
Standardized Basic System Software for Automotive
Embedded Applications

Thomas M. Galla
Elektrobit Austria GmbH

Kaiserstraße 45/2, A-1070 Vienna, Austria
phone: +43 1 59983 5015

fax: +43 1 59983 5018
email: thomas.galla@elektrobit.com

May 31, 2014

Abstract

The number of electronic systems in modern cars is continuously growing. Currently
the development of electronic systems, consisting of so-called electronic control units
(ECUs) interconnected by a communication network, account for up to 40% of the
overall development costs of a modern car. 50 - 70% of the development costs for
a single ECU are related to software. Consequently, software plays an ever more
important role, both for the implementation of customer related functions and the
infrastructure.

In order to benefit from software reuse, the major automotive companies have
standardized (in the context of different consortia) this software infrastructure in form
of layered architectures of software modules to a large degree.

In this chapter we will present the most important consortia dealing with the spec-
ification of automotive standard system software, and we will describe their output,
the standardized software architectures/modules.

1 Introduction

In the last decade the percentage of electronic components in today’s cars has been ever
increasing. Premium cars for example use up to 70 electronic control units (ECUs) which
are connected via five system networks and realize over 800 different functions [15].

Since 1993 major automotive companies have been striving for the deployment of stan-
dard software modules in their applications as the potential benefits of using standard soft-
ware modules are huge [17]. While the functional software heavily depends on the actual
system and is a discriminating factor of competitive importance, this does not apply to the
software infrastructure. Furthermore with continuously shortened development cycles, es-
pecially in the electronics area, requirements arise concerning compatibility, reusability, and
increased test coverage that can only be fulfilled by setting standards for the various system
levels.

This trend has been a key motivation for the formation of several consortia like the
OSEK/VDX (“Offene Systeme und deren Schnittstellen für die Elektronik im Kraftfahrzeug

1



– Vehicle Distributed Executive”)1 consortium [6] in 1993/94, the ASAM (“Association
for Standardization of Automation and Measuring Systems”) initiative [1], the HIS (“Her-
stellerinitiative Software”)2 group [4], the JasPar (“Japan Automotive Software Platform
Architecture”) consortium [5] in 2004, the EASIS (“Electronic Architecture and System En-
gineering for Integrated Safety Systems”) project consortium [2] in 2003, the AUTOSAR
(“Automotive Open System Architecture”) consortium [12] in 2003, and the GENIVI Al-
liance [3] in 2009.

This chapter provides an overview of today’s state-of-the-art in standardization of auto-
motive software infrastructures. The chapter is structured as follows: Section 2 provides a
short overview of the automotive hardware architecture. Section 3 provides information on
the software modules specified by the German working groups OSEK/VDX. Section 4 illus-
trates the software modules standardized by the ISO. Section 5 targets the software modules
defined by ASAM. Section 6 deals with the AUTOSAR initiative. Section 7 provides a short
summary, concluding the chapter.

2 Hardware Architecture

The hardware architecture of automotive systems can be viewed at different levels of abstrac-
tion. On the highest level of abstraction, the system level, an automotive system consists of
a number of networks interconnected via gateways (see Figure 1). In general, these networks
correspond to the different functional domains that can be found in today’s cars (i.e., chassis
domain, power train domain, body domain).

Network C

Network B

Network A

ECU 3

ECU 0 ECU 1 ECU 2

Network D

ECU 4 ECU 5 ECU 6

ECU 7

Network DNetwork A

Figure 1: Hardware Architecture – System and Network Level

The networks themselves comprise a number of electronic control units (ECUs) which are
interconnected via a communication media (see zoom-in on network A and D in Figure 1).
The physical topology used for the interconnection is basically arbitrary; however, bus, star,
and ring topologies are the most common topologies in today’s cars. – This network level
represents the medium level of abstraction.

On the lowest level of abstraction, the ECU level (Figure 2), the major parts of an ECU
are of interest. An ECU comprises one or more micro controller units (MCUs) as well as one
or more communication controllers (CCs). In the past in most cases, exactly one (single-core)

1Translated into English: “Open Systems and the Corresponding Interfaces for Automotive Electronics”
2Translated into English: “Manufacturers’ Software Initiative”

2



MCU and one CC were used to build up an ECU. Today however there is a trend towards
multi-core MCUs and even ECUs consisting of multiple MCUs for performance and faul-
tolerance reasons. In order to be able to control physical processes in the car (e.g., control
the injection pump of an engine), the ECU’s MCU is connected to actuators via the MCU’s
analog or digital output ports. To provide means to obtain environmental information,
sensors are connected to the MCUs analogue or digital input ports. We call this interface
the ECU’s environmental interface. The CC(s) facilitate(s) the physical connectivity of the
ECU to the respective network(s). We call this interface of an ECU the ECU’s network
interface.

ECU

MCU MCU MCU

CC CC
Network
Interface

Environmental
Interface

SensorActuator

Figure 2: Hardware Architecture – ECU Level

3 OSEK/VDX

The OSEK/VDX standard was the result of the endeavors of major german and french
car manufacturers and their suppliers to create a standardized software infrastructure for
automotive electronics. This standard was initially designed for applications in the area of
automotive body electronics or for the power train where autonomous control units build up
a loosely-coupled network. It comprises the following standardized components:

OSEK OS: The OSEK operating system (OS) [33] is an event-driven operating system
intended for hard real-time applications. OSEK OS provides services for task man-
agement, task activation by means of events and alarms, inter-task communication via
messages, mutual exclusion by means of resources (implementing the priority ceiling
protocol [16]), and interrupt handling. Hereby OSEK OS distinguishes between basic
tasks (which do not use any blocking inter-process communication (IPC) or synchro-
nization constructs) and extended tasks (which are allowed to use blocking IPC or
synchronization constructs).

OSEK NM: OSEK network management (NM) [19] provides network management facili-
ties which take care of a controlled coordinated shutdown of the communication of mul-
tiple ECUs within a network. OSEK NM establishes a logical ring among all ECUs
participating in OSEK NM. Along this ring OSEK NM ring messages are passed be-
tween the participating ECUs. These ring messages contain information on whether
the sending ECUs desires to perform a transition into a low-power sleep mode. In
case all ECUs along the logical ring agree on this transition (i.e., no ECU objects),
a coordinated transition into the sleep mode is performed. In case any ECU objects
to this decision because it still requires network communication, a transition into the
sleep mode is prevented.

3



OSEK COM: OSEK communication (COM) [10] offers services to transfer data between
different tasks and/or interrupt service routines (ISRs) residing on the same ECU
(internal communication) or possibly being distributed over several ECUs (external
communication). OSEK COM supports both cyclic time-driven communication as well
as on-demand event-driven communication. In case of external communication, the
interaction sub-layer of OSEK COM takes care of the representational issues of signals
like byte ordering and alignment. On the sender’s side, this layer converts signals
from the byte order of the sending ECU into the network byte order. Furthermore,
the interaction layer packs multiple signals into a single communication frame in order
to reduce communication bandwidth consumption. On the receiver’s side, this layer
extracts multiple signals from a single communication frame and performs a byte order
conversion from the network byte order to the byte order of the receiving ECU.

To support the detection of lost communication frames at the sender and the receiver
side, OSEK COM provides mechanisms for transmission and reception timeout moni-
toring.

OSEKtime OS: OSEKtime OS [7] is a time-driven operating system designed for minimal
operating system footprint and deployment in safety-related applications. Tasks are
activate by a dispatcher based on pre-defined activation times stored in a dispatcher
table before compile time. The processing of the dispatcher table during run-time is
done in a cyclical fashion.

OSEKtime FTCom: OSEKtime FTCom [31] is the fault-tolerant communication layer
accompanying OSEKtime OS that only supports cyclic time-driven communication.
Similar to OSEK COM, OSEKtime FTCom can be used for both external as well as
internal communication.

In case of external communication, the fault tolerance sub-layer of OSEKtime FTCom
manages all fault tolerance issues, namely signal replication and signal reduction. On
the sender’s side, this layer replicates a single application signal and thus produces
multiple signal instances. These signal instances are handed over to the interaction
sub-layer for byte order conversion and packing. Afterwards, the packed signal in-
stances are transmitted via redundant communication paths. Considering redundant
transmission paths temporal redundancy (multiple transmissions on a single commu-
nication channel) and spatial redundancy (transmission on multiple communication
channels) can be distinguished. On the receiver’s side, multiple signal instances are
collected from the interaction sub-layer and reduced to obtain a single application
signal which is handed on to the application layer.

In order to minimize the memory footprint as well as the required execution time, each
of these components is configured upon design time via a configuration file in OSEK im-
plementation language (OIL) syntax [11]. Using a generation tool, the appropriate data
structures in the used programming language are created based on this configuration file.
Thus, none of the components provides services for dynamic resource allocation (like task
creation, memory allocation, a.s.o.).

4 ISO

Some of the software layers used for automotive networks in today’s cars have been standard-
ized by the International Organization for Standardization (ISO). – The most prominent of
these software layers are the following:

4



Transport Layer – CAN and FlexRay: This layer provides segmented data transfer to
all higher layers (e.g., the diagnostics layer) and thus facilitates exchange of data
amounts larger than the maximum transfer unit (MTU) of the underlying communi-
cation system.

Diagnostics Layer – UDS and OBD: The Unified Diagnostic Services (UDS) specifica-
tions define manufacturer specific enhanced diagnostic services which allow an external
tester device to control diagnostic functions in an ECU via a (serial) data link. The On
Board Diagnostics (OBD) specifications define a set of mandatory diagnostic services
facilitating the retrieval of emission-related diagnostic information from an ECU by
an external tester device.

4.1 Transport Layer – CAN and FlexRay

The ISO transport layer on CAN [23] provides services for unacknowledged segmented data
transfer (USDT) of known length to higher software layers (e.g., ISO diagnostics (see Sec-
tion 4.2)) by facilitating the transmission of messages whose length is greater than the MTU
of the underlying communication system. On the sender’s side, the transport layer will split
such long messages into multiple segments, each small enough for the underlying communi-
cation system. On the receiver’s side, the transport layer reassembles these segments again.
As far as the frame format is concerned, the ISO transport layer distinguishes between single
frames (SF), first frames (FF), consecutive frames (CF), and flow control frames (FC), e.g.,
the clear-to-send flow control frame (FC CTS) depicted in Figure 3(b). Hereby single frames
are used for reduction of protocol overhead in case the amount of data to be transmitted does
not exceed the MTU. – In that case only a single frame is used in order to exchange this data.
Otherwise a first frame, which contains the total number of data bytes to be sent as well as
the first few data bytes, is transmitted followed by one or more consecutive frames, which
then contain the remaining data bytes. For flow control reasons (i.e., to prevent the sender
from outpacing the receiver) the receiver is allowed to send flow control frames at defined
points in time. Figure 3 illustrates the frame exchange in an unsegmented (Figure 3(a))
and a segmented transmission (Figure 3(b)).

Sender Receiver

Single Frame (SF)

(a) Unsegmented Transfer

Sender Receiver

Single Frame (SF)

Flow Control Clear To Send (FC_CTS)

Consecutive Frame (CF)

Consecutive Frame (CF)

Consecutive Frame (CF)

Consecutive Frame (CF)

Consecutive Frame (CF)

Flow Control Clear To Send (FC_CTS)

Consecutive Frame (CF)

Consecutive Frame (CF)

(b) Segmented Transfer

Figure 3: ISO Transport Layer on CAN – Transmission Sequence

Hereby the frame format depicted in Figure 4 is used by the ISO transport protocol (TP)

5



on CAN. The source and destination address fields are used to identify the sender and the
receiver(s) of the transport layer frame. The address type field is used to define the semantics
of the destination address. Here ISO TP on CAN provides support for single ECU addresses
(called physical addresses by the ISO TP on CAN specification) and multicast addresses
(called functional addresses by the ISO TP on CAN specification). In case of multicast
transmissions, only unsegmented data transfer is allowed in ISO TP on CAN.

