, the interaction layer packs
multiple signals into a single communication frame in order to reduce communication band-
width consumption. Additionally, in case of external communication, the fault tolerance
sub-layer of OSEKtime FTCom manages all fault tolerance issues, namely signal replication
and signal reduction. On the sender’s side, this layer replicates a single application signal
and thus produces multiple signal instances. These signal instances are handed over to the
interaction sublayer for byte order conversion and packing. Afterwards, the signal instances
are transmitted via redundant communication paths. Considering redundant transmission
paths temporal redundancy (multiple transmissions on a single communication channel) and
spatial redundancy (transmission on multiple communication channels) can be distinguished.

On the receiver’s side, multiple signal instances are collected from the interaction sublayer
and reduced to obtain a single application signal which is handed on to the application layer.

4 HIS

The “Hersteller Initiative Software” (HIS) working group has been formed by their members
to “bundle their activities for standard software modules, process maturity levels, software
test, software tools and programming of control units. The common goal is to achieve and
use joint standards”. Different from the OSEK/VDX working group, HIS solely includes car
manufacturers (OEMs) as members. The components standardized by HIS are listed in the
following:

Protected OSEK OS: The protected OSEK OS specification defines additional mecha-
nisms and services (in addition to the conventional OSEK OS) in order to protect
separate applications running on the same ECU from each other in the value (memory
protection) and in the temporal (execution time monitoring) domain.

IO Library and Drivers: The HIS IO library provides a standardized interface to access
the respective low-level drivers.

Flash Driver: The specification of the standardized HIS flash driver describes a standard
interface of services required for flash programming.
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CAN Driver: The HIS CAN driver provides data-link layer services for the transmission
and the reception of frames on CAN [23,24] networks.

In the following each of the listed HIS components is briefly described.

4.1 Protected OSEK

HIS defines extensions to the OSEK OS specification in order to protect separate application
tasks running on the same ECU [18]. – These extensions

• provide means to prevent different application tasks within the same ECU to corrupt
each other’s data,

• monitor and restrict the execution time of each single application task

• exclusively assign operating system resources to a single application task and prevent
all other application tasks from accessing these resources.

In order to fulfill these services, the protected OSEK OS, however, requires hardware
support, namely a memory protection unit and the existence of multiple processor modes
(e.g., a privileged mode for the OS and a non-privileged mode for the application tasks).
For the monitoring and the restriction of the execution time of each task, an OS timer is
assigned to each task in order to trace the task’s execution time and abort the task in case
the task exceeds its statically assigned execution time budget.

4.2 IO Library and Drivers

The HIS Input/Output (IO) library [20] is intended to provide a standard interface to low-
level drivers (e.g., for digital IO). The IO library supports both synchronous (i.e., the caller
of the library function is blocked till the function completes) as well as asynchronous (i.e.,
the caller of the library function just triggers the function, and is asynchronously informed
once the IO operation has completed) operation. – In case of asynchronous operation, the
IO library itself takes care of the required buffer handling to decouple the calling function
from the called driver. The IO library and the corresponding drivers provide the following
API functions:

Init: This API function is used for the initialization of the controlled device. – The function
must be called prior to any other service.

Deinit: This API function is used to de-initialize the controlled device. – The function has
to be called upon releasing of the device (e.g., prior to termination of the application).

Read: This API function is used to read data from the controlled device. – The semantics
of this function is similar to the UNIX read(2) system call.

Write: This functions is used to write data to the controlled device. – The semantics of
this function is similar to the UNIX write(2) system call.

Ioctl: This function can be used to access other services provided by the respective driver,
which cannot be mapped to the semantics of any of the previously described API
functions. – The semantics of this function is similar to the UNIX ioctl(2) system
call.
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As far as resource management is concerned, the HIS IO library relies on the services
provided by OSEK operating systems. The IO drivers [19] standardized by HIS are drivers for
digital input/output, pulse width modulation, pulse width demodulation, analogue/digital
converters, watchdog timer, capture compare timers, EEPROM drivers and flash drivers.

4.3 Flash Driver

The HIS standardized flash driver component [16] provides defined services (including a
corresponding API) for the initialization of the flash driver component, the de-initialization
of the flash driver component, the erasing of the flash memory, and the writing to the flash
memory. Hereby, the job of the flash driver is to provide a logical abstraction from the
physical organization of the flash memory (e.g., segmentation, banking, a.s.o.). – The HIS
flash driver is designed to be used as a driver for the HIS IO library. Conventional application
areas for the HIS flash driver are the flash programming services of XCP (see Section 6.1)
and ISO diagnostics (see Section 5.2)

4.4 CAN Driver

The HIS CAN driver [17] is an implementation of a data link layer for CAN networks. –
The HIS CAN driver provides a uniform interface for the reception and the transmission
of frames on the CAN network and thus abstracts from the peculiarities of the underlying
buffer configurations of the respective CAN controller (full CAN vs. basic CAN a.s.o.). The
main services provided by the CAN driver are the following:

Frame Reception: The CAN driver retrieves received frames from the hardware buffers of
the CAN controller and informs upper software layers about the frame reception.

Frame Transmission: On request of higher software layers the CAN driver transfers frames
to be transmitted into the hardware buffers of the CAN controller and informs higher
software layers about the successful transmission of these frames.

Wakeup Service: If supported by the respective CAN controller, the CAN driver provides
services to put the CAN controller in a special low-power mode (the sleep mode). In
case a CAN controller transits from sleep mode (due to traffic on the communication
media) back into the normal operation mode, the CAN driver informs the higher
software layers about this event.

Error Handling: In case fatal errors occur on the CAN communication media, the CAN
driver informs the higher software layers about these errors.

Note, however, that the HIS CAN driver does not provide an IO library compliant inter-
face!

5 ISO

Some of the software layers used for CAN networks in today’s cars have been standardized
by the International Organization for Standardization (ISO). – The most prominent of these
software layers are the following:
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Transport Layer (ISO/DIS 15765-2.2): This layer provides unacknowledged segmented
data transfer to all higher layers and thus facilitates exchange of data amounts larger
than the maximum transfer unit (MTU) of the underlying communication system.

Diagnostics – KWP2000 (ISO/DIS 14230-3) and UDS (ISO/DIS 14229-1): Both
the Keyword Protocol 2000 (KWP2000) as well as the Unified Diagnostic Services
(UDS) define diagnostic services which allow a tester device to control diagnostic func-
tions in an ECU via a serial data link.

