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Abstract— The number of electronic systems in cars is con-
tinuously growing. Electronic systems, consisting of so-called
electronic control units (ECUs) interconnected by a communi-
cation network, account for up to 30% of a modern car’s worth.
Consequently, software plays an ever more important role, both
for the implementation of functions and the infrastructure.

In order to benefit from the reuse of software modules, the
major automotive companies have standardized a large number
of these modules in the context of the AUTOSAR consortium.

In this paper we propose the refactoring of the AUTOSAR
stack of system software modules by applying the component-
based paradigm in order to increase the scalability of the software
stack according to the particular requirements of the application.
We demonstrate the feasibility of this approach by performing
the refactoring of the modules FlexRay Driver and FlexRay
Interface as an example and by deploying the resulting refactored
components in a sample automotive application. Finally, we
measure the execution time as well as the memory consumption
of the refactored components and compare these measures to the
measures obtained from the corresponding ordinary AUTOSAR
modules.

I. INTRODUCTION AND RELATED WORK

In the last decade the percentage of electronic components

in today’s cars has been ever increasing. According to [1] the

new S-Class Mercedes for example utilizes seven communi-

cation buses and 72 microcontrollers.

Since 1993 major automotive companies have been striving

for the deployment of standard software modules in their appli-

cations since the potential benefits are huge [2]. This trend has

been a key motivation for the formation of the AUTOSAR [3]

consortium in 2002. Important issues in this context are safety

(increased test depth of standard software modules), software

reuse, for the possibility to combine software modules supplied

by different vendors due to standardized interfaces, and—

last but not least—cost reasons in order to cope with shorter

development cycles.

The software stack proposed by AUTOSAR follows a lay-

ered architecture of basic software modules comprising com-

munication modules, operating system, and modules providing

access to the microcontroller’s integrated peripheral devices

(e.g., A/D converters, digital I/O).

In this paper we will reason that a layered architecture

as proposed by AUTOSAR is inefficient as far as resource

usage is concerned (especially memory consumption) due to

limited adaptivity to the needs of the application software.

In order to overcome this drawback, we will propose a

refactored version of the AUTOSAR stack of basic software

modules by applying the component-based paradigm [4], [5]

to the AUTOSAR stack. Hereby we will focus on a well-

defined part of the AUTOSAR software stack namely the

software modules related to the FlexRay communication sys-

tem [6], [7]. This approach is fundamentally different to most

component-based approaches which, as far as communication

is concerned, rely on the existence of a (non component-

based) middleware. The approach presented in this paper, on

the contrary, addresses communication in a component-based

fashion as well, by modeling this communication by means

of explicit connectors [8]. This approach gives the possibility

to choose the type of connector best suited for the given

application and thus reduces the memory footprint as well as

the communication overhead compared to a monolithic non

component-based middleware. This selection of the best-suited



connector is based on so-called contracts which govern the

selection during a model transformation process [9]. Finally,

by means of a sample application, we will show that the

refactored version of the AUTOSAR software modules into

a set of finer grained software components provides better

scalability and thus reduces the overall resource consumption

of the software stack for a specific application.

The paper is structured as follows: Section II illustrates

the AUTOSAR hard- and software architecture. Section III

describes how the component-based approach is applied to the

AUTOSAR FlexRay communication modules. In Section IV

the refactored component-based AUTOSAR FlexRay commu-

nication stack is deployed in a sample application. The result-

ing memory footprint and the execution time of the refactored

stack is analyzed and compared to an ordinary AUTOSAR

stack applied to the very same application. Section V gives a

short summary of the results and concludes the paper.

II. SYSTEM ARCHITECTURE

A. Hardware Architecture

The hardware architecture of automotive systems can be

viewed at different levels of abstraction. On the highest level of

abstraction, the system level, an automotive system consists of

a number of networks interconnected via gateways. In general

these networks correspond to the different functional domains

that can be found in today’s cars (i.e., chassis domain, power

train domain, body domain).

The networks themselves comprise a number of electronic

control units (ECUs) which are interconnected via a com-

munication media. The physical topology used for the inter-

connection is basically arbitrary; however, bus, star, and ring

topologies are the most common topologies in today’s cars. –

This network level represents the medium level of abstraction.