Identification FieldSrc
Addr

Dst
Addr

Addr
Type

PCI Data

Figure 4: ISO Transport Layer on CAN – Frame Format

The protocol control information (PCI) field is used to distinguish between the different
frame types (i.e., SF, FF, CF, FC). Furthermore the PCI field carries the total number of
data bytes to be transmitted in case of a single or a first frame, a sequence number in case of
a consecutive frame (in order to facilitate early detection of a loss of a consecutive frame),
and more detailed information regarding the type of flow control in case of a flow control
frame.

In addition to the service of the ISO transport layer on CAN, the ISO transport layer
on FlexRay [22] provides an acknowledge and retry mechanism facilitating a positive and a
negative acknowledgement by the receiver to indicated successful reception or the request
for (early) retransmission to the sender. To this end a new flow control frame for explicit
acknowledgement (FC ACK) is introduced. Furthermore the ISO transport layer on FlexRay
supports the transmission of messages with unknown but finite data length by adding a
dedicated last frame (LF) that marks the end of the transmission. By combining these
two features, the ISO transport layer on FlexRay facilitates acknowledged segmented data
transfer (SDT) of unknown length.

4.2 Diagnostics – UDS and OBD

The Unified Diagnostic Services (UDS) [25] define client/server diagnostic services which
allow a tester device (client) to control diagnostic functions in an ECU (server) via a (serial)
data link. Hereby the provided services, the encoding of the service identifiers (SIDs), and
the encoding of the parameters are standardized by the UDS specification. The services
provided by UDS can be grouped into the following six functional units:

Diagnostic Management: This functional unit covers all services realizing diagnostic man-
agement functions between the client and the server. – Examples for these kind of
services are the services startDiagnosticSession for initiating a diagnostic session,
stopDiagnosticSession for terminating a diagnostic session, ecuReset for resetting
an ECU, and readECUIdentification for reading ECU identification information like
the serial number or the programming date of the ECU.

Data Transmission: This functional unit covers all services dealing with data exchange be-
tween the client and the server. – Prominent examples for these services are the services
readMemoryByAddress and writeMemoryByAddress, which are used to read and write
a memory range (defined by start address and the number of bytes to read/write) of
the ECU as well as readDataByIdentifier and writeDataByIdentifier which read
and write a data item that is uniquely identified via an ID.

Stored Data Transmission: This functional unit covers all services which are used to
perform exchange of data which is stored within the ECU (in a non-volatile way).

6



– Examples for these kind of services are the service readDiagnosticTroubleCodes,
which is used to retrieve stored trouble codes from the ECU’s error log as well as the
service clearDiagnosticInformation, which is used to remove all entries from the
ECU’s error log.

Input/Output Control: This functional unit covers all services which deal with input and
output control functions. – An example for a service contained in this group is the
service inputOutputControlByLocalIdentifier, which can be used by the client to
substitute a value for an input signal of the server.

Remote Activation of Routine: This functional unit covers all services which provide
remote activation of routines within an ECU. – Examples for services in this functional
unit are the services startRoutineByAddress and stopRoutineByAddress, which are
used to remotely invoke a routine in the server (ECU) and to terminate an executing
routine in the server (ECU). Hereby the routine to invoke or stop is identified by the
routine’s address.

Upload/Download: This functional unit covers all services which realize upload/download
functionality between the client and the server. – Examples for services within this
unit are the requestDownload service, which gives the client the possibility to request
the negotiation of a data transfer from client to server, the requestUpload service,
which gives the client the possibility to request the negotiation of a data transfer from
server to client, and the transferData service, which actually takes care of the data
transmission between client and server.

In UDS services are identified by the so-called service identifier (SID) field which is the
first byte in a diagnostic message3. Based on this field the layout of the remainder of the
diagnostic message is completely different. The diagnostic server uses the SID to select the
proper service requested by the client and interprets the remainder of the diagnostic message
as parameters to the service request according to the SID.

The On Board Diagnostics (OBD) specify a set of mandatory diagnostic services focussing
on the retrieval of emission-related information from an ECU by an external tester device.
For this purpose OBD defines services for the retrieval of emission-related diagnostic trouble
codes, the clearing/resetting of emission-related diagnostic trouble codes, the controlling of
on-board diagnostic monitoring functionality like the invocation of defined tests (e.g., a test
for leakage in the evaporative system of the vehicle), the request of results of conducted on-
board diagnostic monitoring tests, and the retrieval of vehicle information like the vehicle
identification number (VIN).

Just like in UDS, OBD encodes the diagnostic service requested by the client in a service
identifier (SID) located in the first byte in a diagnostic message. – Hereby the SID ranges
of ODB and UDS are disjunct to prevent interference between the two standards.

For the exchange of information between the client and the server (and vice-versa) both
diagnostic protocols use transport layer described in Section 4.1.

4.3 Diagnostics over IP – DoIP

In order to facilitate diagnostic communication between external tester device and ECUs
using the internet protocol (IP) as well as the transmission control protocol (TCP) and
the user datagram protocol (UDP), the diagnostics over IP (DoIP) specification [24] defines

3This diagnostic message is payload from ISO TP’s point of view.

7



features that can be used to detect a vehicle in a network and to enable communication with
the vehicle’s central diagnostic gateway as well as with other ECUs not directly connected to
the tester device.

ECUs which are capable of adhering to the DoIP protocol are termed DoIP entities by
the DoIP specification. DoIP entities are further distinguished into DoIP nodes, which do not
forward diagnostic communication requests towards a non-Ethernet in-vehicle network, and
DoIP gateways, which perform this kind of forwarding and thus relay information between
the external tester and non-DoIP capable ECUs.

Vehicle Identification Request and Vehicle Announcement: These two types of mes-
sages are required to identify the DoIP entities in a network and to retrieve their IP
and logical addresses. The vehicle identification request contains either the vehicle
identification number (VIN) or a unique hardware ID (e.g., the medium access control
(MAC) address) of the addressed DoIP entity and is broadcasted in the network. The
DoIP entity with a matching VIN or hardware ID answers this request with a vehicle
announcement containing its own IP address (as part of the IP header), its logical
address (which is the ECU’s physical ISO TP address (see Section 4.1)), and port
numbers of TCP and UDP ports to be used for subsequent communication with the
DoIP entity.

Routing Activation Request and Response: These two message types are required to
activate routing in DoIP gateways between the vehicle’s external network and the
vehicle internal network in order to facilitate subsequent diagnostic data exchange be-
tween the external tester device and non-DoIP capable ECUs connected to the vehicle
internal network.

Diagnostic Message and Diagnostic Message Acknowledgement: After a successful
routing activation diagnostic message exchange between an external tester device and
a non-DoIP capable ECU connected to the vehicle internal network can take place.
The diagnostic message used for the data exchange between the tester and the DoIP
gateway hereby contains the ISO TP source address followed by the ISO TP destina-
tion address followed by the UDS/OBD message. If the DoIP gateway receives such a
diagnostic message, it extracts the two ISO TP addresses and the UDS/OBD message
and forwards the UDS/OBD message to the ISO TP of the target network which is
selected based on the destination address. Hereby the ISO TP source address and
the ISO TP destination address contained in the DoIP diagnostic message are used as
respective source and destination addresses on the target network. A successful or a
failed forwarding to the target network is signalled to external tester device by means
of positive or negative diagnostic message acknowledgment.

5 ASAM

The Association for Standardization of Automation and Measuring Systems (ASAM) started
as an initiative of German car manufacturers with the goal to define standards for data mod-
els, interfaces and syntax specifications for testing, evaluation, and simulation applications.

Apart from several data exchange formats like Open Diagnostic Data Exchange Format
(ODX), the Functional Specification Exchange Format (FSX), the Meta Data Exchange
Format for Software Module Sharing (MDX), and the Fieldbus Exchange Format (FIBEX),
ASAM defines the Universal Measurement and Calibration Protocol Family (XCP) which is
described in the next section.

8



5.1 XCP – The Universal Measurement and Calibration Protocol
Family

The Universal Measurement and Calibration Protocol Family XCP [32] is used for the fol-
lowing main purposes:

• Synchronous data transfer (acquisition and stimulation)

• On-line calibration

• Flash programming for development purposes

Prior to describing these main operations of XCP though, we will focus on the protocol’s
internal structure. XCP itself consists of two main parts, namely the XCP protocol layer and
several XCP transport layers, one dedicated transport layer for each underlying communica-
tion protocol (currently CAN, FlexRay, universal serial bus (USB), TCP/IP, UDP/IP, and
standard peripheral interface (SPI) are supported). – Figure 5 illustrates this XCP protocol
stack.

CAN FlexRay TCP/IP UDP/IP USB SxI

XCP

Figure 5: XCP Protocol Stack

5.1.1 XCP Protocol Layer

The XCP protocol layer is the higher layer of the XCP protocol family. This layer implements
the main operations of XCP which are described in detail in Sections 5.1.3, 5.1.4, and 5.1.5.
The XCP protocol layer itself is independent of a concrete communication protocol (e.g.,
CAN, FlexRay, . . . ). Data exchange on the XCP protocol layer level is performed by data
objects called XCP packets. – Figure 6 illustrates the structure of an XCP packet.

PID Fill DAQ Timestamp Data

Identification Field

XCP Packet

Figure 6: Structure of an XCP Packet

An XCP packet starts with a Identification Field containing a Packet Identifier (PID)
which is used to establish a common understanding about the semantics of the packet’s data
between the XCP master and the XCP slave. The PID is thus used to uniquely identify each
of the following two basic packet types and their respective sub-types:

Command Transfer Object (CTO) Packets: This packet type is used for the transfer
of generic control commands from the XCP master to the XCP slave and vice-versa.
It is used for carrying out protocol commands (CMD), transferring command responses
(RES), errors (ERR), events (EV), and for issuing service requests (SERV).

9



Data Transfer Object (DTO) Packets: This packet type is used for transferring syn-
chronous data between the XCP master and the XCP slave device. Synchronous data
acquisition (DAQ) data is transferred from the XCP slave to the XCP master whereas
synchronous data stimulation (STIM) data is transported from the master to the slave.

The DAQ Field is used to uniquely identify the DAQ list (see Section 5.1.3) to be used
for data acquisition or stimulation if the XCP packet is of DTO packet type. In order to
have the DAQ Field aligned to 16-bit boundaries, a Fill Byte is introduced between the PID
Field and the DAQ Field. – In case the packet is a CTO packet, the DAQ field is omitted.

The Time-Stamp Field is used in DTO packets to carry a time-stamp provided by the
XCP slave for the respective data acquisition. – The length of the time-stamp field may vary
between one to four bytes depending on the configuration. In case the packet is of CTO
type, the time-stamp field is omitted.

Command packets (CMD) are explicitly acknowledged on the XCP protocol layer by
sending either a command response packet (RES) or an error packet (ERR). Event (EV)
packets (i.e., packets informing the XCP master that a specific event has occurred in the
XCP slave (e.g., an overload situation has occurred during data acquisition)), service request
(SERV) packets (i.e., packets used by the slave to request certain services from the master
(e.g., a packet containing text that is to be printed by the master)) and data acquisition
packets (DAQ, STIM) are sent asynchronously and unacknowledged at the XCP protocol
layer. Therefore, it may not be guaranteed that the master device will receive these packets
when using a non-acknowledged transportation link like e.g., UDP/IP.

5.1.2 XCP Transport Layers

The protocol layer described in the previous sections is independent from the underlying
communication protocol. – In order to be able to use XCP on-top of different communica-
tion protocols, the XCP specification defines multiple XCP transport layers that perform
the packing of the protocol independent XCP packets into frames of the respective commu-
nication protocol, by adding an XCP header containing a node address field used to identify
the destination ECU, a counter field used for sequence numbering of the XCP packets and a
length field defining the length of the XCP packet. Depending on the actual communication
protocol used, some of these header fields might be missing (e.g., in case TCP/IP is used as
communication protocol, the node address is omitted, since IP’s addressing scheme is used).