5.1 Transport Layer (ISO/DIS 15765-2.2)

The ISO transport layer [25] provides unacknowledged segmented data transfer (USDT) ser-
vices to higher software layers (e.g., ISO diagnostics (see Section 5.2)) by facilitating the
transmission of messages whose length is greater than the MTU of the underlying commu-
nication system. On the sender’s side, the transport layer will split such long messages into
multiple segments, each small enough for the underlying communication system. On the
receiver’s side, the transport layer reassembles these segments again. As far as the frame
format is concerned, the ISO transport layer distinguishes between single frames (SF), first
frames (FF), consecutive frames (CF), and flow control frames (FC). Hereby single frames
are used for reduction of protocol overhead in case the amount of data to be transmitted does
not exceed the MTU. – In that case only a single frame is used in order to exchange this data.
Otherwise a first frame, which contains the total number of data bytes to be sent as well as
the first few data bytes, is transmitted followed by one or more consecutive frames, which
then contain the remaining data bytes. For flow control reasons (i.e., to prevent the sender
from outpacing the receiver) the receiver is allowed to send flow control frames at defined
points in time. Figure 7 illustrates the frame exchange in an unsegmented (Figure 7(a))
and a segmented transmission (Figure 7(b)).

(a) Unsegmented Transfer (b) Segmented Transfer

Figure 7: ISO Transport Layer – Transmission Sequence

Hereby the frame format depicted in Figure 8 is used by the ISO transport layer. The
source and destination address fields are used to identify the sender and the receiver(s) of the
TP frame. The address type field is used to define the semantics of the destination address.
Here ISO TP provides support for single ECU addresses (called physical addresses by the
ISO TP specification) and multicast addresses (called functional addresses by the ISO TP
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specification). In case of multicast transmissions, only unsegmented data transfer is allowed
in ISO TP.

Figure 8: ISO Transport Layer – Frame Format

The protocol control information (PCI) field is used to distinguish between the different
frame types (i.e., SF, FF, CF, FC). Furthermore the PCI field carries the total number of
data bytes to be transmitted in case of a single or a first frame, a sequence number in case of
a consecutive frame (in order to facilitate early detection of a loss of a consecutive frame),
and more detailed information regarding the type of flow control in case of a flow control
frame.

5.2 Diagnostics – KWP2000 (ISO/DIS 14230-3)/UDS (ISO/DIS
14229-1)

The Keyword Protocol 2000 (KWP2000) [22] and the Unified Diagnostic Services (UDS) [26]
define client/server diagnostic services which allow a tester device (client) to control diag-
nostic functions in an ECU (server) via a serial data link. Hereby the provided services,
the encoding of the service identifiers, and the encoding of the parameters are standardized
by the KWP2000 and the UDS specification. For the exchange of information between the
client and the server (and vice versa) both diagnostic protocols use the previously described
transport layer. The services provided by KWP2000 and UDS can be grouped into the
following six functional units:

Diagnostic Management: This functional unit covers all services realizing diagnostic man-
agement functions between the client and the server. – Examples for these kind of
services are the services startDiagnosticSession for initiating a diagnostic session,
stopDiagnosticSession for terminating a diagnostic session, ecuReset for reseting
an ECU, and readECUIdentification for reading ECU identification information like
the serial number or the programming date of the ECU.

Data Transmission: This functional unit covers all services dealing with data exchange
between the client and the server. – Two prominent examples for these services are
the services readMemoryByAddress and writeMemoryByAddress, which are used to
read and write a memory range (defined by start address and the number of bytes to
read/write) of the ECU.

Stored Data Transmission: This functional unit covers all services which are used to
perform exchange of data which is stored within the ECU (in a non-volatile way).
– Examples for these kind of services are the service readDiagnosticTroubleCodes,
which is used to retrieve stored trouble codes from the ECU’s error log as well as the
service clearDiagnosticInformation, which is used to remove all entries from the
ECU’s error log.

Input/Output Control: This functional unit covers all services which deal with input and
output control functions. – An example for a service contained in this group is the
service inputOutputControlByLocalIdentifier, which can be used by the client to
substitute a value for an input signal of the server.
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Remote Activation of Routine: This functional unit covers all services which provide
remote activation of routines within an ECU. – Examples for services in this functional
unit are the services startRoutineByAddress and stopRoutineByAddress, which are
used to remotely invoke a routine in the server (ECU) and to terminate an executing
routine in the server (ECU). Hereby the routine to invoke or stop is identified by the
routine’s address.

Upload/Download: This functional unit covers all services which realize upload/download
functionality between the client and the server. – Examples for services within this
unit are the requestDownload service, which gives the client the possibility to request
the negotiation of a data transfer from client to server, the requestUpload service,
which gives the client the possibility to request the negotiation of a data transfer from
server to client, and the transferData service, which actually takes care of the data
transmission between client and server.

In KWP2000 as well as in UDS services are identified by the so-called service identifier
(SID) field which is the first byte in a diagnostic message3. Based on this field the layout of
the remainder of the diagnostic message is completely different. The diagnostic server uses
the SID to select the proper service requested by the client and interprets the remainder of
the diagnostic message as parameters to the service request according to the SID.

Describing the format of the diagnostic messages for each value of SID is beyond the scope
of this chapter. – Detailed information on this topic can be obtained from the respective
ISO specifications [22,26].

6 ASAM

The Association for Standardization of Automation and Measuring Systems (ASAM) started
as an initiative of German car manufacturers with the goal to define standards for data mod-
els, interfaces and syntax specifications for testing, evaluation, and simulation applications.

Apart from several data exchange formats like Open Diagnostic Data Exchange Format
(ODX), the Functional Specification Exchange Format (FSX), the Meta Data Exchange
Format for Software Module Sharing (MDX), and the Fieldbus Exchange Format (FIBEX),
ASAM defines the Universal Measurement and Calibration Protocol Family (XCP) which is
described in the next section.

6.1 XCP – The Universal Measurement and Calibration Protocol
Family

The Universal Measurement and Calibration Protocol Family XCP [29] is used for the fol-
lowing main purposes:

• Synchronous data transfer (acquisition and stimulation)

• On-line calibration

• Flash programming for development purposes

3This diagnostic message is payload from ISO TP’s point of view.
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Prior to describing these main operations of XCP though, we will focus on the protocol’s
internal structure. XCP itself consists of two main parts, namely the XCP protocol layer and
several XCP transport layers, one dedicated transport layer for each underlying communica-
tion protocol (currently CAN, FlexRay, USB, TCP/IP, UDP/IP, and SxI are supported). –
Figure 9 illustrates this XCP protocol stack.

