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1 Introduction 
The use of real-time operating systems has become well established in the automotive industry within the 
last 10 years. The OSEK/VDX standard was the result of the endeavors of major car manufacturers and 
their suppliers to create a standardized software infrastructure for automotive electronics. The basic 
considerations were driven by the awareness that the continuously increasing complexity of the various 
control units can only be managed through well defined interfaces. With continuously shortened 
development cycles, especially in the electronics area, requirements arise concerning compatibility, 
reusability and increased test coverage that can only be fulfilled by setting standards for the various 
system levels. Reusability and standardization are seen as a basic step in the development of more reliable 
software, a fact that is demonstrated by the recent founding of the AUTOSAR consortium (AUTomotive 
Open System Architecture). 

Today, OSEK/VDX conformant operating systems are widely used. This standard was designed for 
applications in the area of car body electronics or for the power train where autonomous control units 
build up a loose network. Currently, new and challenging applications are appearing to make driving safer 
by relieving the driver from routine jobs. These driver assistance systems need to have direct control over 
their related actuators. With these X-by-Wire applications, all mechanical and hydraulic couplings are 
replaced by fault-tolerant electronic components. Typical examples include electronic braking (Brake-by-
Wire) and electronic steering (Drive-by-Wire). Due to their inherent safety-criticality, these systems 
require reliable and secure implementation methods since the failure of a single component may have 
fatal consequences.  

Because these X-by-Wire systems are implemented in a distributed way, the various components in the 
resulting cluster must operate while being synchronized within tight time intervals. The event driven 
mechanisms provided by OSEK/VDX do not fulfill these properties since they do not provide a global 
time distributed over a network. Therefore, the simultaneous operation of different control units at a 
single point in time is not guaranteed. OSEKtime, available in Version 1.0 since July 2001, is the 
specification of a time-driven operating system including a communication layer that meets the 
requirements for real-time capability, synchronization, and fault tolerance. The new standard consists of 
two parts. The first part concerns the operating system (OSEKtime OS [3]) which provides features such 
as tasks and interrupt service routines and which controls their execution with respect to time. The second 
part concerns the middleware layer (OSEKtime FTCom [4]), which is responsible for the fault-tolerant 
communication between the single electronic control units (ECUs). OSEKtime FTCom also offers a 
global time-base that is used by all network partners to coordinate their activity amongst themselves. The 
full functionality required by X-by-Wire systems can only be achieved through the correct cooperation 
between the operating system and the communication system. 

In their joint product TimeCore 3SOFT and DECOMSYS combined 3SOFT’s OSEKtime implementation 
ProOSEK/time, DECOMSYS’ development tools (e.g., DECOMSYS::GENERATOR for the generation 
of an OSEKtime FTCom layer), and a set of standard software components like transport layer [1] or 
network management [2] into an integrated platform for the development of such X-by-Wire systems. 



2 OSEKtime OS 
OSEKtime OS is designed as a time-driven single chip operating system for distributed embedded 
systems. It distinguishes between two logical parts, which can execute functions. These are interrupt 
service routines and tasks. Interrupt service routines (ISRs) execute interrupt related services. Tasks, 
however, are started at defined points in time and have one of three different states. In the running state, 
the CPU is assigned to the task and its commands are executed. Only one task can have this state at any 
point in time while all other states can be adopted simultaneously by several tasks. The preempted state is 
reached by a task that has been in the running state and which was preempted by another task that is to be 
activated. A task can leave the preempted state only if the preempting task changes into the suspended 
state. An inactive task that can be activated is in the suspended state. These state changes are depicted in 
Figure 1. 

 
Figure 1: OSEKtime Task States 

The activation times of the tasks are stored in a so-called dispatcher table before compile time. The 
dispatcher is the central component of the OSEKtime OS and is responsible for activating the tasks 
according to their activation times. The processing of the dispatcher table is done cyclically. A complete 
cycle of the dispatcher table is called a dispatcher round. If a time-driven task is still in the state running 
when the activation time of another time-driven task is reached, the first task passes over to the preempted 
state and stays there until the interrupting task is finished. This kind of scheduling is called stack-based 
scheduling; no priorities are assigned to the tasks - only the activation times define the precedence 
between different tasks. The later a task is started the less likely it is that another task can interrupt it 
while it is being executed. 