5.1.3 Synchronous Data Transfer

The synchronous data transfer feature of XCP allows for a data exchange between XCP
master and XCP slave that is performed synchronous to the XCP slave’s execution. This
exchange is carried out by using data transfer objects (DTOs) which are transfered via
DTO packets. The memory regions of the XCP slave’s memory that are the source or
the destination of the transfer are linked to the DTO by so-called object description tables
(ODTs). A sequence of one or more ODTs are grouped into a so-called data acquisition
(DAQ) list (see Figure 7).

Hereby the DAQ-DTO contains a packet identification field (PID), which is used to link
the DAQ-DTO to the respective ODT (PID field matches ODT number). For each element
within a DAQ-DTO, a corresponding ODT entry is present in the ODT which references a
specific part in the ECU’s memory by the attributes address and length. Upon processing
of the ODT, the ODT entries are used to transfer element from the ECU’s memory into the

10



Element

Element

Element

Element

Element

Element

Element

Element

Element

Element

Element

Element

Element

Element

Element

ECU Memory

0 0 1 2 3 4 5 6

1 0 1 2 3 4 5 6

2 0 1 2 3 4 5 6

ODT #0

ODT #1

Length
Length
Length
Length
Length

Length
Length

Address
Address
Address
Address
Address

Address
Address

0
1
2
3
4

6
5

ODT #2

Length
Length
Length
Length
Length

Length
Length

Address
Address
Address
Address
Address

Address
Address

0
1
2
3
4

6
5

Length
Length
Length
Length
Length

Length
Length

Address
Address
Address
Address
Address

Address
Address

0
1
2
3
4

6
5

PID

PID

PID

DAQ List

DAQ DTOs

Figure 7: Structure of a DAQ List

corresponding element in the DAQ-DTO (in case of data acquisition) and vice-versa (in case
of data stimulation).

DAQ lists can either be statically stored in an XCP slave ECU’s memory or dynamically
allocated by the XCP master via special protocol command packets.

5.1.4 On-line Calibration

For the on-line calibration feature of XCP, the slave’s physical memory is divided into
so-called sectors which reflect the memory’s size and limit constraints when reprogram-
ming/erasing parts of the memory. This division into sectors thus describes the physical
layout of the XCP slave’s memory.

The logical layout is described by dividing the memory into segments. – This division
does not need to adhere to the physical limitations of the division into sectors. Each segment
can further consist of one or multiple pages where at any given instance in time only one
page of a segment is accessible to the ECU. – This page is called the active page for the
ECU’s application. The same holds true for XCP itself as well (active XCP page). XCP
ensures that concurrent access to the same page by the ECU’s application and XCP itself is
prevented.

Via XCP CMD packets, the XCP master can instruct the XCP slave to switch active
pages of the same segment (i.e., to make a page which has previously not been the active
one the new active page) and to copy data between pages of the same or of different memory
segments.

This way, the calibration data used for the slave ECU’s control loops, for example, can
be altered upon run-time under control of the XCP master.

5.1.5 Flash Programming

In order to facilitate the exchange of the current image of the application program in the
slave ECU’s non-volatile memory, XCP defines special commands (exchanged via XCP com-
mand packets) for performing flash (re-)programming. The following list contains a short
description of the main commands used in flash programming:

11



PROGRAM START: Indicate the beginning of a programming sequence of the slave
ECU’s non-volatile memory.

PROGRAM CLEAR: Clear a part of the slave ECU’s non-volatile memory (required
before programming new data into this part of memory).

PROGRAM FORMAT: Used to specify the format for the data that will be transferred
to the slave ECU (e.g., used compression format, used encryption algorithm, . . . ).

PROGRAM: This command, which is issued in a loop as long as there is still data available
that needs to be programmed, is used to program a given number of data bytes to a
given address within the slave ECU’s non-volatile memory.

PROGRAM VERIFY: Verify that the programming process has completed successfully
by, for example, calculating a checksum over the programmed memory area.

PROGRAM RESET: Indicates the end of the programming sequence and optionally re-
sets the slave ECU.

By means of these flash programming XCP commands, a flash download process for the
ECU’s development stage can be implemented. – In-system flash programming in series cars
however is usually performed via the diagnostics protocol (see Section 4.2).

6 AUTOSAR

The development partnership AUTomotive Open System ARchitecture (AUTOSAR) is an
alliance of car manufacturers, major supplier companies, and tool vendors working together
to develop and establish an open industry standard for an automotive electronic architecture
together with a development methodology and an XML-based data exchange format which
is intended to serve as a basic infrastructure for the management of (soft and hard real-time)
functions within automotive applications.

At the time being, AUTOSAR versions 1.0, 2.0, 2.1, 3.0, 3.1, 3.2, 4.0, and quite recently
4.1 as a major update of the standard which, for example, for the first time included support
for Ethernet as an in-vehicle communication network have been released. Active development
of the AUTOSAR standard is limited to the AUTOSAR 3.2 and 4.1 versions though. – All
other versions are in maintenance mode.

While series projects completed by today4 are based on AUTOSAR 2.1 and 3.1, the next
generation vehicles currently under development will mainly be based on AUTOSAR 4.0 [26].

The AUTOSAR software architecture makes a rather strict distinction between applica-
tion software and basic or system software. While the basic (or system) software provides
functionality like communication protocol stacks for automotive communication protocols
(e.g., FlexRay [13, 27]), a real-time operating system, and diagnostic modules, the applica-
tion software comprises all application specific software items (i.e., control loops, interaction
with sensor and actuators etc.). This way, the basic or system software provides the foun-
dation the application software is built upon.

The so-called Runtime Environment (Rte) acts as an interface between application soft-
ware components and the system software modules as well as the infrastructure services that
enables communication to occur between application software components.

4The resulting vehicles are already on the road.

12



6.1 Application Software Architecture

The application software in AUTOSAR is structured into software components which com-
municate via ports and are interconnected by means of connectors. In the following sub-
sections these concepts will be explained in detail.

6.1.1 Software Components

Application software in AUTOSAR is composed of reusable software components (SWCs).
For structuring reasons AUTOSAR facilitates a hierarchical decomposition of the application
software by distinguishing between atomic SWCs which represent the bottom level of this
decomposition and thus cannot be divided any further and composition SWCs, which can
be divided into multiple atomic SWCs and further composition SWCs.

The following types of atomic SWCs are defined by AUTOSAR:

Application SWCs: An application SWC implements (part of) the application. Since the
application SWC does not directly interact with any particular hardware resources it
is hardware- and location independent.

Parameter SWCs: A parameter SWC provides read access to parameter values that can
either be based on constant data or on variable data that can be modified by means
of calibration (see Section 5.1.4). Like application SWCs the parameter SWCs do not
directly interact with any particular hardware resources and are thus hardware- and
location independent as well.

Service SWCs: The service SWC makes the services of a local (i.e., located on the same
ECU) system software module (see Section 6.2) available to other SWCs.

Service Proxy SWCs: This type of SWC is responsible for distribution of mode informa-
tion throughout the system. Since AUTOSAR does not allow non-service proxy SWCs
to directly access to mode information provided by other ECUs, each ECU requiring
such remote mode information requires a service proxy SWC.

Complex Driver SWCs: The complex driver SWC facilitates direct access to the MCU’s
hardware in particular for resource critical applications performing complex sensor
evaluation and actuator control.

ECU-Abstraction SWCs: The ECU-abstraction SWC is a specialization of a complex
driver SWC that makes the ECU’s specific I/O capabilities available to the other
SWCs (especially to the sensor-actuator SWCs).

Sensor-Actuator SWCs: The sensor-actuator SWC handles the specifics of a particular
sensor and/or actuator. To do so, the sensor-actuator SWC directly interacts with the
ECU abstraction SWCs.

NV Block SWCs: The non-volatile (NV) block SWCs provide fine granular (i.e., smaller
than the block-based access provided by the Non-Volatile RAM Manager (NvM) (see
Section 6.2.2)) read and write access to non-volatile data to other SWCs by combining
these fine granular accesses and mapping them to the blocks provided by the NvM.

While parameter SWCs and application SWCs can be relocated among ECUs (deployed
on different ECUs), the other types of SWCs are bound to a specific ECU, since they require
a particular piece of hardware (e.g., a particular sensor in case of sensor-actuator SWCs and

13



ECU-abstraction SWCs), provide access to the ECU’s local non-volatile memory (in case of
NV block SWCs), or provide access to the ECU’s local system software or complex drivers
(in case of service SWCs and complex driver SWCs). Since the sole purpose of service proxy
SWCs is to act as a local proxy for the provision of remote mode information, service proxy
SWCs are bound to the specific ECU as well.

6.1.2 Ports and Interfaces

All SWCs interact with their environment through ports. Depending on whether the SWC
requires or provides specific services or particular data elements, a distinction between require
ports (R-ports) and provide ports (P-ports) is made.

Ports are typed by a specific interface, where AUTOSAR defines the following types of
interfaces:

Sender-Receiver (S/R) Interfaces: Via a sender-receiver interface, a single sender dis-
tributes information to one or more receivers (1:n communication), or one receiver gets
information from one or several senders (n:1 communication). The sender-receiver in-
terface consists of data elements that define the data that is exchanged. The type of
a data-element can either be a simple data type (e.g., an integral value) or a complex
data type (e.g., an array or a structure). The transfer of a single data element is hereby
performed in an atomic fashion.

Client-Server (C/S) Interfaces: Via a client-server interface one or more clients can in-
voke a remote operation provided by a server (n:1 communication). The client-server
interface consists of the operations that are provided by the server and can be invoked
by the client. This operation invocation can either be synchronous (i.e., the client is
blocked until the result of the operation is available) or asynchronous (the client is not
blocked but asynchronously notified as soon as the result is available).

Mode-Switch (M/S) Interfaces: Via a mode-switch interface a mode manager publishes
the current mode to one or more mode users (1:n communication) in order to have
these mode users adjust their behavior according to the current mode or to synchronize
activities to mode switches. The mode-switch interface consists of a so-called mode
declaration group that is the aggregation of all distinct mode declarations (i.e., all
different modes the mode manager can reside in).

Parameter Interface: Via a parameter interface a parameter SWC publishes constant data
or calibration data. Similar to the S/R interface, the parameter interface consists of
data elements that define the data that is provided.

Non-Volatile (NV) Data Interface: Via an NV data interface an NV block SWC pro-
vides access to non-volatile data on a fine-grained level. Similar to the S/R interface,
the NV data interface consists of data elements that define the NV data that is pro-
vided.

Trigger Interface: By means of a trigger interface an SWC is capable of directly triggering
the execution of the runnable entities (see Section 6.1.4) of other software components
in order to facilitate fast responses to certain events.

14



6.1.3 Connectors

The ports of different SWCs can be connected by means of connectors. Based on the type
of interface of the ports these connectors represent the exchange of data elements (in case
of S/R interfaces), the invocation of a (remote) operation (in case of C/S interfaces), the
information about a performed mode switch (in case of M/S interfaces), the retrieval of
constant or calibration data (in case of parameter interfaces), the access to non-volatile data
(in case of NV data interfaces), and the direct triggering of the execution of a runnable entity
(in case of trigger interfaces). Depending on whether a connector connects two P-ports or two
R-ports or whether the connector connects a P-port with an R-port, AUTOSAR distinguishes
between delegation connectors and assembly connectors. Whereas the former are used for
connection of ports located on different levels of the SWC hierarchy (i.e., connection of a
port of an SWC with the corresponding port of its enclosing composition SWC) the latter
connect ports within the same level of the SWC hierarchy (i.e., connection of corresponding
ports of SWCs within the same composition SWC).

6.1.4 Runnable Entities

The software components themselves are composed of one or more runnable entities (REs)
which are executed in the context of operating system tasks. Runnable entities are the basic
unit of execution in AUTOSAR and basically correspond to a function in common program-
ming languages. Depending on whether or not runnable entities have internal wait-points
(i.e., they use blocking inter-process communication (IPC) or synchronization constructs),
AUTOSAR distinguishes between category 1 runnable entities (without wait-points) and
category 2 runnable entities (with wait-points). – The former can be assigned to basic tasks
of the operating system (which are not allowed to invoke any blocking system calls) whereas
the latter have to be mapped to extended tasks (which are allowed to use blocking system
calls).