Figure 9: XCP Protocol Stack

6.1.1 XCP Protocol Layer

The XCP protocol layer is the higher layer of the XCP protocol family. This layer implements
the main operations of XCP which are described in detail in Sections 6.1.3, 6.1.4, and 6.1.5.
The XCP protocol layer itself is independent of a concrete communication protocol (e.g.,
CAN, FlexRay, . . . ). Data exchange on the XCP protocol layer level is performed by data
objects called XCP packets. – Figure 10 illustrates the structure of an XCP packet.

Figure 10: Structure of an XCP Packet

An XCP packet starts with a Identification Field containing a Packet Identifier (PID)
which is used to establish a common understanding about the semantics of the packet’s data
between the XCP master and the XCP slave. The PID is thus used to uniquely identify each
of the following two basic packet types and their respective subtypes:

Command Transfer Object (CTO) Packets: This packet type is used for the transfer
of generic control commands from the XCP master to the XCP slave and vice versa.
It is used for carrying out protocol commands (CMD), transferring command responses
(RES), errors (ERR), events (EV), and for issuing service requests (SERV).

Data Transfer Object (DTO) Packets: This packet type is used for transferring syn-
chronous data between the XCP master and the XCP slave device. Synchronous data
acquisition (DAQ) data is transferred from the XCP slave to the XCP master whereas
synchronous data stimulation (STIM) data is transported from the master to the slave.

The DAQ Field is used to uniquely identify the DAQ list (see Section 6.1.3) to be used
for data acquisition or stimulation if the XCP packet is of DTO packet type. In order to
have the DAQ Field aligned to 16-bit boundaries, a Fill Byte is introduced between the PID
Field and the DAQ Field. – In case the packet is a CTO packet, the DAQ field is omitted.

The Time-Stamp Field is used in DTO packets to carry a time-stamp provided by the
XCP slave for the respective data acquisition. – The length of the time-stamp field may vary
between one to four bytes depending on the configuration. In case the packet is of CTO
type, the time-stamp field is omitted.
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Command packets (CMD) are explicitly acknowledged on the XCP protocol layer by
sending either a command response packet (RES) or an error packet (ERR). Event (EV)
packets (i.e., packets informing the XCP master that a specific event has occurred in the
XCP slave (e.g., an overload situation has occurred during data acquisition)), service request
(SERV) packets (i.e., packets used by the slave to request certain services from the master
(e.g., a packet containing text that is to be printed by the master)) and data acquisition
packets (DAQ, STIM) are sent asynchronously and unacknowledged at the XCP protocol
layer. Therefore, it may not be guaranteed that the master device will receive these packets
when using a non-acknowledged transportation link like e.g., UDP/IP.

6.1.2 XCP Transport Layers

The protocol layer described in the previous sections is independent from the underlying
communication protocol. – In order to be able to use XCP on-top of different communica-
tion protocols, the XCP specification defines multiple XCP transport layers that perform
the packing of the protocol independent XCP packets into frames of the respective commu-
nication protocol, by adding an XCP header containing a node address field used to identify
the destination ECU, a counter field used for sequence numbering of the XCP packets and a
length field defining the length of the XCP packet. Depending on the actual communication
protocol used, some of these header fields might be missing (e.g., in case TCP/IP is used as
communication protocol, the node address is omitted, since IP’s addressing scheme is used).

6.1.3 Synchronous Data Transfer

The synchronous data transfer feature of XCP allows for a data exchange between XCP
master and XCP slave that is performed synchronous to the XCP slave’s execution. This
exchange is carried out by using data transfer objects (DTOs) which are transfered via
DTO packets. The memory regions of the XCP slave’s memory that are the source or
the destination of the transfer are linked to the DTO by so-called object description tables
(ODTs). A sequence of one or more ODTs are grouped into a so-called data acquisition
(DAQ) list (see Figure 11).

Figure 11: Structure of a DAQ List
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Hereby the DAQ-DTO contains a packet identification field (PID), which is used to link
the DAQ-DTO to the respective ODT (PID field matches ODT number). For each element
within a DAQ-DTO, a corresponding ODT entry is present in the ODT which references a
specific part in the ECU’s memory by the attributes address and length. Upon processing
of the ODT, the ODT entries are used to transfer element from the ECU’s memory into the
corresponding element in the DAQ-DTO (in case of data acquisition) and vice-versa (in case
of data stimulation).

DAQ lists can either be statically stored in an XCP slave ECU’s memory or dynamically
allocated by the XCP master via special protocol command packets.

6.1.4 On-line Calibration

For the on-line calibration feature of XCP, the slave’s physical memory is divided into
so-called sectors which reflect the memory’s size and limit constraints when reprogram-
ming/erasing parts of the memory. This division into sectors thus describes the physical
layout of the XCP slave’s memory.

The logical layout is described by dividing the memory into segments. – This division
does not need to adhere to the physical limitations of the division into sectors. Each segment
can further consist of one or multiple pages where at any given instance in time only one
page of a segment is accessible to the ECU. – This page is called the active page for the
ECU’s application. The same holds true for XCP itself as well (active XCP page). XCP
ensures that concurrent access to the same page by the ECU’s application and XCP itself is
prevented.

Via XCP CMD packets, the XCP master can instruct the XCP slave to switch active
pages of the same segment (i.e., to make a page which has previously not been the active
one the new active page) and to copy data between pages of the same or of different memory
segments.

This way, the calibration data used for the slave ECU’s control loops, for example, can
be altered upon run-time under control of the XCP master.

6.1.5 Flash Programming

In order to facilitate the exchange of the current image of the application program in the
slave ECU’s non-volatile memory, XCP defines special commands (exchanged via XCP com-
mand packets) for performing flash (re-)programming. The following list contains a short
description of the main commands used in flash programming:

PROGRAM START: Indicate the beginning of a programming sequence of the slave
ECU’s non-volatile memory.

PROGRAM CLEAR: Clear a part of the slave ECU’s non-volatile memory (required
before programming new data into this part of memory).

PROGRAM FORMAT: Used to specify the format for the data that will be transferred
to the slave ECU (e.g., used compression format, used encryption algorithm, . . . ).

PROGRAM: This command, which is issued in a loop as long as there is still data available
that needs to be programmed, is used to program a given number of data bytes to a
given address within the slave ECU’s non-volatile memory.

PROGRAM VERIFY: Verify that the programming process has completed successfully
by, for example, calculating a checksum over the programmed memory area.
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PROGRAM RESET: Indicates the end of the programming sequence and optionally re-
sets the slave ECU.

By means of these flash programming XCP commands, a flash download process for the
ECU’s development stage can be implemented. – In-system flash programming in series cars
however is usually performed via the diagnostics protocol (see Section 5.2).