Depending on the design of the application, a dispatcher round can include times during which there are 
no tasks or interrupt service routines active. In these idle times, a task named ttIdleTask is assigned to the 
CPU. This task is provided by the OS, has no entry in the dispatcher table and no deadline assigned. Non 
time-critical jobs can be executed in this task. 

Usually the dispatcher is triggered from a non-maskable interrupt whose frequency is coupled to the local 
time-base. At the end of a dispatcher round, after the last time-driven task is finished, the local time is 
synchronized with the global time. This is achieved by prolonging or shortening the current dispatcher 
round in an adequate manner. 

Figure 2 shows the functionality of the dispatcher and the principle of the stack-based scheduling. At the 
beginning of the dispatcher round, the OSEKtime dispatcher is activated and starts task TD1 (point in 
time t1). At the next activation time (point in time t2), the dispatcher preempts task TD1 to activate task 
TD2. Task TD1 changes into the preempted state. After TD2 is finished, the dispatcher once again 
becomes active and resumes the execution of the interrupted task TD1. After this task is finished, there is 
no time-driven task to be executed at this point of time and therefore the ttIdleTask is activated. As soon 
as t3 is reached, ttIdleTask is interrupted and the execution of task TD3 is initiated. 

In the dispatcher table a deadline can be defined for every task. The monitoring of the deadline is done by 
the dispatcher. If a task has not finished when its deadline is reached, the operating system will be shut 



down. If there is no deadline for a specific task then it has to be finished by the end of the dispatcher 
round. If this is not the case, the system will shut down as well. 

 
Figure 2: Operation of the Stack Based OSEKtime Dispatcher 

The occurrence of interrupts is also supervised and controlled by the operating system. An interrupt 
source is switched on only through an entry in the dispatcher table. After an interrupt is raised, its 
interrupt service routine will be executed. Then the operating system switches off the interrupt source and 
it can only be switched on again by a new entry in the dispatcher table. In this way, the whole dispatcher 
round can be divided into disjoint time intervals where a particular interrupt can occur at most once 
within one of these intervals. 

Since the duty of the dispatcher during runtime is restricted to the cyclic execution of the dispatcher table, 
the configuration process of the distributed system with highly synchronized job execution has to be done 
with care. The knowledge of the worst case execution time (WCET) [10, 11, 12, 13, 14] of every task and 
interrupt service routine is essential to plan the course of a dispatcher round. 

2.1 OSEK/VDX Subsystem 
If an application consists of a time-critical part and a more complex, non time-critical part, then 
OSEKtime offers an interesting solution for it: Instead of the ttIdleTask described above, an OSEK/VDX 
subsystem can be integrated which offers an extensive set of functionality to the user. These are described 
briefly in the following paragraphs. 

2.1.1 Tasks 
There are two types of tasks in the OSEK/VDX subsystem. These are basic and extended tasks. Both can 
have the states ready, running, and suspended. Additionally, extended tasks can assume the state waiting 
to wait for an event. In contrast to the time-driven tasks described earlier, OSEK/VDX tasks have 
priorities starting at 0 (low) and increasing to larger numbers. OSEK/VDX tasks support different 
scheduling strategies: a fully preemptive OSEK/VDX task in the running state can be interrupted and 
moved to the ready state by another OSEK/VDX task which reaches the ready state and has a higher 
priority. However, a non-preemptive OSEK/VDX task does not release the CPU during its execution 
when a higher priority task reaches the ready state. A task in the suspended state is passive and can be 
activated. 

2.1.2 Interrupt Service Routines 
The OSEK/VDX subsystem offers two categories of interrupt service routines. Category 1 ISRs do not 
use any OSEK/VDX functionality. After the termination of such a routine, the normal program execution 
is continued at the point where the corresponding interrupt occurred. In ISRs of category 2, OSEK/VDX 



functions can be called which can initiate a rescheduling. Rescheduling takes place after termination of 
the ISR if the interrupted task is fully preemptive and there is no other pending interrupt. 