Runnable entities are invoked by Rte events. The following list names the most important
Rte events that are defined by AUTOSAR:

Timing Event: This kind of event facilitates the periodic activation a runnable entity in
an SWC.

Data Received Event: This kind of event is used to activate a runnable entity in a receiver
SWC upon the reception of a data element at an S/R port.

Data Send Completed Event: This kind of event is used to activate a runnable entity
in a sender SWC upon the successful transmission of a data element at an S/R port.

Operation Invoked Event: This kind of event is used to activate the runnable entity
implementing a C/S operation in a server SWC upon the request of the client SWC.

Asynchronous Server Call Returns Event: This kind of event is used to activate a
runnable entity in a client SWC as a result of a notification that the server SWC
has completed an asynchronous C/S operation.

Mode Switch Event: This kind of event is used to activate a runnable entity in a mode
user SWC as a result of a mode switch performed by a mode manager SWC.

Mode Switch Acknowledge Event: This kind of event is used to activate a runnable
entity in a mode manager SWC as a result of a notification that all mode users have
reacted to the mode switch.

15



(Internal/External) Trigger Occured Event: This kind of event is used to activate a
runnable entity in a SWC as a result of an explicit trigger by a runnable entity of the
same SWC (internal) or of some other SWC (external).

Init Event: This kind of event is used to activate a runnable entity in an SWC as a result
of the initialization of the Rte.

6.1.5 Communication Scopes

When looking at the the different possible scopes of communication, AUTOSAR distin-
guishes between the following scopes:

Task: Depending on whether or not the communicating runnables are allocated to the same
task, a distinction between intra-task communication and inter-task communication is
made.

Partition: Depending on whether or not the tasks of the communicating runnables are
allocated to the same memory partition, a distinction between intra-partition commu-
nication and inter-partition communication is made.

Core: Depending on whether or not the tasks of the communicating runnables are allocated
to the same MCU core, a distinction between intra-core communication and inter-core
communication is made.

ECU: Finally depending on whether or not the SWCs of the communicating runnables
are deployed to the same ECU, a distinction between intra-ECU communication and
inter-ECU communication is made.

6.2 System Software Architecture

In addition to the application software components, AUTOSAR also defines a layered archi-
tecture of system software modules [8] which provides the basic platform for the execution
of the application software components. Figure 8 provides a coarse grained overview of the
major layers of these system software modules.

Services Layer

ECU Abstraction Layer

Micro-Controller Abstraction Layer

Complex
Drivers

Application Layer

AUTOSAR Runtime Environment

Hardware

Application
Software

System
Software

Figure 8: AUTOSAR – System Software Layered Architecture

16



Micro-Controller Abstraction Layer: This is the lowest software layer of the system
software in AUTOSAR. This layer contains software modules which directly access
the micro-controller’s internal peripheral devices as well as memory mapped external
devices. – The task of this layer is to make higher software layers independent of the
micro-controller type.

ECU Abstraction Layer: This layer interfaces with the software modules of the micro-
controller abstraction layer and additionally contains drivers for external devices. The
layer offers a standardized API to access the peripheral devices of an ECU regardless
of their location (i.e., whether the peripherals are internal or external with respect
to the ECU’s micro-controller) and their connection (e.g., via port pins, via a serial
peripheral interface (SPI), a.s.o.). – The task of this layer is to make higher software
layers independent of the ECU’s hardware layout.

Services Layer: This layer is mainly located on-top of the ECU abstraction layer and
provides operating system services, vehicle network communication and management
services, memory services (e.g., non-volatile random access memory (NVRAM) man-
agement), diagnostic services (e.g., error logger), and state management services of the
whole ECU. – The task of this layer is the provision of basic services to other system
software modules and the application software. In the latter case the respective service
layer module acts as a service SWC towards the Rte.

Complex Drivers: The concept of complex drivers somehow intentionally violates the AU-
TOSAR layered architecture in order to provide the possibility to deploy legacy device
drivers in an AUTOSAR system software module stack. Additionally, the complex de-
vice driver module concept has been introduced to facilitate the integration of highly
application and ECU dependent drivers that require complex sensor evaluation and
actuator control with direct access to the micro-controller itself and complex micro-
controller peripherals for performance reasons. Complex drivers may provide an inter-
face to (application) SWCs. In that case, the complex drivers act as complex driver
SWCs towards the Rte.

Runtime Environment (Rte): The AUTOSAR Runtime Environment provides the inter-
face between application software components and the system software modules as well
as the infrastructure services that enable communication between application software
components.

Application Layer: Actually this layer is not part of the AUTOSAR system software mod-
ules layered architecture, since this layer contains the AUTOSAR application software
components described in Section 6.1.

Libraries: AUTOSAR libraries are not assigned to any particular software layer. Instead
all layers (including the SWCs of the application layer) are allowed to make use of
these libraries.

In addition to this mainly vertical structuring AUTOSAR further horizontally subdi-
vides the system software modules into different sub-stacks. This subdivision is depicted in
Figure 9.

Input/Output Sub-Stack: The input/output sub-stack comprises software modules that
provide standardized access to sensors, actuators, and ECU on-board peripherals (e.g.,
D/A or A/D converters etc.).

17



Application Layer

AUTOSAR Runtime Environment (Rte)

Communi-
cation

Sub-Stack

Hardware

Input/
Output

Sub-Stack

Memory
Sub-Stack

System
Service

Sub-Stack

Application
Software 

System 
Software 

Libraries

Figure 9: AUTOSAR – System Software Sub-Stacks Overview

Memory Sub-Stack: The memory sub-stack comprises software modules that facilitate
the standardized access to internal and external non-volatile memory for means of
persistent data storage.

Communication Sub-Stack: The communication sub-stack contains software modules
that provide standardized access to vehicle networks (i.e., the Local Interconnect Net-
work (LIN) [9], the Controller Area Network (CAN) [20, 21], FlexRay [13, 27], and
Ethernet).

System Service Sub-Stack: Last but not least, the system service sub-stack encompasses
all software modules that provide standardized (e.g., operating system, timer support,
error loggers) and ECU specific (ECU state management, watchdog management) sys-
tem services, and library functions.

Libraries: Since the libraries are not part of a particular sub-stack, they are depicted sep-
arately in Figure 9.

Regardless of the vertical and horizontal structuring, the following classification can be
applied to the AUTOSAR system software modules:

Drivers: A driver contains the functionality to control and access an internal or an external
device. Hereby, internal devices, which are located within the micro-controller, are
controlled by internal drivers whereas external devices, which are located on ECU
hardware outside the micro-controller, are controlled by external drivers. Internal
drivers can usually be found within the micro-controller abstraction layer, whereas
external drivers are situated in the ECU abstraction layer. Drivers do not change the
content of the data handed to them.

Interfaces: An interface contains the functionality to abstract from the hardware realization
of a specific device and to provide a generic API to access a specific type of device
independent of the number of existing devices of that type and independent of the
hardware realization of the different devices. Interfaces are generally located within
the ECU abstraction layer. Interfaces do not change the content of the data handed
to them.

Handlers: A handler controls the concurrent, multiple, and asynchronous accesses of one
or more clients to one or more driver or interface modules. Thus a handler performs

18



buffering, queuing, arbitration, and multiplexing. Handlers do not change the content
of the data handed to them.

Managers: A manger offers specific services for multiple clients. Managers are required
whenever pure handler functionality is insufficient for accessing and using interface
and driver modules. Managers furthermore are allowed to evaluate and change or
adapt the content of the data handed to them. Managers are usually located in the
services layer.

In the following sections, the different sub-stacks of AUTOSAR system software modules
are described in detail.

6.2.1 Communication Sub-Stack

The communication sub-stack contains a group of modules that facilitate communication
among the different ECUs in a vehicle via automotive communication network (CAN, LIN,
FlexRay, and Ethernet). The structure of the communication sub-stack is depicted in Fig-
ure 10.

<Net>
Nm

<Net>If

Nm

<Net>Tp

PduR

DcmCom

<Net>

Hardware

IpduM <Net>
Sm

ComM

<Net>Trcv

Dbg

Xcp

Figure 10: AUTOSAR – Communication Sub-Stack

Hereby, <Net> is used as a placeholder for the respective communication network (i.e.,
CAN, LIN, FlexRay, and Ethernet). Thus the AUTOSAR communication sub-stack con-
tains communication network specific instances of the Transport Protocol (Tp), Network
Management (Nm), Interface (If), State Manger (Sm), Transceiver Driver (Trcv), and Driver
(no suffix) modules.

The structure of the communication sub-stack for Ethernet networks and the commu-
nication sub-stack for CAN networks for heavy duty vehicles according to the SAE J1939
standard however slightly deviate from the structure depicted in Figure 10. For Ethernet
networks the Transport Protocol functionality is distributed among two modules, namely
the TcpIp modules and the the SoAd module, and two additional modules, namely the DoIp

module and the Sd module are introduced. The structure of the communication sub-stack
for Ethernet networks is depicted in Figure 11.

For CAN networks for heavy duty vehicles according to the SAE J1939 standard dedi-
cated modules for Transport Protocol (J1939Tp) and Network Management (J1939Nm) re-
place the respective modules of the communication sub-stack for standard CAN networks,
and an additional Diagnostic Communication Manager module (J1939Dcm) and a Request

19



Xcp

UdpNm

EthIf

Nm

SoAd

PduR

DcmCom

Eth

Hardware

IpduM

ComM

EthTrcv

Dbg

EthSm

TcpIp

Sd

DoIp

Figure 11: AUTOSAR – Communication Sub-Stack for Ethernet Networks

Management module (J1939Rm) are introduced which implement J1939 specific functional-
ity. The structure of the communication sub-stack for CAN networks for heavy duty vehicles
according to the SAE J1939 standard is depicted in Figure 12.

J1939
Nm

CanIf

Nm

J1939Tp

PduR

DcmCom

Can

Hardware

IpduM Can
Sm

ComM

CanTrcv

Dbg

Xcp

J1939
Rm

J1939
Dcm

Figure 12: AUTOSAR – Communication Sub-Stack for CAN Networks for Heavy Duty
Vehicles

In the following, the different modules of the communication sub-stack are described in
detail.

Driver (<Net>): The Driver module (Fr, Can, Lin, and Eth) provides the basis for the
respective Interface module by facilitating the transmission and the reception of frames
via the respective CC. Hereby, the Driver is designed to handle multiple CCs of the
same type. Thus, if an ECU contains for example FlexRay CCs of two different types,
two different FlexRay Driver modules are required.

In case of CAN, the Driver module (Can) optionally provides the required support for
TTCAN [14] and CAN FD [18] as well.

Transceiver Driver (<Net>Trcv): The Transceiver Driver module (i.e., FrTrcv, CanTrcv,
LinTrcv, and EthTrcv) provides API functions for controlling the transceiver hard-
ware (i.e., switching the transceivers into special modes (e.g., listen only or low power

20



mode)) and for obtaining diagnostic information from the transceiver hardware (e.g.,
information about short circuits of the different bus-lines of CAN or information about
wake-up events on the network).

Interface (<Net>If): Using the frame-based services provided by the Driver module, the
Interface module (FrIf, CanIf, LinIf, and EthIf) facilitates the sending and the
reception of protocol data units (PDUs). Hereby, multiple PDUs can be packed into
a single frame at the sending ECU and have to be extracted again at the receiving
ECU5. The point in time when this packing and extracting of PDUs takes place is
governed by the temporal scheduling of so-called communication jobs of the FlexRay
and the LIN Interface. The instant when the frames containing the packed PDUs
are handed over to the Driver module for transmission or retrieved from the Driver
module upon reception is triggered by communication jobs of the Interface module
as well. In FlexRay, the schedule of these communication jobs is aligned with the
communication schedule, in LIN, the schedule of the LIN Interface module governs the
communication schedule on the LIN bus. In contrast to this in CAN, the temporal
schedule of the PDU transmission is governed by the Com module (see below). In
FlexRay, each communication job can consist of one or more communication operations,
each of these communication operations handling exactly one communication frame
(including the PDUs contained in this frame).