7 AUTOSAR

The development partnership AUTomotive Open System ARchitecture (AUTOSAR) is an
alliance of OEM manufacturers, major supplier companies, and tool vendors working to-
gether to develop and establish an open industry standard for an automotive electronic
architecture which is intended to serve as a basic infrastructure for the management of (soft
and hard real-time) functions within automotive applications.

At the time being, AUTOSAR versions 1.0, 2.0, 2.1, and 3.0 have been released. For
versions 1.0 and 2.0 a dedicated proof-of-concept implementation has been performed and
integrated in a sample application.

The AUTOSAR software architecture makes a rather strict distinction between applica-
tion software and basic or system software. While the basic (or system) software provides
functionality like communication protocol stacks for automotive communication protocols
(e.g., FlexRay [12, 27]), a real-time operating system, and diagnostic modules, the applica-
tion software comprises all application specific software items (i.e., control loops, interaction
with sensor and actuators etc.). This way, the basic or system software provides the foun-
dation the application software is built upon.

The so-called Runtime Environment (Rte) acts as an interface between application soft-
ware components and the system software modules as well as the infrastructure services that
enables communication to occur between application software components.

7.1 Application Software Architecture

Application software in AUTOSAR consists of application software components, which are
ECU and location independent and sensor-actuator components that are dependent on ECU
hardware and therefore location dependent. Whereas instances of application software com-
ponents can easily be deployed to and relocated among different ECUs, instances of sensor-
actuator components must be deployed to a specific ECU for performance/efficiency reasons.

Application software components as well as sensor-actuator components are intercon-
nected via so-called connectors. These connectors represent the exchange of signals or the
remote method invocations among the connected components.

7.1.1 Runnable Entities

Software components are composed of one or more runnable entities which are executed in
the context of operating system tasks. These runnable entities are invoked by a dedicated
system software module named Runtime Environment (Rte). Depending on whether or not
runnable entities have wait-points, AUTOSAR distinguishes between category 1 runnable
entities (without wait-points) and category 2 runnable entities (with wait-points). – The
former can be assigned to basic tasks of the operating systems (which are not allowed to
invoke any blocking system calls) whereas the latter have to be mapped to extended tasks
(which are allowed to use blocking system calls).
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7.1.2 Communication

To enable communication between different software components in AUTOSAR, the com-
ponents are equipped with a communication interface that consists of several ports. Hereby
ports have defined interface types. AUTOSAR distinguishes between sender-receiver port in-
terfaces providing message passing semantics and client-server port interfaces which provide
remote procedure call semantics. AUTOSAR further distinguishes between the following
domains of communication: intra-task communication (communication between runnable
entities of components that are assigned to the same task on the same ECU), inter-task
communication (communication between runnable entities of components that are assigned
to different tasks on the same ECU), and inter-ECU communication (communication be-
tween runnable entities of components that are assigned to different tasks on different ECUs).
Each of the previously described communication semantics is supported by these three com-
munication domains. As far as multiplicity is concerned, AUTOSAR supports 1:1, 1:n,
and n:1 communication for sender-receiver port interfaces and 1:1 and n:1 communication
(multiple clients, single server) for client-server port interfaces.

7.2 System Software Architecture

In addition to the application software components, AUTOSAR also defines a layered archi-
tecture of system software modules [7] which provides the basic platform for the execution
of the application software components. Figure 12 provides a coarse grained overview of the
major layers of these system software modules.

Figure 12: AUTOSAR – System Software Layered Architecture

Micro-Controller Abstraction Layer: This is the lowest software layer of the system
software in AUTOSAR. This layer contains software modules which directly access
the micro-controller’s internal peripheral devices as well as memory mapped external
devices. – The task of this layer is to make higher software layers independent of the
micro-controller type.

ECU Abstraction Layer: This layer interfaces with the software modules of the micro-
controller abstraction layer and additionally contains drivers for external devices. The
layer offers a standardized API to access the peripheral devices of an ECU regardless
of their location (i.e., whether the peripherals are internal or external with respect
to the ECU’s micro-controller) and their connection (e.g., via port pins, via a serial
peripheral interface (SPI), a.s.o.). – The task of this layer is to make higher software
layers independent of the ECU’s hardware layout.
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Services Layer: This layer is mainly located on-top of the ECU abstraction layer and
provides operating system services, vehicle network communication and management
services, memory services (e.g., non-volatile random access memory (NVRAM) man-
agement), diagnostic services (e.g., error logger), and state management services of the
whole ECU. – The task of this layer is the provision of basic services for the application
software and other system software modules.

Complex Device Drivers: The concept of complex device drivers somehow intentionally
violates the AUTOSAR layered architecture in order to provide the possibility to deploy
legacy device drivers in an AUTOSAR system software module stack. Additionally,
the complex device driver module concept has been introduced to facilitate the inte-
gration of highly application and ECU dependent drivers that require complex sensor
evaluation and actuator control with direct access to the micro-controller itself and
complex micro-controller peripherals for performance reasons.

Runtime Environment (Rte): The AUTOSAR Runtime Environment provides the inter-
face between application software components and the basic software modules as well
as the infrastructure services that enable communication between application software
components.

Application Layer: Actually this layer is not part of the AUTOSAR system software mod-
ules layered architecture, since this layer contains the AUTOSAR application software
components described in Section 7.1.

In addition to this mainly vertical structuring AUTOSAR further horizontally subdi-
vides the system software modules into different sub-stacks. This subdivision is depicted in
Figure 13.

Figure 13: AUTOSAR – System Software Sub-Stacks Overview

Input/Output Sub-Stack: The input/output sub-stack comprises software modules that
provide standardized access to sensors, actuators, and ECU on-board peripherals (e.g.,
D/A or A/D converters etc.).

Memory Sub-Stack: The memory sub-stack comprises software modules that facilitate
the standardized access to internal and external non-volatile memory for means of
persistent data storage.
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Communication Sub-Stack: The communication sub-stack contains software modules
that provide standardized access to vehicle networks (i.e., the Local Interconnect Net-
work (LIN) [8], the Controller Area Network (CAN) [23,24], and FlexRay [12,27]).

System Service Sub-Stack: Last but not least, the system service sub-stack encompasses
all software modules that provide standardized (e.g., operating system, timer support,
error loggers) and ECU specific (ECU state management, watchdog management) sys-
tem services, and library functions.

Regardless of the vertical and horizontal structuring, the following classification can be
applied to the AUTOSAR system software modules:

Drivers: A driver contains the functionality to control and access an internal or an external
device. Hereby, internal devices, which are located within the micro-controller, are
controlled by internal drivers whereas external devices, which are located on ECU
hardware outside the micro-controller, are controlled by external drivers. Internal
drivers can usually be found within the micro-controller abstraction layer, whereas
external drivers are found in the ECU abstraction layer. Drivers do not change the
content of the data handed to them.