On the lowest level of abstraction, the ECU level, the major

parts of an ECU are of interest. An ECU comprises one or

more micro controller units (MCUs) as well as one or more

communication controllers (CCs). In most cases, exactly one

MCU and one CC are used to build up an ECU. In order to be

able to control physical processes in the car (e.g., control the

injection pump of an engine) the ECU’s MCU is connected to

actuators via the MCU’s analogue or digital output ports. To

provide means to obtain environmental information, sensors

are connected to the MCU’s analogue or digital input ports.

We call this interface the ECU’s environmental interface. The

CC(s) facilitate(s) the physical connectivity of the ECU to the

respective network(s). We call this interface of an ECU the

ECU’s network interface.

B. Software Architecture

The AUTOSAR software architecture makes a rather strict

distinction between application software and basic or system

software. While the basic (or system) software provides func-

tionality like communication protocol stacks for automotive

communication protocols (e.g., FlexRay [6], [7]), an operat-

ing system and diagnostic modules, the application software

comprises all application specific software items (i.e., control

loops, interaction with sensor and actuators). This way, the ba-

sic or system software provides the fundament the application

software is built upon.

The Runtime Environment (RTE) provides the interface be-

tween application software components and the basic software

modules as well as the infrastructure services that enables

communication to occur between application software com-

ponents.

1) Application Software Architecture: Application software

in AUTOSAR consists of application software components,

which are ECU and location independent and sensor-actuator

components that are dependent on ECU hardware and there-

fore location dependent. Whereas instances of application

software components can easily be deployed to and relo-

cated among different ECUs, instances of sensor-actuator

components must be deployed to a specific ECU for per-

formance/efficiency reasons. Deploying multiple instances of

the same component to a single ECU is supported by the

AUTOSAR component standard.

Application software components as well as sensor-actuator

components are interconnected via connectors. These connec-

tors represent the exchange of signals or the remote method

invocations among the connected components.

2) System Software Architecture: In addition to the applica-

tion software components, AUTOSAR also defines a layered

architecture of system software modules, which provide a

basic platform for the execution of the application software

components. Figure 1 gives a coarse grained overview of the

major categories of system software modules.
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Fig. 1. AUTOSAR – System Software Stack Overview

The Input/Output Services are software modules that pro-

vide standardized access to sensors, actuators and ECU on-

board peripherals (e.g., D/A or A/D converters etc.). The Mem-

ory Services comprise software modules that facilitate the stan-

dardized access to internal and external non-volatile memory

for means of persistent storage. The Communication Services

category, which is of primary interest for the remainder of this

paper, contains software modules that provide standardized ac-

cess to vehicle networks (i.e., the Local Interconnect Network

(LIN) [10], the Controller Area Network (CAN) [11], [12], and

FlexRay). Last but not least, the System Services encompass

all software modules that provide standardized (e.g., operating

system, timer support, error loggers) and ECU specific (ECU

state management, watchdog management) system services

and library functions.



The structure of the Communication Services for the

FlexRay communication system are depicted in Figure 2.
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Fig. 2. AUTOSAR – FlexRay Communication Services

The FlexRay Transport Protocol module (FrTp) is used

to perform segmentation and reassembly of large protocol

data units (PDUs)—also termed “messages”—transmitted and

received by the Diagnostic Communication Manager (see

below). This protocol is rather similar or even compatible (in

certain configuration settings) to the ISO TP for CAN [13]

specified in ISO/DIS 15765-2.2.

The PDU Router module (PduR) provides two major ser-

vices. On the one hand it dispatches PDUs received via the

underlying interfaces (e.g., FlexRay Interface) to the different

higher layers (COM, Diagnostic Communication Manager).

On the other hand the PDU router performs gateway func-

tionalities between different communication networks by for-

warding PDUs from one interface to another of either the same

(e.g., FlexRay to FlexRay) or of different type (e.g., CAN to

FlexRay).

The COM module provides signal-based communication

to the higher layers (RTE). The signal-based communication

service of COM can be used for intra-ECU communication

as well as for inter-ECU communication. In the former case,

COM mainly uses shared memory for this intra-ECU commu-

nication, whereas for the latter case at the sender side COM

packs multiple signals into a PDU and forwards this PDU to

the PDU router in order to issue the PDU’s transmission via

the respective interface. —On the receiver side, COM obtains

a PDU from the PDU router, extracts the signals contained

in the PDU and forwards the extracted signals to the higher

software layers.