In case of CAN, the Interface module (CanIf) optionally provides the required support
for TTCAN [14] and CAN FD [18] as well.

In case of Ethernet, the Interface module (EthIf) additionally provides support for
virtual local area networks (VLANs) by taking care of the handling of the VLAN
tags (i.e., tag protocol identifier (TPID) and tag control information (TCI)) and thus
providing an abstraction from the distinction between VLAN and “normal” LANs to
the upper layers.

All interface modules are designed to be able to deal with multiple different drivers
for different types of CCs (e.g., freescale’s MFR4300 or FlexRay CCs based on the
BOSCH E-Ray core in the FlexRay case). Furthermore, the Interface module wraps
the API provided by the Transceiver Driver module and provides support for multi-
ple different Transceiver Driver modules (similar to the support for multiple different
Driver modules).

Transport Protocol (<Net>Tp): The transport protocol is used to perform segmentation
and reassembly of large protocol data units (PDUs). On CAN (CanTp) and FlexRay
(FrTp) the used protocols are compatible (in certain configuration settings) to their
respective ISO TP counterparts (see Section 4.1).

For FlexRay networks AUTOSAR specifies an alternative transport protocol (FrArTp)
which is backwards compatible to the FlexRay transport protocol used in AUTOSAR
3.1 (but incompatible to the ISO TP for FlexRay).

In order to support the SAE J1939 standard and thus make AUTOSAR applicable for
the use in heavy duty vehicles, an alternative transport protocol for CAN (J1939Tp)
is provided as well, that adheres to the respective SAE J1939 specification [29].

5Currently only the FlexRay Interface module supports the packing of multiple PDUs into a single frame.
– For the CAN, the LIN, and the Ethernet interface modules there is a 1:1 relationship between PDUs and
frames.

21



A combination of FrTp and FrArTp or CanTp and J1939Tp on a single physical network
is hereby not supported.

For the LIN communication network, AUTOSAR does not define a separate transport
protocol module, but instead integrates the transport protocol functionality (which
adheres to the LIN 2.1 specification [9]) into the LIN Interface (LinIf) module.

For the Ethernet communication network AUTOSAR decided to re-use already well-
proven protocols, namely the internet protocol (IP), the internet control message pro-
tocol (ICMP), the address resolution protocol (ARP) for IP address resolution, the user
datagram protocol (UDP) for unreliable connectionless communication, the transmis-
sion control protocol (TCP) for reliable connection oriented communication, and the
dynamic host configuration protocol (DHCP) for automated IP address assignment.
The functionality of these protocols is implemented in the TcpIp module. The Socket
Adapter (SoAd) module, which is located on top of the TcpIp module maps AUTOSAR
PDUs (which are identified by a unique PDU identifier) to the network endpoints of
TCP connections and/or to the UDP datagrams (identified by a 4-tuple of local/remote
IP address and port number) by means of static configuration tables. Hereby the SoAd

abstracts from TCP specifics like the different methods for local IP address assignment
(i.e., stateless address auto-configuration according to RFC 3927, DHCP according to
RFC 2131, or simply by means of static configuration) and details regarding the con-
nection setup and tear-down in order to provide an AUTOSAR PDU-based interface
to the PduR. Similar to the packing of multiple PDUs into a single FlexRay frame in
the FrIf for efficiency reasons, the SoAd allows for packing multiple PDUs into a single
UDP datagram or TCP segment in order to achieve a decent header/payload ratio and
to reduce the overhead for connection setup and tear-down. Especially for the exchange
and relaying of diagnostic data between an external tester device the Diagnostics over
IP (DoIp) module which is located above the SoAd implements the services specified
by the ISO DoIP standard (see Section 4.3) and presents itself as conventional AU-
TOSAR transport protocol (i.e., like CanTp or FrTp) towards the PduR by providing
the respective API.

Just like with ISO TP, the user of the services provided by the various transport
protocol modules is the diagnostic layer, called Diagnostic Communication Manager
in AUTOSAR (see below).

Network Management (<Net>Nm, Nm): Similar to OSEK NM (see Section 3) the AU-
TOSAR NM modules provide means for the coordinated transition of the ECUs in a
network into and out of a low-power (or even power down) sleep mode. Hereby the
“network” can be the whole physical network with all its connected ECUs or only a log-
ical network consisting of a statically defined subset of ECUs of the physical network,
a so-called partial network.

The AUTOSAR NM functionality is divided into two modules: a communication pro-
tocol independent module named Generic NM (Nm) and communication protocol de-
pendent modules named FlexRay NM (FrNm), CAN NM (CanNm), LIN NM (LinNm),
and UDP NM (UdpNm) for Ethernet networks.

In order to support the SAE J1939 standard and thus make AUTOSAR applicable
for the use in heavy duty vehicles, an alternative network management protocol for
CAN (J1939Nm) is provided as well, that adheres to the respective SAE J1939 specifi-
cation [30]. J1939Nm however does not take care of a coordinated transition into and
out of a low-power sleep mode, but handles the assignment of unique addresses to each

22



ECU instead. A combination of CanNm and J1939Nm on a single physical network is
hereby not supported.

State Manager (<Net>SM): The State Manager modules (CanSM, LinSM, FrSM, and EthSM)
facilitate the state management of the respective communication controllers with re-
spect to communication system dependent startup and shutdown features and provide
a common state machine API to the upper layer (i.e., the Communication Manager
(ComM)). This API consists of functions for requesting the communication modes Full,
Silent (i.e., listen only), and No Communication.

XCP (Xcp): For measurement and calibration purposes via CAN, FlexRay, and Ethernet
networks, AUTOSAR includes an Xcp module in the communication stack, which
implements the ASAM XCP specification (see Section 5.1).

PDU Router (PduR): The PDU Router module provides two major services. On the one
hand, it dispatches PDUs received via the underlying modules (i.e., Interface and Trans-
port Layer modules) to the different higher layers (Com, Dcm). On the other hand, the
PDU router performs gateway functionalities between different communication net-
works by forwarding PDUs from one interface to another of either the same (e.g.,
FlexRay to FlexRay) or of different type (e.g., CAN to FlexRay). Routing decisions
in the PDU Router are based on a static routing table and on the identifiers of the
PDUs.

PDU Multiplexer (IpduM): The PDU Multiplexer module takes care of multiplexing parts
of a PDU. Hereby, the value of a dedicated part of the PDU (the multiplexer switch)
is used to define the semantic content of the remainder of the PDU (just like the tag
element in a variant record or a union in programming languages). In the reception
case, multiplexed PDUs are forwarded from the PduR to the IpduM for demultiplexing.
Once demultiplexed, the IpduM hands the PDUs back to the PduR. In the sending case,
the PduR obtains a PDU from Com and hands this PDU to the IpduM for multiplexing.
The IpduM returns the multiplexed PDU to the PduR, which routes the multiplexed
PDU to its final destination.

Communication (Com): Similar to OSEK Com (see Section 3) the Com module in AU-
TOSAR provides signal-based communication to the upper layer (Rte). The signal-
based communication service of Com can be used for intra-ECU communication as well
as for inter-ECU communication. In the former case, Com mainly uses shared memory
for this intra-ECU communication whereas for the latter case at the sender side Com

packs multiple signals into a PDU and forwards this PDU to the PduR in order to issue
the PDU’s transmission via the respective Interface module. – On the receiver side,
Com obtains a PDU from the PDU router, extracts the signals contained in the PDU,
and forwards the extracted signals to the upper software layer (Rte).

Diagnostic Communication Manager (Dcm): The Diagnostic Communication Manager
module is a sub-module of the AUTOSAR diagnostic module. The Dcm module provides
services which allow a tester device to control diagnostic functions in an ECU via the
communication network (i.e., CAN, LIN, FlexRay). Hereby the Dcm supports the
diagnostic protocols UDS and OBD (see Section 4.2 for details).

In order to support the SAE J1939 standard and thus make AUTOSAR applicable for
the use in heavy duty vehicles, an additional diagnostic communication manager mod-
ule (J1939Dcm) is provided that implements the diagnostic services mandated by the

23



respective SAE J1939 specification [28]. Since the services provided by the J1939Dcm

module are additions to the functionality provided by Dcm module, both modules can
be used within a single ECU.

Both the Dcm and the J1939Dcm module act as service SWCs (see Section 6.1.1) towards
the Rte and thus make their services available to (application) SWCs via dedicated
ports (see Section 6.1.2).

Communication Manager (ComM): The Communication Manager is a resource manager
which encapsulates the control of the underlying communication services. The ComM

collects network communication access requests from communication requesters (e.g.,
Dcm) and coordinates these requests by interacting with Nm and the respective State
Manager (<Net>SM) modules. This way the ComM provides a simplified API to the
network management where a user of the API does not require any knowledge of
the particular physical communication network (or partial network) to use. Via the
ComM API, a user simply requests a specific communication mode (i.e., Full, Silent,
or No Communication) and the ComM switches (based on a statically configured table
mapping users to networks) the communication capability of the corresponding physical
or partial networks to On, Silent, or Off.

The ComM module acts as a service SWC (see Section 6.1.1) towards the Rte and
thus makes its services available to (application) SWCs via dedicated ports (see Sec-
tion 6.1.2).

J1939 Request Manager (J1939Rm): The J1939 Request Manager takes care of the SAE
J1939 specific feature that the transmission of specific PDUs (termed parameter group
number (PGN) in J1939) can explicitly be requested by dedicated request PDU [29].
The J1939Rm module receives this kind of request PDUs and based on the contained
information triggers the transmission of the requested PDU.

The J1939Rm module acts as a service SWC (see Section 6.1.1) towards the Rte and
thus makes its services available to (application) SWCs via dedicated ports (see Sec-
tion 6.1.2).

Debugging (Dbg): The AUTOSAR Debugging module supports the remote debugging pro-
cess of a other AUTOSAR modules. For this purpose, the Dbg module collects infor-
mation like function calls/returns and values/value changes of important variables of
other modules during the runtime of the ECU without halting the processor. This on
the one hand requires proper instrumentation of the debugged modules (e.g., the Dbg

module must be notified upon function entry and exit) and on the other hand man-
dates that the relevant variables are accessible to the Dbg module. The collected data
is then transmitted (either immediately or upon request) to an external debugging host
system for further inspection.

Service Discovery (Sd): The Service Discovery module provides means for a service re-
quester (i.e., an ECU that requires a specific service) to detect available services which
are offered by service provides within the vehicle network. Additionally the Sd module
facilitates to control the send behavior of event information in a way that an event
publisher (i.e., an ECU sending the event information) only sends this information to
the dynamically registered event subscribers (i.e., ECUs that want to receive this event
information).

24



6.2.2 Memory Sub-Stack

The memory sub-stack contains a group of modules that facilitate handling of the ECU’s
on-board non-volatile memory (i.e., providing API functions to store data in and retrieve
data from the ECU’s non-volatile memory (e.g., electrically eraseable programmable read-
only memory (EEPROM) or flash EEPROM). The structure of the memory sub-stack is
depicted in Figure 13.

Ea 

MemIf 

Fls 

Hardware 

NvM 

Fee 

Eep 

Ram
Tst

Fls
Tst

Figure 13: AUTOSAR – Memory Sub-Stack

In the following the different modules of the memory sub-stack are described in detail.

Flash Driver (Fls): The Flash Driver provides services for reading from, writing to, and
erasing parts of the ECU’s flash memory. Furthermore, the Flash Driver facilitates
the setting and resetting of the write/erase protection of the flash EPPROM if such
protection is supported by the underlying hardware. In addition to these basic services,
the Flash Driver provides a service for comparing a data block in the flash EEPROM
with a data block in the memory (e.g., RAM).