Interfaces: An interface contains the functionality to abstract from the hardware realization
of a specific device and to provide a generic API to access a specific type of device
independent of the number of existing devices of that type and independent of the
hardware realization of the different devices. Interfaces are generally located within
the ECU abstraction layer. Interfaces do not change the content of the data handed
to them.

Handlers: A handler controls the concurrent, multiple, and asynchronous accesses of one
or more clients to one or more driver or interface modules. Thus a handler performs
buffering, queuing, arbitration, and multiplexing. Handlers do not change the content
of the data handed to them.

Managers: A manger offers specific services for multiple clients. Managers are required
whenever pure handler functionality is insufficient for accessing and using interface
and driver modules. Managers furthermore are allowed to evaluate and change or
adapt the content of the data handed to them. Managers are usually located in the
services layer.

In the following sections, the different sub-stacks of AUTOSAR system software modules
are described in detail.

7.2.1 Communication Sub-Stack

The communication sub-stack contains a group of modules that facilitate communication
among the different ECUs in a vehicle via automotive communication protocols (CAN, LIN,
and FlexRay). The structure of the communication sub-stack is depicted in Figure 14.

Hereby, xx is used as a placeholder for the respective communication protocol (i.e., CAN,
LIN, FlexRay). Thus the AUTOSAR communication sub-stack contains communication pro-
tocol specific instances of the Transport Protocol (Tp), Network Management (Nm), Interface
(If), State Manger (Sm), Transceiver Driver (Trcv), and Driver (no suffix) modules. In the
following, the different modules of the communication sub-stack are described in detail.
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Figure 14: AUTOSAR – Communication Sub-Stack

Driver (xx): The Driver module (Fr, Can, Lin) provides the basis for the respective In-
terface module by facilitating the transmission and the reception of frames via the
respective CC. Hereby, the Driver is designed to handle multiple CCs of the same
type. Thus, if an ECU contains for example FlexRay CCs of two different types, two
different FlexRay Driver modules are required.

Transceiver Driver (xxTrcv): The various different Transceiver Driver modules (FrTrcv
and CanTrcv) provide API functions for controlling the transceiver hardware (i.e.,
switching the transceivers into special modes (e.g., listen only mode)) and for ob-
taining diagnostic information from the transceiver hardware (e.g., information about
short circuits of the different bus-lines of CAN or information about wakeup events on
the bus).

Interface (xxIf): Using the frame-based services provided by the Driver module, the Inter-
face module (FrIf, CanIf, LinIf) facilitates the sending and the reception of protocol
data units (PDUs). Hereby, multiple PDUs can be packed into a single frame at the
sending ECU and have to be extracted again at the receiving ECU4. The point in time
when this packing and extracting of PDUs takes place is governed by the temporal
scheduling of so-called communication jobs of the FlexRay and the LIN Interface. The
instant when the frames containing the packed PDUs are handed over to the Driver
module for transmission or retrieved from the Driver module upon reception is trig-
gered by communication jobs of the Interface module as well. In FlexRay, the schedule
of these communication jobs is aligned with the communication schedule, in LIN, the
schedule of the LIN Interface module governs the communication schedule on the LIN
bus. In contrast to this in CAN, the temporal schedule of the PDU transmission is
governed by the Com module (see below). In FlexRay, each communication job can
consist of one or more communication operations, each of these communication oper-
ations handling exactly one communication frame (including the PDUs contained in
this frame).

The interface modules are designed to be able to deal with multiple different drivers
for different types of CCs (e.g., freescale’s MFR4300 or FlexRay CCs based on the
BOSCH E-Ray core in the FlexRay case). Furthermore, the Interface module wraps

4Currently only the FlexRay Interface module supports the packing of multiple PDUs into a single frame.
– For the CAN and the LIN interface modules there is a 1:1 relationship between PDUs and frames.
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the API provided by the Transceiver Driver module and provides support for multi-
ple different Transceiver Driver modules (similar to the support for multiple different
Driver modules).

Transport Protocol (xxTp): The transport protocol is used to perform segmentation and
reassembly of large protocol data units (PDUs). On CAN (CanTp), this protocol is
compatible (in certain configuration settings) to ISO TP (see Section 5.1). Just like
ISO TP, the user of the services provided by the transport protocol is the diagnostic
layer, called Diagnostic Communication Manager in AUTOSAR (see below).

Network Management (xxNm, Nm): Similar to OSEK NM (see Section 3.2) the AUTOSAR
NM modules provide means for the coordinated transition of the ECUs in a net-
work into and out of a low-power (or even power down) sleep mode. AUTOSAR
NM is hereby divided into two modules: a communication protocol independent mod-
ule named Generic NM (Nm) and communication protocol dependent modules named
FlexRay NM (FrNm) and CAN NM (CanNm)5.

State Manager (xxSm): The State Manager modules (CanSm, LinSm, and FrSm) facilitate
the state management of the respective communication controllers with respect to com-
munication system dependent start-up and shutdown features and provide a common
state machine API to the upper layer (i.e., the Communication Manager (ComM)). This
API consists of functions for requesting the communication modes Full, Silent (i.e.,
listen only), and No Communication.

PDU Router (PduR): The PDU Router module provides two major services. On the one
hand, it dispatches PDUs received via the underlying modules (i.e., Interface and Trans-
port Layer modules) to the different higher layers (Com, Dcm). On the other hand, the
PDU router performs gateway functionalities between different communication net-
works by forwarding PDUs from one interface to another of either the same (e.g.,
FlexRay to FlexRay) or of different type (e.g., CAN to FlexRay). Routing decisions
in the PDU Router are based on a static routing table and on the identifiers of the
PDUs.

PDU Multiplexer (IpduM): The PDU Multiplexer module takes care of multiplexing parts
of a PDU. Hereby, the value of a dedicated part of the PDU (the multiplexer switch)
is used to define the semantic content of the remainder of the PDU (just like the tag
element in a variant record or a union in programming languages). In the reception
case, multiplexed PDUs are forwarded from the PduR to the IpduM for demultiplexing.
Once demultiplexed, the IpduM hands the PDUs back to the PduR. In the sending case,
the PduR obtains a PDU from Com and hands this PDU to the IpduM for multiplexing.
The IpduM returns the multiplexed PDU to the PduR, which routes the multiplexed
PDU to its final destination.