The Diagnostic Communication Manager module (Dcm)

provides services which allow a tester device to control diag-

nostic functions in an ECU via the communication network

(i.e., CAN, LIN, FlexRay). Hereby the Dcm supports the

Keyword Protocol 2000 (KWP2000) [14] standardized in

ISO/DIS 14230-3 and the Unified Diagnostic Services (UDS)

protocol [15] standardized in ISO/DIS 14229-1.

Network management modules provide means for the coor-

dinated transition of the ECUs in a network into and out of

a low-power (or even power down) sleep mode. AUTOSAR

NM is hereby divided into two modules: a communication

protocol independent module named Generic NM (Nm) and

a communication protocol dependent module named FlexRay

NM (FrNm).

Based on the frame-based services provided by the FlexRay

Driver (see below) the FlexRay Interface module (FrIf) fa-

cilitates the sending and the reception of protocol data units

(PDUs). Hereby multiple PDUs can be packed into a single

frame at the sending ECU and have to be extracted again at

the receiving ECU. The point in time when this packing and

extracting of PDUs takes place is governed by the temporal

scheduling of so-called communication jobs of the FlexRay

Interface. The instant when the frames containing the packed

PDUs are handed over to the FlexRay Driver for transmission

or retrieved from the FlexRay Driver upon reception is trig-

gered by communication jobs of the FlexRay Interface as well.

Hereby each communication job can consist of one or more

communication operations, each of these communication op-

erations handling exactly one communication frame (including

the PDUs contained in this frame).

Just like the FlexRay Interface module, the FlexRay Driver

module (Fr) is protocol specific as well. The FlexRay Driver

module provides the basis for the FlexRay Interface module,

by facilitating the transmission and the reception of frames via

the respective communication controller.

III. APPLYING THE COMPONENT-BASED APPROACH

Components may interact at runtime if their related provided

and required interfaces are validly associated at composition

time. This association, namely the connector, is an abstract

representation of any interaction occurring between the con-

nected components. In most component models the process

of component interaction is covered within some middleware,

therefore we consider those kinds of connectors to be implicit.

An explicit connector on the other hand is an architectural

entity that is used to represent component composition and

interaction and owns its unique implementation of interaction

operators. Therefore, an explicit connector encapsulates all

communication logic for one specific type of interaction. In

addition an explicit connector specifies properties of the con-

nected components’ interaction and provides contracts [16],

[17] regarding communication channels and resource require-

ments. These contracts define guarantees about the behavior of

the associated elements, by specifying requirements and pro-

visions of associated elements. In general a contract consists

of two obligations:

1) A client, requiring a service from a provider, has to

satisfy the provider’s preconditions.

2) A provider of that required service has to fulfill its

postcondition, if the client’s precondition is met.

Hereby we distinguish five types of contracts [8] that are

named after the model element they are associated with:

1) Component-contracts deal with a component’s resource

requirements or deployment restrictions like required

memory or required ECU type.

2) Interface-contracts specify services and properties of

the components’ interfaces like operation signatures,



interface type or temporal properties like worst-case

execution time (WCET) at operation level.

3) Port-contracts deal with the relation between component

ports and interfaces. Behavioral protocols are typically

contained within port-contracts.

4) Connector-contracts specify constraints related to the

used communication channels like worst-case propaga-

tion delays, but also regarding resource requirements of

the connector implementation.

5) Platform-contracts specify properties of platform ele-

ments like ECUs or communication systems e.g. ECU

type, available memory or timing information.

These contracts, when associated with explicit connec-

tors introduced previously, govern the model transformation

process, where explicit connectors are transformed into com-

ponents representing so-called connector fragments. —This

transformation process is described in Section III-C in more

detail.

Applying the component-based paradigm to the AUTOSAR

system software, however, is not feasible without performing

an adequate refactoring of the AUTOSAR system software

modules in advance. This refactoring yields finer-grained sys-

tem software components exhibiting a well-defined function-

ality and thus provides the basis for an application dependent

selection of only those components needed by a specific appli-

cation. This refactoring consist of two steps—namely vertical

layer slicing and combining of the module slices of adjacent

layers—which are discussed in the following subsections.

Note that this approach is fully compliant with AUTOSAR,

since AUTOSAR defines different conformance classes, and

allows (in certain conformance classes) the grouping of several

modules into module groups, where the interfaces of the

module group with other AUTOSAR modules (which are not

a member of this group) have to adhere to the AUTOSAR

specification, whereas those interfaces which are only module

group internal (intra module group interfaces) do not have to

adhere to the AUTOSAR specification.