EEPROM Driver (Eep): The EEPROM Driver provides services for reading from, writing
to, and erasing parts of the ECU’s EEPROM. Additionally, similar to the Flash Driver,
the EEPROM Driver provides a service for comparing a data block in the EEPROM
with a data block in the memory (e.g., RAM).

Flash EEPROM Emulation (Fee): The Flash EEPROM Emulation module emulates
EEPROM functionality using the services provided by Flash Driver module. By mak-
ing use of multiple flash sectors and smart copying of the data between these sectors, the
Fee simulates an EEPROM-like behavior, i.e., the possibility to perform program/erase
operations on sub-sector granularity.

EEPROM Abstraction (Ea): The EEPROM Abstraction module provides uniform mech-
anisms to access the ECU’s internal and external EEPROM devices. It abstracts from
the location of peripheral EEPROM devices (including their connection to the micro-
controller), the ECU hardware layout, and the number of EEPROM devices.

Memory Abstraction Interface (MemIf): The Memory Abstraction Interface module al-
lows the Non-Volatile RAM Manager module (see below) to access several memory ab-
straction modules (Fee or Ea modules) in a uniform way. Hereby the MemIf abstracts
from the number of underlying Fee or Ea modules providing a runtime translation of
each block access initiated by the Non-Volatile RAM Manager module to select the
corresponding driver functions which are unique for all configured EEPROM or flash
EEPROM storage devices.

25



Non-Volatile RAM Manager (NvM): The Non-Volatile RAM Manager module provides
services to ensure the data storage and maintenance of non-volatile data according to
their individual requirements in an automotive environment, namely synchronous as
well as asynchronous services for the initialization, the reading, the writing and the
control of non-volatile data. The NvM operates on a block basis distinguishing the
following types of blocks: For native blocks the NvM provides a RAM mirror which
contains a copy of the data stored in the non-volatile memory block. This RAM
mirror is initialized with the data from the non-volatile block upon ECU power-up.
Upon ECU shutdown, the data from the RAM mirror is flushed to the corresponding
non-volatile memory block. Additionally, the NvM provides API services which can
force the transfer of a memory block from non-volatile memory into the corresponding
RAM mirror and vice-versa. In addition to the facilities of native blocks, redundant
blocks provide enhanced fault tolerance, reliability, and availability. Due to replication
of the redundant block in non-volatile memory, the resilience against data corruption
is increased.

The NvM module acts as a service SWC (see Section 6.1.1) towards the Rte and
thus makes its services available to (application) SWCs via dedicated ports (see Sec-
tion 6.1.2).

RAM Test (RamTst): The RAM Test module provides means to perform functional tests
of the ECU’s internal RAM cells. Complete tests are performed upon ECU startup
and shutdown as well as on request by special diagnostic commands. During operation
partial test are performed in a periodic manner (e.g., block by block or cell by cell). For
both types of tests several RAM test algorithms, which have been chosen according
to the IEC 61508 standard, are available. Depending on the algorithms’ diagnostic
coverage rate, the algorithms are divided into the following categories: Group 1 (low)
with a diagnostic coverage rate smaller than 60%, group 2 (medium) exhibiting a
diagnostic coverage rate of 60% to 90%, and group 3 (high) with a diagnostic coverage
rate of 90% to 99%.

Flash EEPROM Test (FlsTst): The Flash EEPROM Test module provdies means to
perform functional tests on the content of the ECU’s non-mutable memory cells (e.g.,
program/data Flash EEPROM content). Foreground tests are performed on a per-block
basis upon request via the module’s API functions. Background test are performed
in a periodic manner for a set of configured blocks. Both kind of tests compute a
configurable signature over the memory block (e.g., 8, 16, and 32 bit CRCs or hashes)
and compare the computed signature value with a pre-computed value stored in the
FlsTst module’s configuration.

6.2.3 Input/Output Sub-Stack

The input/output sub-stack contains a group of modules that facilitate the handling of the
ECU’s input/output capabilities. The structure of the input/output sub-stack is depicted
in Figure 14.

In the following the different modules of the input/output sub-stack are described in
detail.

Port Driver (Port): The Port Driver module provides the service for initializing the whole
port structure of the micro-controller, allowing for the the configuration of different
functionalities for each port and port pin (e.g., analogue digital conversion (ADC),

26



Hardware

PwmIcuPort Dio Adc Ocu Spi

I/O HW Abstraction

Figure 14: AUTOSAR – Input/Output Sub-Stack

digital I/O (DIO), . . . ). Hereby the port pin direction (input/output), the initial
level of the port pin, and the fact whether the port pin direction is modifiable during
runtime is part of this configuration. Other I/O drivers (e.g., Icu, Pwm, . . . ) rely on
the configuration performed by the Port Driver.

Interrupt Capture Unit Driver (Icu): The Interrupt Capture Unit (ICU) Driver is a
module using the ICU hardware to implement services like signal edge notification,
controlling of wake-up interrupts, periodic signal time measurement, edge time stamp-
ing (usable for the acquisition of non-periodic signals), and edge counting. Hereby the
Icu module works on pins and ports which have been properly configured by the Port
Driver for this purpose.

Pulse Width Modulation Driver (Pwm): The Pulse Width Modulation (PWM) Driver
module provides functions to initialize and control the hardware PMW unit of the
micro-controller. The Pwm module allows for the generation of pulses with variable
pulse width by facilitating the selection of the duty cycle and the signal period time.
The Pwm module supports multiple PWM channels, where each channel is linked to a
hardware PWM unit which belongs to the micro-controller. Similar to the Icu module
the Pwm module relies on pins and ports which have been properly configured by the
Port Driver for this purpose.

Digital I/O Driver (Dio): The Digital I/O (DIO) Driver provides services for reading
from and writing to DIO channels (i.e., port pins), DIO ports, and groups of DIO
channels. Hereby the Dio module works on pins and ports which have been properly
configured by the Port Driver for this purpose.

Analogue/Digital Converter Driver (Adc): The Analogue to Digital Converter (ADC)
Driver module initializes and controls the internal ADC unit(s) of the micro-controller.
The module provides services to start and stop an analog to digital conversion respec-
tively to enable and disable the trigger source for a conversion. Furthermore the module
provides services to enable and disable a notification mechanism and routines to query
status and result of a conversion. The Adc module works on so-called ADC channel
groups. An ADC channel group combines an ADC channel (i.e., an analogue input
pin), the needed ADC circuitry itself, and a conversion result register into an entity
that can be individually controlled and accessed via the Adc module. The Adc module
operates on pins and ports which have been properly configured by the Port Driver for
this purpose.

Output Compare Unit Driver (Ocu): The Output Compare Unit (OCU) Driver mod-
ule provides functions to initialize and control the hardware OCU unit of the micro-
controller. The Ocu module allows comparing and acting automatically (e.g., by call-
ing a notification function) when the value of a free-running counter matches a defined
threshold. The module provides services to set the comparison threshold value, to start

27



and stop a comparison, to enable and disable a notification mechanism, and to query
the current counter value. The Ocu module works on so-called OCU channels. An OCU
channel group combines a free-running counter and the corresponding threshold value
into an entity that can be individually controlled and accessed via the Ocu module.
The Ocu module relies on pins and ports which have been properly configured by the
Port Driver for this purpose.

Standard Peripheral Interface Handle/Driver (Spi): The Standard Peripheral Inter-
face (SPI) Handler/Driver module provides services for reading from and writing to
peripheral devices connected via SPI buses. These peripheral devices are explicitly
addressed by means of a chip select (CS) line. For each peripheral device a so-called
SPI job consisting of multiple SPI channels can be configured in the Spi module’s con-
figuration. SPI channels hereby basically define the atomic units of data transferred
between the micro-controller and a peripheral device. SPI jobs are grouped into SPI
sequences to specify a defined order of data exchange.

Based on these SPI sequences Spi module provides services to synchronously and
asynchronously conduct data transfers, to query the status of such a transfer on SPI
sequence and SPI job granularity, and notification services upon completion of a par-
ticular SPI sequence and/or a particular SPI job.

I/O Hardware Abstraction: The I/O Hardware Abstraction module provides a signal-
based interface to internal and external I/O devices of an ECU. Hereby the module
abstracts from whether a certain I/O device is an MCU internal device, or whether a de-
vice is externally connected to the MCU, by performing static normalization/inversion
of values according to their physical representation at the inputs/outputs of the ECU
hardware (i.e., static influences, like voltage division or hardware inversion, on the path
between the I/O device and the MCU port pin are compensated).

The I/O Hardware Abstraction module acts as an ECU abstraction SWC (see Sec-
tion 6.1.1) towards the Rte and thus makes its services available to (application) SWCs
via dedicated ports (see Section 6.1.2).

6.2.4 System Services Sub-Stack

The system services sub-stack contains a group of modules that can be used by modules of all
AUTOSAR layers. Examples are real-time operating system, error handler, and watchdog
management. The structure of the system services sub-stack is depicted in Figure 15.

Hardware

Fim
EcuM

BswM Dem

Gpt Mcu

WdgM

WdgIf

Wdg

Det Dlt StbM

Tm

Csm

CorTst

Det

Os SchM

Figure 15: AUTOSAR – System Services Sub-Stack

In the following the different modules of the system services sub-stack are described in
detail.

Operating System (Os): The AUTOSAR Operating System provides real-time operating
system services to both the other system software modules as well as to the application

28



software components of AUTOSAR. The Os module is configured and scaled statically,
provides a priority-based scheduling policy and protective functions with respect to
memory and timing at runtime, and is designed to be hostable on low-end controllers.

Similar to the OSEKtime dispatcher tables (see Section 3), AUTOSAR Os provides
so-called schedule tables consisting of one or more expiry points. Hereby each expiry
point is assigned an offset measured in Os ticks from the start of the schedule table.
Once an expiry point is reached, the action corresponding to the expiry point (e.g.,
the activation of a task or the setting of an event) is processed. At runtime, the Os

iterates over the schedule table, processing each expiry point in turn. The iteration is
driven by an Os counter. In order to facilitate the execution of tasks synchronous to
external events (e.g., synchronous to the FlexRay communication schedule), schedule
tables can be synchronized to external time sources (e.g., FlexRay’s global time).

As far as protection against timing violations is concerned, AUTOSAR Os does not
provide deadline monitoring (as does OSEKtime OS) but provides the facility to track
the execution time of each task and interrupt service routine and to raise an error in
case either exceeds its statically assigned execution time budgets. Regarding memory
protection, AUTOSAR Os uses the memory protection unit of the MCU to provide
coarse grained memory protection of so-called OS applications, which is a grouping of
related tasks, against each other.

With AUTOSAR 4.0 onward the AUTOSAR Os provides support for multi-core MCUs
by allowing different OS applications to be statically allocated to the different cores and
by supporting data exchange among these cores by means of the Inter-OS Application
Communicator (Ioc) sub-module.

The Os module acts as a service SWC (see Section 6.1.1) towards the Rte , thus making
its services available to (application) SWCs via dedicated ports (see Section 6.1.2).

Basic Software (BSW) Scheduler (SchM): The BSW Scheduler module provides means
to embed other AUTOSAR system software module implementations into the con-
text of an AUTOSAR Os task or interrupt service routine, trigger main processing
functions of the system software modules, and apply data consistency mechanisms for
these modules. Just like the Rte provides the infrastructure for software components
by embedding runnable entities in a task context, the SchM module provides the infras-
tructure for the other system software modules by embedding their main processing
functions (termed schedulable entities) in a task context6.

Due to the rather similar functionality between Rte and SchM and to allow for global
scheduling and data consistency optimizations (e.g., automatic elision of data con-
sistency mechanisms in case the involved runnable and schedulable entities cannot
preempt one another) the SchM module’s functionality is integrated into the Rte with
AUTOSAR 4.0 onward.