Communication (Com): The Com module provides signal-based communication to the up-
per layer (Rte). The signal-based communication service of Com can be used for intra-
ECU communication as well as for inter-ECU communication. In the former case, Com
mainly uses shared memory for this intra-ECU communication whereas for the latter
case at the sender side Com packs multiple signals into a PDU and forwards this PDU to
the PduR in order to issue the PDU’s transmission via the respective Interface module.

5Since LIN is a master-slave bus, no LinNm is required. The LIN master dictates when the network shall
transit into a low-power mode.
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– On the receiver side, Com obtains a PDU from the PDU router, extracts the signals
contained in the PDU, and forwards the extracted signals to the upper software layer
(Rte).

Diagnostic Communication Manager (Dcm): The Diagnostic Communication Manager
module is a sub-module of the AUTOSAR diagnostic module. The Dcm module provides
services which allow a tester device to control diagnostic functions in an ECU via the
communication network (i.e., CAN, LIN, FlexRay). Hereby the Dcm supports the
diagnostic protocols KWP2000 and UDS (see Section 5.2 for details).

Communication Manager (ComM): The Communication Manager is a resource manager
which encapsulates the control of the underlying communication services. The ComM

collects bus communication access requests from communication requesters (e.g., Dcm)
and coordinates these requests by interacting with Nm and the respective State Manager
modules. This way the ComM provides a simplified API to the network management
where a user of the API does not require any knowledge of the particular communica-
tion channel to use. Via the ComM API, a user simply requests a specific communication
mode (i.e., Full, Silent, or No Communication) and the ComM switches (based on a
statically configured table mapping users to channels) the communication capability
of the corresponding channel(s) to On, Silent, or Off.

7.2.2 Memory Sub-Stack

The memory sub-stack contains a group of modules that facilitate handling of the ECU’s
on-board non-volatile memory (i.e., providing API functions to store and retrieved data in
the ECU’s non-volatile memory (e.g., flash EEPROM or EEPROM). The structure of the
memory sub-stack is depicted in Figure 15.

Figure 15: AUTOSAR – Memory Sub-Stack

In the following the different modules of the memory sub-stack are described in detail.

Flash Driver (Fls): The Flash Driver provides services for reading from, writing to, and
erasing parts of the ECU’s flash memory. Furthermore, the Flash Driver facilitates
the setting and resetting of the write/erase protection of the flash EPPROM if such
protection is supported by the underlying hardware.

EEPROM Driver (Eep): The EEPROM Driver provides services for reading from, writing
to, and erasing parts of the ECU’s EEPROM. In addition to these basic services, the
EEPROM Driver provides a service for comparing a data block in the EEPROM with
a data block in the memory (e.g., RAM).
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Flash EEPROM Emulation (Fee): The Flash EEPROM Emulation module emulates
EEPROM functionality using the services provided by Flash Driver module. By mak-
ing use of multiple flash sectors and smart copying of the data between these sectors, the
Fee simulates an EEPROM-like behavior, i.e., the possibility to perform program/erase
operations on sub-sector granularity.

EEPROM Abstraction (Ea): The EEPROM Abstraction module provides uniform mech-
anisms to access the ECU’s internal and external EEPROM devices. It abstracts from
the location of peripheral EEPROM devices (including their connection to the micro-
controller), the ECU hardware layout, and the number of EEPROM devices.

Memory Abstraction Interface (MemIf): The Memory Abstraction Interface module al-
lows the Non-Volatile RAM Manager module (see below) to access several memory ab-
straction modules (Fee or Ea modules) in a uniform way. Hereby the MemIf abstracts
from the number of underlying Fee or Ea modules providing a runtime translation of
each block access initiated by the Non-Volatile RAM Manager module to select the
corresponding driver functions which are unique for all configured EEPROM or flash
EEPROM storage devices.

Non-Volatile RAM Manager (NvM): The Non-Volatile RAM Manager module provides
services to ensure the data storage and maintenance of non-volatile data according to
their individual requirements in an automotive environment, namely synchronous as
well as asynchronous services for the initialization, the reading, the writing and the
control of non-volatile data. The NvM operates on a block basis distinguishing the
following types of blocks: For native blocks the NvM provides a RAM mirror which
contains a copy of the data stored in the non-volatile memory block. This RAM
mirror is initialized with the data from the non-volatile block upon ECU power-up.
Upon ECU shutdown, the data from the RAM mirror is flushed to the corresponding
non-volatile memory block. Additionally, the NvM provides API services which can
force the transfer of a memory block from non-volatile memory into the corresponding
RAM mirror and vice versa. In addition to the facilities of native blocks, redundant
blocks provide enhanced fault tolerance, reliability, and availability. Due to replication
of the redundant block in non-volatile memory, the resilience against data corruption
is increased.

RAM Test (RamTst): The RAM Test module performs functional tests of the ECU’s in-
ternal RAM cells. Complete tests are performed upon ECU start-up and shutdown
as well as on request by special diagnostic commands. During operation partial test
are performed in a periodic manner (e.g., block by block or cell by cell). For both
types of tests several RAM test algorithms, which have been chosen according to the
IEC 61508 standard, are available. Depending on the algorithms’ diagnostic coverage
rate, the algorithms are divided into the following categories: Group 1 (low) with a
diagnostic coverage rate smaller than 60%, group 2 (medium) exhibiting a diagnostic
coverage rate of 60% to 90%, and group 3 (high) with a diagnostic coverage rate of
90% to 99%.

7.2.3 Input/Output Sub-Stack

The input/output sub-stack contains a group of modules that facilitate the handling of the
ECU’s input/output capabilities. The structure of the input/output sub-stack is depicted
in Figure 16.
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Figure 16: AUTOSAR – Input/Output Sub-Stack

In the following the different modules of the input/output sub-stack are described in
detail.

Interrupt Capture Unit Driver (Icu): The Interrupt Capture Unit (ICU) Driver is a
module using the ICU hardware to implement services like signal edge notification,
controlling of wakeup interrupts, periodic signal time measurement, edge time stamping
(usable for the acquisition of non-periodic signals), and edge counting.

Port Driver (Port): The Port Driver module provides the service for initializing the whole
port structure of the micro-controller, allowing for the the configuration of different
functionalities for each port and port pin (e.g., analogue digital conversion (ADC),
digital I/O (DIO), . . . ). Hereby the port pin direction (input/output), the initial level
of the port pin, and the fact whether the port pin direction is modifiable during run-
time is part of this configuration. Other I/O drivers (e.g., Dio, Adc, . . . ) rely on the
configuration performed by the Port Driver.