A. Vertical Layer Slicing

The first step of transforming the AUTOSAR layered mod-

ule software architecture into a component based software

architecture is the vertical slicing of the different modules into

module slices. We hereby assume that each module comprises

a number of rather independent functional units. The process

of slicing must be governed by the following premises:

• Related functional units shall be located in the same

module slice.

• The number of interactions between the functional units

of different module slices must be minimized.

• The functional units within a single module slice shall

exhibit a large amount of inter functional unit interaction.

This way, we arrive at a defined set of module slices, each

slice consisting of one or more functional units, where the

module slices exhibit a low number of inter-unit interaction

but a high number of intra-unit interactions.

The key idea behind this slicing is that each of the resulting

module slices is a first class candidate for becoming (a part

of) a dedicated system software component.

1) Slicing of the AUTOSAR FlexRay Interface and Driver

Module: When applying the slicing step to the AUTOSAR

FlexRay Driver, we identified the following module slices

for the AUTOSAR FlexRay Driver: A base slice containing

all the functional units that provide some kind of basic

functionality to the module (e.g., module initialization ). —

This slice is always required (and thus must be deployed) when

using any of the other slices of the module. All functional

units dealing with FlexRay’s global time (e.g., alarm timer

services based on this global time) have been allocated into

a time services slice. Functional units dealing with FlexRay’s

wakeup service have been grouped into a wakeup slice, all

functional units related to the handling of FlexRay’s media

test symbols have been combined in a media test symbol slice,

and functional units for querying the operational status of

the FlexRay communication controller (e.g., checking whether

the communication controller is synchronous with the other

controllers in the FlexRay network) have been combined in a

status slice. The functional units dealing with the transmission

of PDUs (in the FlexRay Interface) or frames (in the FlexRay

Driver) have been combined in a transmission slice whereas

the functional units dealing with reception have been allocated

in a reception slice.

2) Slicing of the AUTOSAR FlexRay Transport Protocol:

Aside from the obligatory base slice which provides basic

functionality of the module the AUTOSAR FlexRay Transport

protocol mainly consists of five almost orthogonal functional

units, namely a unit dealing with segmentation and reassembly

if the data to be transmitted exceeds the maximum transfer

unit of the underlying communication protocol, a functional

unit dealing with acknowledgment, a functional unit for flow

control handling, and last but not least, functional units for

reception and transmission.

Since these functional units implement to a large degree

orthogonal functionality, almost all 2
5 possible combinations

of the functional units are feasible.

One possible combination (which is a typical use case in

diagnostic communication using ISO/DIS 14229-1) is non-

segmented, non-acknowledged1, communication without flow

control. – In this combination it is obvious that the functional

units dealing with flow control, segmentation, and acknowl-

edgment are not required and can thus be omitted from the

system software stack. Furthermore, if an ECU is only a

receiver in diagnostic communication, the sending functional

unit can be eliminated as well.

B. Combining Module Slices of Different Layers

After the slicing of the modules has been performed, further

improvements with respect to execution time and memory

1No acknowledgment on transport layer level is used, since acknowledg-
ment takes place on the diagnostic layer level (which is one layer above the
transport layer) anyway.



consumption can be achieved, when combining related slices

of vertically adjacent modules into a single component.

Again this combination shall be guided by the premises

already stated in Section III-A.

Reasonable candidates for such a combination are the re-

ception and the transmission slices of the FlexRay Driver with

those of the FlexRay Interface, since every time, a higher layer

of the system software stack used the transmit functionality

of the FlexRay Interface, the transmit functionality of the

FlexRay Driver is required as well.

When looking at the AUTOSAR FlexRay Transport Proto-

col however, the situation gets a little bit more complex. —

For the transmission of transport layer messages, the transmit

slices of FlexRay Driver and FlexRay Interface are required.

Furthermore, if acknowledgment or flow control is required

by the higher layer, the respective slices (namely the flow

control and/or the acknowledgment slice) of the FlexRay

Transport Protocol are required. Since both functionalities

require communication from the receiving to the sending ECU,

the reception slices of FlexRay Interface and FlexRay Driver

are needed as well.