Micro Controller Unit (MCU) Driver (Mcu): The MCU Driver module provides ser-
vices for basic micro-controller initialization, power-down functionality, micro-controller
reset and micro-controller specific functions required from other system software mod-
ules. The initialization services of the MCU Driver module allow a flexible and appli-
cation related MCU initialization in addition to the startup code7. The services of the

6Usually the main processing functions of multiple system software modules are embedded into a single
task in order to keep the number of tasks required for execution of the whole AUTOSAR system software
low.

7The startup code itself is not within the scope of AUTOSAR.

29



MCU Driver include the initialization of the MCU’s clock, initialization of the MCU’s
phase-locked loop (PLL), the initialization of clock pre-scalers, and the configuration
of the MCU’s clock distribution. Furthermore the MCU Driver takes care of the ini-
tialization of the MCU’s RAM sections, facilitates the activation of the MCU’s reduced
power modes (i.e., putting the MCU into a low-power mode), and provides a service
for enforcing a reset of the MCU and a service for obtaining the reset reason from the
MCU hardware.

ECU State Manager (EcuM): The ECU State Manager module manages all aspects of the
ECU related to the Off, Run, and Sleep states of that ECU and the transitions between
these states like startup and shutdown. In detail, the ECU state manager is responsible
for the initialization and de-initialization of all system software modules including Os

and Rte, cooperates with the ComM, and hence indirectly with Nm, to shut down the
ECU (Off state) when needed, manages all wakeup events, and configures the ECU for
Sleep state when requested. In order to fulfill all these tasks, the EcuM makes use of the
services provided by the Mcu module and implements some important protocols: the
run request protocol, which is needed to coordinate whether the ECU must be kept alive
or is ready to shut down, the wake-up validation protocol to distinguish “real” wake-up
events from “erratic” ones, and the time-triggered increased inoperation protocol which
allows to put the ECU into an increasingly energy saving Sleep state depending on
the duration of the ECU’s inactivity.

With AUTOSAR 4.0 a distinction between an ECU State Manager module with fixed
state machine (EcuMfixed) and an ECU State Manager module with flexible state
machine (EcuMflex) has been made. While the former one implements all of the above
services by itself in a rather fixed way, the latter one focuses on the early startup and
late shutdown phases and initializes only a small number of other system software
modules, delegating the rest of the functionality to the Basic Software Mode Manager
(BswM) module.

The EcuM module (flex and fixed) acts as a service SWC (see Section 6.1.1) towards the
Rte and thus makes its services available to (application) SWCs via dedicated ports
(see Section 6.1.2).

Basic Software Mode Manager (BswM): The Basic Software Mode Manager module ar-
bitrates requests from application SWCs or other system software modules based on
statically configurable rules, and performs actions based on the arbitration result.
Hereby these configurable rules comprise one or more logical conditions which are
combined into a logical expression and a list of actions that are executed in case the
logical expression evaluates to true or to false respectively. The logical conditions can
be mode switches performed and announced by other modules and/or SWCs. The
performed actions can be mode switches performed by the BswM itself which are an-
nounced towards other modules and/or SWCs. Thus the BswM on the one hand acts
as a mode user and on the other hand as a mode manager.

Additionally the BswM is in charge of the part of initialization and shutdown process
that is not covered by the EcuMflex module.

The BswM module acts as a service SWC (see Section 6.1.1) towards the Rte and
thus makes its services available to (application) SWCs via dedicated ports (see Sec-
tion 6.1.2).

Diagnostic Event Manager (Dem): The Diagnostic Event Manager module realizes part

30



of the diagnostic functionality within AUTOSAR. The Dem is responsible for processing
and persistently storing diagnostic events/errors8 and associated data (so-called freeze
frame data). To facilitate the persistent storage of these DTCs, the Dem makes use
of the services provided by the NvM. Application software components as well as other
system software modules can raise diagnostic events by means of Dem API calls.

The diagnostic events registered by the Dem serve as triggers for state updates of the
Fim and thus might lead to the inhibition of certain runnables. Upon request of the
Dcm, the Dem provides an up-to-date list of the currently stored DTCs which are then
sent to a tester client by means of the Dcm services.

The Dem module acts as a service SWC (see Section 6.1.1) towards the Rte and
thus makes its services available to (application) SWCs via dedicated ports (see Sec-
tion 6.1.2).

Function Inhibition Manager (Fim): Like the Dem and the Dcm module, the Function In-
hibition Manager realizes part of the diagnostic functionality in AUTOSAR. The Fim

is responsible for providing an execution control mechanism for the runnables of appli-
cation software components and system software modules. By means of the Fim, these
runnables can be inhibited (i.e., deactivated) according to the Fim’s static configura-
tion. The functionalities of the runnables are assigned to a unique function identifier
(FID) along with an inhibit condition for that particular FID. The functionalities poll
for the permission state of their respective FIDs before execution. If an inhibit con-
dition is true for a particular FID, the corresponding functionality is not executed
anymore.

The Fim is closely related to the Dem since diagnostic events and their status information
can serve as possible inhibit conditions. Hence, functionality which needs to be stopped
in case of a failure can be represented by a particular FID. If the failure is detected
and the event is reported to the Dem, the Fim then inhibits the FID and therefore the
corresponding functionality.

The FiM module acts as a service SWC (see Section 6.1.1) towards the Rte and
thus makes its services available to (application) SWCs via dedicated ports (see Sec-
tion 6.1.2).

Watchdog Driver (Wdg): This module provides services for initialization, changing of the
operation mode (Fast, Slow, Off) and triggering the ECU’s watchdog device. In case an
ECU provides multiple different watchdog devices (e.g., internal and external devices),
a dedicated Wdg module has to be present for each of the devices.

Watchdog Interface (WdgIf): In case of more than one watchdog device and correspond-
ing Watchdog Driver (e.g., both an internal software watchdog and an external hard-
ware watchdog) is being used on an ECU, the Watchdog Interface module allows the
Watchdog Manager module (see below) to select the correct Watchdog Driver – and
thus the watchdog device – via a device index, while retaining the API and function-
ality of the underlying driver. Thus the WdgIf module provides uniform access to
services of the underlying Watchdog Drivers like mode switching and triggering.

Watchdog Manager (WdgM): The Watchdog Manager module is intended to supervise the
program execution of application software components or other system software mod-
ules, so-called supervised entities. The WdgM provides services for alive supervision for

8These events can be mapped to UDS/OBD diagnostic trouble code (DTCs) by means of the Dem’s module
configuration.

31



periodic software, deadline supervision for aperiodic software, and logical supervision
monitoring of the program flow of a supervised entity. Hereby the WdgM monitors each
supervised entity autonomously, derives a local status for this supervised entity. The
aggregation of the local stati of all supervise entities then yields a global status. Based
on this global supervision status, the WdgM decides whether or not to trigger the hard-
ware watchdog via the WdgIf’s API. Hereby, the set of supervised clients, the desired
degree of supervision, and the individual timing constraints are defined by configurable
parameters of the WdgM.

The WdgM module acts as a service SWC (see Section 6.1.1) towards the Rte and
thus makes its services available to (application) SWCs via dedicated ports (see Sec-
tion 6.1.2).

Development Error Tracer (Det): The Development Error Tracer module is the central
instance where all other system software modules report detected development errors
to. The API parameters handed to the Det allow for tracing source and kind of error,
namely the module and the function in which the error has been detected and the type
of the error. The functionality behind the API of the Det is not specified in AUTOSAR.
Possible functionalities could be the setting of debugger breakpoints within the error
reporting API, the counting of the number of reported errors, the logging of Det calls
together with the passed parameters to a RAM buffer for later analysis, and the sending
of reported errors via some communication interface (e.g., CanIf) to external logger
devices.

The Det module acts as a service SWC (see Section 6.1.1) towards the Rte and
thus makes its services available to (application) SWCs via dedicated ports (see Sec-
tion 6.1.2).

Diagnostic Log and Trace (Dlt): The Diagnostic Log and Trace module provides ser-
vices for the logging of errors, warnings and information messages to SWCs, as well
as to the Det and the Dem module. Additionally the Dlt modules provides trace func-
tionality to the Rte to facilitate the tracing of relevant Rte events (see Section 6.1.4).
The detail of both the logging and the tracing can hereby be controlled during run-
time. The logged/traced data is then transmitted via the PduR or by means of the
data transmission services of the Dcm.

The Dlt module acts as a service SWC (see Section 6.1.1) towards the Rte and
thus makes its services available to (application) SWCs via dedicated ports (see Sec-
tion 6.1.2).

General Purpose Timer Driver (Gpt): The General Purpose Timer (GPT) Driver mod-
ule provides services for starting and stopping a functional timer instance within the
hardware general-purpose timer module and thus provides exact and short-term tim-
ings for use in the Os or within other system software modules where an Os alarm
service causes too much overhead. Individual timeout periods (single shot mode) as
well as repeating timeout periods (continuous mode) can be generated via the Gpt

module. The user can configure whether a notification shall be invoked when the re-
quested timeout period has expired. These notifications can be enabled and disabled
at runtime. Both, the relative time elapsed since the last notification occurred and the
time remaining until the next notification will occur, can be queried via API functions
of the Gpt module. Additionally the Gpt module provides a set of free-running timers
together with API functions to obtain the current time value of these free-running
timers.

32



Time Service (Tm): The Time Service module builds on the free-running timers of the Gpt
module and provides a set of pre-defined timers with defined tick duration in physical
time units (e.g., microseconds) together with a set of API functions to reset these
timers, to (busy) wait for a guaranteed minimum waiting time, to set the timers to a
reference time, and to compute the time difference between the current time and this
reference time. This way compatibility of time-based functionality is ensured for all
platforms which support the required pre-defined timers.

Synchronized Time Base Manager (StbM): The Synchronized Time Base Manager pro-
vides a “global time” to other system software modules or to the application SWCs
(so-called time base users). Hereby the StbM itself however does not provide any fa-
cility (e.g., synchronization protocols) for establishing a synchronized time base across
multiple ECUs, but relies on the existence of such protocols at so-called time base
providers (e.g., the FrIf which provides a synchronized time base for all ECUs con-
nected to the specific FlexRay network). To facilitate a triggering of runnable entities
of SWCs or schedulable entities of other system software modules that is synchronous
to this global time base, the StbM is capable of synchronizing the schedule tables of
the Os to this global time base.

The StbM module acts as a service SWC (see Section 6.1.1) towards the Rte and
thus makes its services available to (application) SWCs via dedicated ports (see Sec-
tion 6.1.2).

Crypto Service Manager (Csm): The Crypto Service Manager module provides crypto-
graphic services based on a software library or on a dedicated hardware module. These
services include means to compute and verify checksums and hash values over a block of
data elements, means to generate random numbers, means for symmetric and asymmet-
ric en- and decryption of blocks of data, message authentication and integrity checks
by means of digital signatures, derivation of one or more secret keys using a key deriva-
tion function, wrapping, serialization, and de-serialization of keys for transportation
purposes, and generation and secure exchange of shared keys.

The Csm module acts as a service SWC (see Section 6.1.1) towards the Rte and
thus makes its services available to (application) SWCs via dedicated ports (see Sec-
tion 6.1.2).

Core Test (CorTst): The Core Test module provides means to perform functional tests
related to basic functionality of the MCU’s core(s), namely tests verifying the correct
functionality of the core’s registers, the arithmetic logical unit (ALU), the interrupt
controller and the exception handling, the memory interface, the memory protection
unit (MPU) in case one is available, and the cache controller (w.r.t., cache coherency
and consistency). Similar to the RamTst module, the CorTst module supports fore-
ground tests which are performed upon request via the module’s API functions and
background test which are performed in a periodic manner.

6.2.5 Libraries

In addition to the previously described system software modules, AUTOSAR defines a set
of libraries. These libraries are neither assigned to any particular software layer nor to a
particular sub-stack. Instead all layers (including the SWCs of the application layer) as well
as integration code are allowed to make use of these libraries. To facilitate this flexible use
AUTOSAR defines that the code of libraries

33



• is executed synchronously in the context of the caller in the same protection environ-
ment

• is only allowed to call other library code (i.e., library code must not call the code of
system software modules or SWCs)

• is re-entrant and does not have any internal state

• does not require any initialization

As far a the provided functionality if concerned, AUTOSAR specifies libraries for fixed
point mathematics, floating point mathematics, interpolation routines for fixed point data,
interpolation routines for floating point data, bit handling routines, end-to-end communica-
tion protection, CRC calculation, filtering routines, and cryptographical routines.