Pulse Width Modulation Driver (Pwm): The Pulse Width Modulation (PWM) Driver
module provides functions to initialize and control the hardware PMW unit of the
micro-controller. The Pwm module thus allows for the generation of pulses with variable
pulse width by facilitating the selection of the duty cycle and the signal period time.
The Pwm module supports multiple PWM channels, where each channel is linked to a
hardware PWM unit which belongs to the micro-controller.

Digital I/O Driver (Dio): The Digital I/O (DIO) Driver provides services for reading
from and writing to DIO channels (i.e., port pins), DIO ports, and groups of DIO
channels. Hereby the Dio modules works on pins and ports which have been properly
configured by the Port Driver for this purpose.

Analogue/Digital Converter Driver (Adc): The Analogue to Digital Converter (ADC)
Driver module initializes and controls the internal ADC unit(s) of the micro-controller.
The module provides services to start and stop an analog to digital conversion respec-
tively to enable and disable the trigger source for a conversion. Furthermore the module
provides services to enable and disable a notification mechanism and routines to query
status and result of a conversion. The Adc module works on so-called ADC channel
groups. An ADC channel group combines an ADC channel (i.e., an analogue input
pin), the needed ADC circuitry itself, and a conversion result register into an entity
that can be individually controlled and accessed via the Adc module.

I/O Hardware Abstraction: The I/O Hardware Abstraction module provides a signal-
based interface to internal and external I/O devices of an ECU. Hereby the module
abstracts from whether a certain I/O device is an MCU internal device, or whether a de-
vice is externally connected to the MCU, by performing static normalization/inversion
of values according to their physical representation at the inputs/outputs of the ECU
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hardware (i.e., static influences, like voltage division or hardware inversion, on the path
between the I/O device and the MCU port pin are compensated).

7.2.4 System Services Sub-Stack

The system services sub-stack contains a group of modules that can be used by modules of
all AUTOSAR layers. Examples are real-time operating system, error handler and library
functions (like CRC and interpolation functions). The structure of the system services sub-
stack (excluding the library functions) is depicted in Figure 17.

Figure 17: AUTOSAR – System Services Sub-Stack

In the following the different modules of the system services sub-stack are described in
detail.

Operating System (Os): The AUTOSAR Operating System provides real-time operating
system services to both the other system software modules as well as to the application
software components of AUTOSAR. The Os module is configured and scaled statically,
provides a priority-based scheduling policy and protective functions with respect to
memory and timing at run-time, and is designed to be hostable on low-end controllers.

Similar to the OSEKtime dispatcher tables (see Section 3.4), AUTOSAR Os provides
so-called schedule tables consisting of one or more expiry points. Hereby each expiry
point is assigned an offset measured in Os ticks from the start of the schedule table.
Once an expiry point is reached, the action corresponding to the expiry point (e.g.,
the activation of a task or the setting of an event) is processed. At runtime, the Os

iterates over the schedule table, processing each expiry point in turn. The iteration is
driven by an Os counter. In order to facilitate the execution of tasks synchronous to
external events (e.g., synchronous to the FlexRay communication schedule), schedule
tables can be synchronized to external time sources (e.g., FlexRay’s global time).

As far as protection against timing violations is concerned, AUTOSAR Os does not
provide deadline monitoring (as does OSEKtime OS) but provides the facility to track
the execution time of each task and interrupt service routine and to raise an error in
case either exceeds its statically assigned execution time budgets. Regarding memory
protection, AUTOSAR Os uses (similar to the protected OSEK defined by HIS (see
Section 4.1)) the memory protection unit of the MCU to provide coarse grained memory
protection of the different tasks against each other.

Basic Software (BSW) Scheduler (SchM): The BSW Scheduler module provides means
to embed other AUTOSAR system software module implementations into the con-
text of an AUTOSAR Os task or interrupt service routine, trigger main processing
functions of the system software modules, and apply data consistency mechanisms for
these modules. Just like the Rte provides the infrastructure for software components
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by embedding runnable entities in a task context, the SchM module provides the infras-
tructure for the other system software modules by embedding their main processing
functions in a task context6.

ECU State Manager (EcuM): The ECU State Manager module manages all aspects of
the ECU related to the Off, Run, and Sleep states of that ECU and the transitions
between these states like startup and shutdown. In detail, the ECU state manager
is responsible for the initialization and de-initialization of all basic software modules
including Os and Rte, cooperates with the ComM, and hence indirectly with Nm, to shut
down the ECU when needed, manages all wakeup events, and configures the ECU for
Sleep state when requested. In order to fulfill all these tasks, the EcuM provides some
important protocols: the run request protocol, which is needed to coordinate whether
the ECU must be kept alive or is ready to shut down, the wakeup validation protocol to
distinguish “real” wakeup events from “erratic” ones, and the time-triggered increased
inoperation protocol which allows to put the ECU into an increasingly energy saving
sleep state.

Function Inhibition Manager (Fim): The Function Inhibition Manager is a sub-module
of the AUTOSAR diagnostic module. The Fim is responsible for providing an execution
control mechanism for the runnables of application software components and system
software modules. By means of the Fim, these runnables can be inhibited (i.e., deacti-
vated) according to the Fim’s static configuration. The functionalities of the runnables
are assigned to a unique function identifier (FID) along with an inhibit condition for
that particular FID. The functionalities poll for the permission state of their respec-
tive FIDs before execution. If an inhibit condition is true for a particular FID, the
corresponding functionality is not executed anymore.

The Fim is closely related to the Dem since diagnostic events and their status information
can serve as possible inhibit conditions. Hence, functionality which needs to be stopped
in case of a failure can be represented by a particular FID. If the failure is detected
and the event is reported to the Dem, the Fim then inhibits the FID and therefore the
corresponding functionality.

Diagnostic Event Manager (Dem): Like the Dcm module and the Fim module, the Di-
agnostic Event Manager module is a sub-module of the diagnostic module within
AUTOSAR. The Dem is responsible for processing and persistently storing diagnos-
tic events/errors7 and associated data (so-called freeze frame data). To facilitate the
persistent storage of these DTCs, the Dem makes use of the services provided by the
NvM. Application software components as well as other system software modules can
raise diagnostic event by means of Dem API calls.

The diagnostic events registered by the Dem serve as triggers for state updates of the
Fim and thus might lead to the inhibition of certain runnables. Upon request of the
Dcm, the Dem provides an up-to-date list of the currently stored DTCs which are then
sent to a tester client by means of the Dcm services.

Watchdog Driver (Wdg): This module provides services for initialization, changing of the
operation mode (Fast, Slow, Off) and triggering the ECU’s watchdog device. In case an

6Usually the main processing functions of multiple system software modules are embedded into a single
task in order to keep the number of tasks required for execution of the whole AUTOSAR system software
low.