C. Model Transformation

As already stated, we build component based applications

using a model driven development approach. Interaction be-

tween application components is expressed by explicit con-

nectors. Therefore, the first required step in developing a com-

ponent based application is to define a platform independent

model (PIM) of the desired component architecture: All used

components and all their interdependencies modeled, by means

of explicit connectors, are specified within a composition spec-

ification. At this phase of development, the explicit connector

is an abstract representation of communication and interaction

requirements that provides little information on the runtime

properties of the process of interaction. In the second step, a

platform specific model (PSM) of the deployment specification

for the application has to be defined. Now that information

on the target platform and the component’s physical location

is specified, the nature of available communication channels

becomes visible. At this step one can see, for example, if

interaction is distributed or local.

By applying model transformations, the abstract explicit

connectors from the platform independent composition speci-

fication get replaced by a composite structure of component-

like model entities. This is done by splitting the abstract

connector up into two associated pieces, the connector frag-

ments that are composed elements themselves. Each fragment

is attached to exactly one of the components, the original

explicit connector was bound to and has to be deployed along

with it. The fragment’s internal structure is determined by

all contracts applied to the explicit connector and to system

specifications within the application models. It is obvious that

explicit connectors for local compositions may be as simple

as local procedure calls and therefore would not require an

explicit representation. On the contrary, connectors between

components deployed in a distributed manner are represented

by rather complex composite structures dealing with matters

of concurrency and distributed communication. The whole

transformation is recursively applied to the composition model

until the resulting model contains no other connectors than

local procedural ones (that represent local procedure calls)

connecting components or connector fragments.

Beside the additional contracts, that arise by introducing

new model elements, the connector fragments respectively

their internals, that can be used to improve the verification

of the application model, our approach also issues great

potential for optimization of the application’s communication

subsystem. As mentioned before, a connector fragment is a

composite structure itself and contains only that communica-

tion primitives it requires to fulfill operations specified within

the application model. Therefore, all features provided by

a generic communication stack that are not required for a

specific application can be eliminated from the system.

As an example (see Figure 3) consider an explicit data

broadcast connector (C) for distributed deployment that con-

nects two application software components (A and B), where

the interface of the sending application software component

has a contract assigned that the amount of data sent by

this component is smaller than the maximum transfer unit

(MTU) of the underlying communication protocol (FlexRay).

Consider further that the direction of data exchange is strictly

unidirectional and that the contracts of the sending and the

receiving application software component’s interface state

that neither acknowledgment nor flow control is required.

Therefore, the connector fragment at the sending application’s

component side has to contain a request handler and a sender

component (for sending access to the FlexRay communication

controller) only, whereas the receiving side’s fragment has

to contain a receiver and a data buffer component only. The

selection of the sender and receiver component can be done ac-

cording to the system specification (e.g., communication media

type) and to the interface contract. Therefore, only the com-

ponents containing the transmission slice of the AUTOSAR

FlexRay Transport Protocol are needed. —All other slices of

the transport protocol can be eliminated. The remaining slice

(the transmission slice) of the AUTOSAR FlexRay Transport

Protocol depends on the transmission component of FlexRay

Interface and FlexRay Driver.

There are further possible use cases where a large number of

module slices can be eliminated during model transformation:

• Most diagnostic services do not require the exchange

of data which exceeds the maximum transfer unit of

the underlying communication protocol. —Therefore, the

segmentation and reassembly module slice of the trans-

port protocol can be eliminated.

• When looking at a simple sensor node which only broad-

casts sensor value in signals, one realizes that such a

sensor node does not require any transport protocol at

all. —From the FlexRay Driver and FlexRay Interface

functionality, only the transmission component and the

base component is needed.
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IV. PROOF OF CONCEPT

A. Sample Application

In order to demonstrate the feasibility of the presented ap-

proach, we implemented a sample application. This application

is based on a typical automotive use case: A central locking

system including a speed sensor to provide automatic locking

of the doors when the car has reached a certain speed.

The application was specified to contain a central logic for

controlling the status of the doors. Inputs are lock and unlock

requests (initiated by the user) and the actual speed of the

car. Normally the doors are locked and unlocked according

to the requests by the user. If, however, the speed of the car

exceeds a certain value, the doors are locked automatically by

the control logic. As long as the car’s speed exceeds the certain

value, unlock requests of the user are ignored. The doors are

not unlocked automatically when the car slows down below

the mentioned speed value; another unlock request has to be

received. Every time the doors have to be locked or unlocked,

the control logic transmits an according order to each door

lock.