In the following a sub-set of the libraries provided by AUTOSAR is discussed in more
detail:

Cyclic Redundancy Check (Crc): The Cyclic Redundancy Check library provides bit-
wise, table-based, and (if available) hardware-assisted computation of cyclic redun-
dancy checks (CRCs) using different 8, 16, and 32 bit generator polynomials, namely
the SAE-J1850 CRC8, the CCITT-FALSE CRC16, and the IEEE-802.3 CRC32 used
for Ethernet.

End-to-End Protection (E2e): The End-to-End Protection library provides means to
protect safety-related data exchange at runtime against the effects of faults along the
communication path, like random HW faults (e.g., corrupt registers of a communi-
cation controller), interference (e.g., due to EMC), and systematic faults within the
communication sub-stack. To this end additional control fields like CRCs or sequence
counters are added to the transmitted data at the sender side. At the receiver side
these control fields are evaluated and checked for correctness. In case this check fails,
the received data is marked as corrupt. In order to support the use with different fault
hypotheses, multiple profiles which differ in the added control fields (e.g., the strength
of the used CRC) are supported.

Crypto Abstraction (Cal): From the functional point of view, the Crypto Abstraction
library provides the same services as the Csm module. The only difference is the fact
that the Cal is implemented as a library adhering to all the restrictions AUTOSAR
imposes on the implementation of libraries (see above).

7 Summary

Since 1993 the major automotive companies are striving for the deployment of standard
software modules in their applications to achieve an increased test coverage and higher
reliability, requirements that can only be met if standardized modules are used at various
system levels.

This chapter provided an overview of today’s industry practices in standardized automo-
tive system software. Existing standards proposed by industry partnerships like OSEK/VDX,
ASAM, and AUTOSAR, and by standardization authorities like ISO have been presented.
Of all presented approaches, the AUTOSAR partnership which started off in May 2003 and
started putting software modules according to the AUTOSAR standard into production ve-
hicles in 2008 (BMW being first to deploy AUTOSAR in its 7 series car followed by Daimler,
Audi, VW, PSA and others) turns out to be the most promising one.

34



This is on the one hand due to the fact that several of already approved standards used
today (like OSEK OS and COM, ASAM XCP, and ISO transport layer and diagnostics) heav-
ily inspired the corresponding AUTOSAR standards, ensuring that the AUTOSAR standard
is built on well-proven technology. On the other hand the AUTOSAR open standard has
massive industrial backup: All AUTOSAR core members including seven of the world’s
biggest vehicle manufacturers accounting for about 55% of all vehicles produced are strongly
committed to the project and released the first revision of the AUTOSAR 4.1 specifications
in March 2013, which will serve as a solid basis for future automotive software development.

References

[1] ASAM – Association for Standardization of Automation and Measuring Systems.
Project Web Page.

[2] EASIS – Electronic Architecture and System Engineering for Integrated Safety Systems.
Project Web Page.

[3] GENIVI Alliance. Alliance Web Page.

[4] HIS – Herstellerinitiative Software. Project Web Page.

[5] JASPAR – Japan Automotive Software Platform Architecture. Consortium Web Page.

[6] OSEK/VDX. Project Web Page.

[7] V. Barthelmann, A Schedl, E. Dilger, T. Führer, B. Hedenetz, J. Ruh, M. Kühlewein,
E. Fuchs, Y. Domaratsky, A. Krüger, P. Pelcat, M. Glück, S. Poledna, T. Ringler,
B. Nash, and T. Curtis. OSEK/VDX – Time-Triggered Operating System, Version 1.0.
Technical report, OSEK, July 2001.

[8] AUTOSAR Consortium. AUTOSAR – Layered Software Architecture. Technical Report
Version 3.3.0, Release 4.1, Rev 1, AUTOSAR Consortium, January 2013.

[9] LIN Consortium. LIN Specification Package. Technical Report Version 2.1, LIN Con-
sortium, November 2006.

[10] J. Spohr et. al. OSEK/VDX – Communication, Version 3.0.3. Technical report, OSEK,
July 2004.

[11] J. Spohr et. al. OSEK/VDX – System Generation – OIL: OSEK Implementation Lan-
guage, Version 2.5. Technical report, OSEK, July 2004.

[12] H. Fennel, S. Bunzel, H. Heinecke, J. Bielefeld, S. Fürst, K.-P. Schnelle, W. Grote,
N. Maldener, T. Weber, F. Wohlgemuth, J. Ruh, L. Lundh, T. Sandén, P. Heitkämper,
R. Rimkus, J. Leflour, A. Gilberg, U. Virnich, S. Voget, K. Nishikawa, K. Kajio,
K. Lange, T. Scharnhorst, and B. Kunkel. Achievements and Exploitation of the AU-
TOSAR Development Partnership. In Proceedings of the Convergence 2006, number
SAE 2006-21-0019, Detroit, MI, USA, October 2006.

[13] T. Führer, F. Hartwich, R. Hugel, and H. Weiler. FlexRay – The Communication
System for Future Control Systems in Vehicles. In Proceedings of the SAE 2003 World
Congress & Exhibition, number SAE 2003-01-0110, Detroit, MI, USA, March 2003.
Society of Automotive Engineers.

35



[14] T. Führer, B. Müller, W. Dieterle, F. Hartwich, R. Hugel, and M. Walther. Time
Triggered Communication on CAN. In Proceedings of the 7th International CAN Con-
ference, CAN in Automation, Amsterdam, Netherlands, 2000.

[15] S. Fürst. Challenges in the Design of Automotive Software. In Proceedings of the
Conference on Design, Automation and Test in Europe, DATE ’10, pages 256–258,
Leuven, Belgium, 2010. European Design and Automation Association.

[16] J. Goodenough and L. Sha. The Priority Ceiling Protocol: A Method for Minimiz-
ing the Blocking of High-Priority Ada Tasks. Technical Report SEI-SSR-4, Software
Engineering Institute, Pittsburgh, Pennsylvania, USA, May 1988.

[17] P. Hansen. AUTOSAR Standard Software Architecture Partnership Takes Shape. The
Hansen Report on Automotive Electronics, 17(8):1–3, October 2004.

[18] F. Hartwich. CAN with Flexible Data-Rate. In Proceedings of the 13th International
CAN Conference, CAN in Automation, Hambach, Germany, 2012.

[19] C. Hoffmann, J. Minuth, J. Krammer, J. Graf, K. J. Neumann, F. Kaag, A. Maisch,
W. Roche, O. Quelenis, E. Farges, P. Aberl, D. John, L. Mathieu, M. Schütze, D. Grone-
mann, and J. Spohr. OSEK/VDX – Network Management – Concept and Application
Programming Interface, Version 2.5.3. Technical report, OSEK, July 2004.

[20] ISO. Road Vehicles – Controller Area Network (CAN) – Part 1: Data Link Layer and
Physical Signalling. Technical Report ISO 11898-1:2003, ISO (International Organiza-
tion for Standardization), 1, rue de Varembe, Case postale 56, CH-1211 Geneva 20,
Switzerland, 2003.

[21] ISO. Road Vehicles – Controller Area Network (CAN) – Part 2: High-Speed Medium
Access Unit. Technical Report ISO 11898-2:2003, ISO (International Organization for
Standardization), 1, rue de Varembe, Case postale 56, CH-1211 Geneva 20, Switzerland,
2003.

[22] ISO. Road Vehicles – Communication On FlexRay – Part 2: Communication Layer Ser-
vices. Technical Report ISO 10681-2:2010, ISO (International Organization for Stan-
dardization), 1, rue de Varembe, Case postale 56, CH-1211 Geneva 20, Switzerland,
June 2010.

[23] ISO. Road Vehicles – Diagnostics on Controller Area Networks (DoCAN) – Part 2:
Transport Protocol and Network Layer Services. Technical Report ISO 15765-2:2011,
ISO (International Organization for Standardization), 1, rue de Varembe, Case postale
56, CH-1211 Geneva 20, Switzerland, 2011.

[24] ISO. Road Vehicles – Diagnostic Communication over Internet Protocol (DoIP) – Part
2: Transport Protocol and Network Layer Services. Technical Report ISO 13400-2:2012,
ISO (International Organization for Standardization), 1, rue de Varembe, Case postale
56, CH-1211 Geneva 20, Switzerland, 2012.

[25] ISO. Road Vehicles – Unified Diagnostic Services (UDS) – Part 1: Specification and
Requirements. Technical Report ISO 14229-1:2013, ISO (International Organization for
Standardization), 1, rue de Varembe, Case postale 56, CH-1211 Geneva 20, Switzerland,
2013.

36



[26] L. Lundth. About AUTOSAR Achievements Phase III, Exploitation and Rollout. In
Proceedings of the 5th AUTOSAR Open Conference, Beijing, China, November 2012.

[27] R. Mores, G. Hay, R. Belschner, J. Berwanger, C. Ebner, S. Fluhrer, E. Fuchs,
B. Hedenetz, W. Kuffner, A. Krüger, P. Lohrmann, D. Millinger, M. Peller, J. Ruh,
A. Schedl, and M. Sprachmann. FlexRay – The Communication System for Advanced
Automotive Control Systems. In Proceedings of the SAE 2001 World Congress, number
SAE 2006-21-0019, Detroit, MI, USA, March 2001. Society of Automotive Engineers.

[28] Society of Automotive Engineers (SAE) International. Recommended Practice for a
Serial Control and Communications Vehicle Network – Application Layer – Diagnos-
tics. Technical Report J1939/73, Society of Automotive Engineers (SAE) International,
February 2010.

[29] Society of Automotive Engineers (SAE) International. Recommended Practice for a Se-
rial Control and Communications Vehicle Network – Data Link Layer. Technical Report
J1939/21, Society of Automotive Engineers (SAE) International, December 2010.

[30] Society of Automotive Engineers (SAE) International. Recommended Practice for a
Serial Control and Communications Vehicle Network – Network Management. Technical
Report J1939/81, Society of Automotive Engineers (SAE) International, June 2011.

[31] A. Schedl, E. Dilger, T. Führer, B. Hedenetz, J. Ruh, M. Kühlewein, E. Fuchs, T. M.
Galla, Y. Domaratsky, A. Krüger, P. Pelcat, M. Täı-Leung, M. Glück, S. Poledna,
T. Ringler, B. Nash, and T. Curtis. OSEK/VDX – Fault-Tolerant Communication,
Version 1.0. Technical report, OSEK, July 2001.

[32] R. Schuermans, R. Zaiser, F. Hepperle, H. Schröter, R. Motz, A. Aberfeld, H.-G. Kunz,
T. Tyl, R. Leinfellner, H. Amsbeck, H. Styrsky, B. Ruoff, and L. Wahlmann. XCP –
The Universal Measurement and Calibration Protocol Family, Version 1.1.0. Technical
report, Association for Standardisation of Automation and Measuring Systems (ASAM),
March 2008.

[33] T. Wollstadt, W. Kremer, J. Spohr, S. Steinhauer, T. Thurner, K. J. Neumann,
H. Kuder, F. Mosnier, D. Schäfer-Siebert, J. Schiemann, R. John, S. Parisi, A. Za-
hir, J. Söderberg, P. Mortara, B. France, K. Suganuma, S. Poledna, G. Göser, G. Weil,
A. Calvy, K. Westerholz, J. Meyer, A. Maisch, M. Geischeder, K. Gresser, A. Jankowiak,
M. Schwab, E. Svenske, M. Tchervinsky, K. Tindell, G. Göser, C. Thierer, W. Janz,
and V. Barthelmann. OSEK/VDX - Operating System, Version 2.2.3. Technical report,
OSEK, February 2005.

37