7UDS and KWP2000 use the term diagnostic trouble codes (DTC) for these events.
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ECU provides multiple different watchdog devices (e.g., internal and external devices),
a dedicated Wdg module has to be present for each of the devices.

Watchdog Interface (WdgIf): In case of more than one watchdog device and correspond-
ing Watchdog Driver (e.g., both an internal software watchdog and an external hard-
ware watchdog) is being used on an ECU, the Watchdog Interface module allows the
Watchdog Manager module (see below) to select the correct Watchdog Driver – and
thus the watchdog device – via a device index, while retaining the API and function-
ality of the underlying driver. Thus the WdgIf module provides uniform access to
services of the underlying Watchdog Drivers like mode switching and triggering.

Watchdog Manager (WdgM): The Watchdog Manager module is intended to supervise the
(periodic) execution of application software components or other system software mod-
ules. Via the services provided by the WdgIf, the WdgM abstracts from the triggering
of hardware watchdog entities and itself offers supervision capabilities to a (theoret-
ically) infinite number of clients. The WdgM provides an individual port for each su-
pervised client, where the clients have to indicate their proof of aliveness by updating
an alive-counter. Within a cyclic scheduled main processing function of the WdgM,
the alive-counters of all supervised clients are checked against their own independent
timing constraints and a “global supervision status” is derived. Based on this global
supervision status, the WdgM decides whether or not to trigger the hardware watchdog
via the WdgIf’s API. Hereby, the set of supervised clients and their individual timing
constraints is defined by configurable parameters of the WdgM.

Development Error Tracer (Det): The Development Error Tracer module is the central
instance where all other system software modules report detected development errors
to. The API parameters handed to the Det allow for tracing source and kind of error,
namely the module and the function in which error has been detected and the type of
the error. The functionality behind the API of the Det is not specified in AUTOSAR.
Possible functionalities could be the setting of debugger breakpoints within the error
reporting API, the counting of the number of reported errors, the logging of Det calls
together with the passed parameters to a RAM buffer for later analysis, and the sending
of reported errors via some communication interface (e.g., CanIf) to external logger
devices.

General Purpose Timer Driver (Gpt): The General Purpose Timer (GPT) Driver mod-
ule provides services for starting and stopping a functional timer instance within the
hardware general-purpose timer module and thus provides exact and short-term tim-
ings for use in the Os or within other system software modules where an Os alarm
service causes too much overhead. Individual timeout periods (single shot mode) as
well as repeating timeout periods (continuous mode) can be generated via the Gpt

module. The user can configure whether a notification shall be invoked when the re-
quested timeout period has expired. These notifications can be enabled and disabled
at runtime. Both, the relative time elapsed since the last notification occurred and the
time remaining until the next notification will occur, can be queried via API functions
of the Gpt module.

Micro Controller Unit (MCU) Driver (Mcu): The MCU Driver module provides ser-
vices for basic micro-controller initialization, power-down functionality, micro-controller
reset and micro-controller specific functions required from other system software mod-
ules. The initialization services of the MCU Driver module allow a flexible and ap-
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plication related MCU initialization in addition to the start-up code8. The services
of the MCU Driver include the initialization of the MCU’s clock, initialization of the
MCU’s phase-locked loop (PLL), the initialization of clock pre-scalers, and the config-
uration of the MCU’s clock distribution. Furthermore the MCU Driver takes care of
the initialization of the MCU’s RAM sections, facilitates the activation of the MCU’s
reduced power modes (i.e., putting the MCU into a low-power mode), and provides a
service for enforcing a reset of the MCU and a service for obtaining the reset reason
from the MCU hardware.

8 JasPar

Founded September 2004 by Toyota, Nissan, Honda, and Toyotsu Electronics, the non profit
organization JasPar [4] was created to develop a unified architecture for vehicle networking
and software development tailored to the requirements of Japanese customers.

JasPar’s goals are focused on the evaluation, the exploitation, and the implementation of
existing standards in actual projects. The organization seeks to serve as the Japanese point
of contact for automotive-standards organizations in other regions. Based on the results
of the AUTOSAR and FlexRay Consortium, JasPar was constructed as complementary
organization to unite standardization and product attempts in Japan (see Figure 18) in oder
to maintain the possibility of tailored product generation for the Japanese OEM and finally
the end customer.

Figure 18: Relationship Autosar, FlexRay, JasPar consortium

Within JasPar, working groups are focusing on developing design tools and prototypes
for automotive networks, creating standards for in-vehicle cable routing, writing guidelines
for wire-harness design, developing recommended circuits for controllers/transceivers, and
planning communication software. Moreover, JasPar is feeding suggestions back to related
consortia for new standard requirements.

An example given in the evaluation of existing standards is the standardization of the
business process in using FlexRay parameter settings. This standardization shall reduce the
risk of failures caused by improper parameter settings and thus shall prevent a reduction of
overall quality which is a crucial product criteria on the Japanese market. Further activities
of JasPar include interoperability tests between different FlexRay CCs and the evaluation of
bus wiring conditions including the observation of the communication behavior of FlexRay
at different (currently unspecified) transmission rates.

8The startup code itself is not within the scope of AUTOSAR.
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9 Summary

Since 1993 the major automotive companies are striving for the deployment of standard
software modules in their applications to achieve an increased test coverage and higher
reliability, requirements that can only be met if standardized modules are used at various
system levels.

This chapter provided an overview of today’s industry practices in standardized automo-
tive system software. Existing standards proposed by industry partnerships like OSEK/VDX,
HIS, JasPar, and AUTOSAR, and by standardization authorities like ISO have been pre-
sented. Of all presented approaches, the AUTOSAR partnership which started off in May
2003 and aims at putting software modules according to the AUTOSAR standard into pro-
duction vehicles by 2008 (BMW and Honda) [14] turns out to be the most promising one.

This is on the one hand due to the fact that several of already approved standards used
today (like OSEK OS and COM, HIS CAN driver, and ISO transport layer and diagnos-
tics) heavily inspired the corresponding AUTOSAR standards, ensuring that the AUTOSAR
standard is built on well-proven technology. On the other hand the AUTOSAR open stan-
dard has massive industrial backup: All AUTOSAR core members including seven of the
world’s biggest vehicle manufacturers accounting for about 55% of all vehicles produced are
strongly committed to the project and plan to release tested and verified AUTOSAR 4.0
specifications together with the corresponding conformance test specifications by September
2009 [1].
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and V. Barthelmann. OSEK/VDX - Operating System, Version 2.2.3. Technical report,
February 2005.

31