1) Composition: The distributed system for the door lock

application consists of a sensor which transmits unlock and

lock requests as well as a sensor providing the actual speed

status. Further, a control logic for processing the sensor data

and triggering unlock or lock commands is present. Finally, the

distributed system contains actuators locking and unlocking

the doors according to the commands of the central control

logic.

The key sensors may be implemented at the door lock to

detect the turning of a key, at infrared or radio receivers to

recognize the usage of a remote control, at buttons in the

interior of the car, and so on. I.e., it must be possible to

connect more than one key sensor to the system. The requests

generated by the key sensors are intended to be used by the

lock control logic only.

The speed sensor is considered to provide speed data to

every subsystem in need, i.e., one sensor broadcasting the

actual speed throughout the car. The actuators for opening

and closing the doors may—obviously—have a couple of

instances. Therefore the system has to be designed in a way

which allows multiple door lock actuators.

The functionality of the application was divided into the

following four components: Two sensor components (“key

sensor” and “speed sensor”), one controlling component (“lock

control”) and one actuator component (“door lock”).

Multiple instances of the “key sensor” and “door lock”

components may be available, i.e., more than one “key sensor”

may use the interface to “lock control” as well as “lock

control” may use more then one interface instance to door

lock components. While designing the example application we

focused on one “key sensor” and one “door lock” component

instance for reasons of simplicity.

Key Sensor

Speed Sensor

Lock Control Door Lock

<<PC>>

<<PC>>

<<Broadcast>>

Fig. 4. Composition of the Door Lock Application

As one can see in Figure 4, two procedure call (≪PC≫)

and one broadcast (≪Broadcast≫) interfaces have been cho-

sen. Procedural interfaces may be used if the receiver of

the information is explicitly addressed by the sender and the

communications purpose is a procedure call (as it is the case in



this application for “key sensor” → “lock control” and “lock

control” → “door lock”, respectively).

On the other hand, when a component is broadcasting

information the receiver(s) is (are) not known—not even if

there is a receiver at all. The interface between “speed sensor”

and “lock control” is identified as broadcast interface, since

the speed sensor just provides the actual speed data, without

caring about the identity or the number of receivers.

Figure 4 illustrates this functional decomposition of the door

lock application into different components.

2) Deployment: After the application was divided into

components, these were assigned to the ECUs where they

should be executed. Although “key sensor” and “door lock”

components were considered to have multiple instances in a

real car, only one instance of each component was arranged

for our evaluation. The actual deployment of the components

to two ECUs is shown in Figure 5.

Speed Sensor

ECU 1 ECU 2

Door Lock

Key Sensor

Lock Control

FlexRay

Fig. 5. Deployment for the Door Lock Application

B. Comparison

In order to assess the benefits of the proposed refactoring,

we performed the following two comparisons: On the one

hand we evaluated the memory consumption of the ordinary

FlexRay Interface and the ordinary FlexRay Driver to the

respective sliced versions. —Hereby, in the sliced version,

only the slices required for the sample door lock application

presented in Section IV-A have been considered for the

comparison. On the other hand we investigated the memory

consumption and the execution time of the combined FlexRay

Interface and FlexRay Driver slices in comparison to the

respective slices of the ordinary FlexRay Interface and the

ordinary FlexRay Driver.

As far as the memory consumption is concerned, both

version (original and refactored) have been compiled with the

same compiler using the same compiler settings. The memory

(RAM and ROM) used has been derived from the compilation

output (i.e., from the map file produced in the compilation

process).

For the runtime comparison the FlexRay controller’s timer

(which ticks with a granularity of 1 µs) has been used to time

stamp the invocation and the termination of the respective API

functions of the transmission and the reception slices.

1) Slicing Module FrIf and Fr: The first evaluation has

been targeted at showing the benefit of slicing the ordinary

AUTOSAR modules into distinct module slices. —For this

purpose, the slicing of the FlexRay Driver and the FlexRay

Interface modules has been performed as described in Sec-

tion III-A.1.

This first evaluation has been conducted on an ARM922T

CPU running at 166 MHz and providing 16 bit access to an

external ERAY 1.0 FlexRay communication controller.

Figure 6(a) shows the memory consumption (sum of RAM

and ROM consumption) of the used module slices of the

FlexRay Driver for ECU 1 and ECU 2 of the door lock

application compared to the memory consumption of the

ordinary FlexRay Driver module for both ECUs. Figure 6(b)

shows the same data for the FlexRay Interface. Hereby, the

following module slices of the FlexRay Driver and the FlexRay

Interface have been deployed to the respective ECUs: The

base slice and the transmission slice have been deployed to

ECU 1, whereas the base slice and the reception slice have

been deployed to ECU 2. The other slices of the FlexRay

Interface and the FlexRay Driver are not required for this

particular application and have thus not been deployed.