2.1.3 Events 
Events are used to synchronize OSEK/VDX tasks and interrupt service routines. Extended tasks can wait 
on one or more events while any OSEK/VDX task, ISRs of category 2, and some other mechanisms can 
set an event. In doing so an event driven mechanism can be built up allowing extended tasks to wait for a 
certain event occurrence without requiring CPU time. 

2.1.4 Counters and Alarms 
Counters serve for counting any kind of event and can, for example, be associated with a cyclically 
occurring timer interrupt. An alarm represents an action, which will be executed by reaching a certain 
counter value. This action can either be the activation of an OSEK/VDX task or the setting of an event. 

2.1.5 Resources 
During the time in which an OSEK/VDX task occupies a resource, it cannot be interrupted by another 
OSEK/VDX task that also requires the same resource. By this mechanism, the access to critical sections, 
for example memory or ports, is limited and mutual exclusion constraints are enforced. 

2.2 Mixed System 
If combining OSEKtime and OSEK/VDX in a so-called “mixed system” one has to take care for obvious 
reasons that all OSEKtime interrupts have precedence over the OSEK/VDX interrupts. Because of this, 
OSEKtime can delay the execution of OSEK/VDX IRQs, but all time critical activity should be processed 
in the OSEKtime context anyway. The same is true for OSEK/VDX IRQs and OSEKtime tasks: If 
OSEK/VDX IRQs have a higher priority than OSEKtime tasks, the OSEK/VDX IRQs can delay the 
processing of OSEKtime tasks which is a contradiction to the behavior required from the OSEKtime 
specification. 

3 OSEKtime FTCom 
For the determinism of the entire distributed system, it is required that not only the operating system and 
the application of each ECU, but also the communication among the different ECUs exhibits a 
deterministic temporal behavior. In order to achieve this determinism at communication level, time-
driven communication protocols (e.g., FlexRay [15, 16]) are used especially for safety-critical 
applications. 

In order to abstract from the peculiarities of a concrete communication protocol, the OSEK/VDX 
committee defined the middleware layer OSEKtime FTCom. This provides a standardized interface for 
the exchange of messages (i.e. parts of communication frames) among application tasks (possibly located 
on different ECUs). 

3.1 OSEKtime FTCom Software Layers 
OSEKtime FTCom itself is structured into different software layers. These layers are depicted in Figure 3 
and are described in the following sections. 

3.1.1 Interaction Layer 
The interaction layer takes care of the representational issues of messages like byte ordering and 
alignment. On the sender’s side, this layer converts messages from the byte order of the sending ECU into 
the network byte order. Furthermore, the interaction layer packs multiple messages into a single 
communication frame in order to reduce communication bandwidth consumption. 



 
Figure 3: OSEKtime FTCom Layers 

On the receiver’s side, the layer extracts the multiple packed messages from a single communication 
frame and converts the message from network byte order into the byte order of the receiving ECU. 

3.1.2 Fault Tolerance Layer 
On top of the interaction layer, the fault tolerance layer manages all fault tolerance issues, namely 
message replication and message reduction. 

On the sender’s side, this layer replicates a single application message and thus produces multiple 
message instances. These message instances are handed over to the interaction layer for byte order 
conversion and packing. Afterwards, the message instances are transmitted via redundant communication 
paths. Hereby temporal redundancy (multiple transmissions on a single communication channel) and 
spatial redundancy (transmission on multiple communication channels) can be distinguished. 

On the receiver’s side, multiple message instances are collected from the interaction layer and reduced to 
obtain a single application message, which is handed on to the application layer. The number of message 
instances per application message as well as the reduction algorithms used depend on the fault model1 
assumed and on the number of faults2 to be tolerated. 

In addition to a fixed number of predefined reduction algorithms, OSEKtime FTCom provides the 
possibility to defined custom reduction algorithms as well. 