The benefit of this slicing is obvious when looking at

Figure 6: For the FlexRay Driver (Figure 6(a)) as well as for

the FlexRay Interface (Figure 6(b)), the memory consumption

of the sliced version is significantly lower than the memory

consumption of the ordinary modules (approximately by 30%).

2) Combining Module Slices of FrIf and Fr: The second

evaluation has been targeted at showing the benefit of inte-

grating module slices of different horizontal layers. —For this

purpose an integration of the FlexRay Interface transmission

slice with the FlexRay Driver transmission slice as well as a

merge of the respective reception slices has been performed.

For this second evaluation an NXP SJA2510 N1B microcon-

troller from NXP Semiconductors2 with integrated FlexRay

communication controller NXPFRDLC running at 80 MHz

and providing 32 bit access to the FlexRay communication

controller has been chosen. —Program execution took place

from the microcontroller’s internal flash.

Table I illustrates the key figures, namely the number of

PDUs contained in the frame and the total frame length in

units of bytes, and the typical use cases in FlexRay networks

for the frame layout used in this evaluation.

Figure 7 illustrates a comparison of the sum of the execution

times for the plain FlexRay Driver (Fr) and the plain FlexRay

Interface (FrIf) to the execution times for the combined slices

of FlexRay Driver and FlexRay Interface.

Hereby, Figure 7(a) depicts the minimum executions times

whereas Figure 7(b) shows the maximum executions times

of the transmission/reception slices of the ordinary FlexRay

Interface and the ordinary FlexRay Driver (TX/RX (orig)) as

well as of the combined transmission/reception slices (RX/RX

(combined)). —It can be seen that the combination has no

effect (neither positive nor negative) on the minimum exe-

2formerly a division of Philips
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Fig. 6. Memory Consumption Comparison

TABLE I

FRAME LAYOUT OVERVIEW

Type # PDUs Length Use Case

1 1 8 Transmission of a CAN-like
frame (consisting of 8 bytes)

2 1 16 Transmission of frames with
signals for a distributed control
loop

3 1 32 Transmission of frames with
signals for a distributed control
loop

4 3 8 Transmission of multiple CAN-
like frames packed into a single
FlexRay framea

5 1 254 Transmission of diagnostic
frames for in-system flash
programming of ECUs

aThis is a use case for a FlexRay backbone tunneling several
CAN frames.

cution time. In the charts depicting the maximum execution

times, however, the benefit of combining the respective slices

becomes obvious (approximately 10%, see Figure 7(b)).

The effects of this combination with respect to memory

consumption can be seen in Figure 8. Looking at the third

and fourth bar we see that the memory consumption of the

combined FlexRay Interface and FlexRay Driver lies slightly

below the sum of the stand-alone ordinary modules.

Note that this decrease in memory consumption gained by

combining both modules is independent from the decrease

gained by the slicing of the two modules into module slices. —

Thus combining both approaches results in increased benefit.

V. CONCLUSION

In this paper we presented a refactoring for the AUTOSAR

system software stack by applying the component-based par-

adigm. We demonstrated the feasibility of this approach by

performing the refactoring of two sample AUTOSAR modules,

namely FlexRay Driver and FlexRay Interface, by implement-

ing the refactored versions, and by deploying these versions in

a simple automotive door lock application. We pointed out the
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benefits of these refactored versions by comparing the memory

consumption and the required execution time of the refactored

versions to the ordinary AUTOSAR versions. This comparison

yielded an approximately 10% reduction in execution time

as well as an average 30% reduction as far as the memory

footprint is concerned.

The reduction in execution time on the one hand is due

to the combination of parts of the FlexRay Driver and the

FlexRay Interface module, resulting in a much tighter integra-

tion and thus in an elimination of the function call overhead

at the interface between these originally separated modules.

The decrease in the memory consumption on the other hand

is caused by vertical sub-structuring of the original modules

into finer-grained module slices and by careful selection of

only those slices required for a particular application during

deployment.

In the near future, additional benchmarking and an in-depth

analysis of the benefits gained by the approaches presented in

this paper will be conducted by applying the benchmarking

process defined in [18].
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