3.1.3 Application Layer 
The top-most layer, the so-called application layer, acts as the application interface of OSEKtime FTCom. 
This layer provides three API functions for message exchange: one for the transmission of a message, one 
for the reception of a message, and one for tagging a message as invalid3. 

3.2 System Tasks vs. API Functions 
The functionality of the interaction layer and the fault tolerance layer is provided by so-called system 
tasks. These system tasks are invoked on a behind-the-scenes basis by the OSEKtime dispatcher. 

The functionality of the application layer, however, is implemented in the form of API functions that are 
activated by the application program by means of function calls. 

                                                      
1 In case of consistent faults in value domain, majority voting would be an appropriate reduction algorithm. 
2 In order to tolerate one consistent fault in the value domain, 3 message instances are required. 
3 In time-driven communication systems it is generally not possible to simply omit a message transmission. Thus 
some possibility must be provided to mark a message in a way that the receiver can classify the message as invalid. 



3.3 Time Management 
In addition to the previously presented services for message exchange, OSEKtime FTCom provides 
services dealing with (global) time. Among these services are API functions for access to the global time 
provided by the communication protocol and for the synchronization of the OSEKtime dispatcher with 
this global time. This kind of synchronization makes it possible to state an end-to-end exchange latency 
for each message transmitted from one ECU to another and is thus an important prerequisite for the 
determinism of the overall system. 

4 Standard Software Components 
In addition to the services provided by the OSEKtime operating system and OSEKtime FTCom, standard 
software components are included in TimeCore. The configuration of these standard software components 
is done via the tools described in the following sections. 

The first release of TimeCore (V1.0.0) provides a generic communication driver for FlexRay, several 
debugging aids like stack checking and ORTI [8, 9] support as well as timing facilities like real-time 
clocks and task tracing. Future versions of TimeCore will contain standardized software components for 
transport layers [1], network management components [2] for various communication protocols, 
components for diagnostic services [7], driver packages for on-board modules like analogue digital 
converters [5, 6], and boot loading support. 

5 Development Process - Tooling 
To ensure the consistency between application code, configuration, and standard software components, 
the whole development process should be accompanied and assisted by a tool chain. Commonly this 
development process is based on the so-called V-model, which is illustrated in Figure 4. 

 
Figure 4: The V-Model 

Based on the system requirements a functional model of the system is constructed. It is common practice 
to create this model in a simulation language like MATLAB/Simulink or ASCET SD. Thus, it is possible 
to perform simulations with this model in order to detect deficiencies of the modeled system at an early 
development stage. Using code generators the application specific parts of the model are then translated 
into target code. The right part of the V-model deals with testing of the (generated) code, verification of 
the system’s functionality against the functional model, and validation of the system against the initial 
system requirements. 



It should be noted that, as far as communication is concerned, the step from the functional model to the 
(generated) code is not supported by conventional tool chains. This fact is a major drawback since, 
especially in tightly synchronized time-driven systems, all actions (application and communication) 
should be planned and developed in a holistic manner. Furthermore, the continuity of the tool chain is an 
essential property ensuring that the simulation results obtained at intermediate abstraction and modeling 
levels match the behavior of the resulting real system on the respective target hardware. 

Therefore, the TimeCore tool chain introduces a new sub-model, the so-called A-model, between the 
functional model and the (generated) code. This A-model is illustrated in Figure 5. 

 
Figure 5: The A-Model  

5.1 The Architecture-Allocated Functional Model 
Starting from the plain functional model, an architecture-allocated functional model is created. This 
model takes the architectural entities (e.g., tasks, ECUs, communication controller) of the distributed 
system into account. The plain functional model is partitioned into multiple model parts, which are then 
assigned to logical execution units, namely tasks. The tasks themselves are supplied with parameters like 
period, temporal offset within this period, deadline, and worst case execution time (WCET). 

The deadline describes the latest possible point in time by which the execution of a task has to be 
completed. The worst case execution time depends on the task itself (i.e. on its program code) and on the 
preemptions caused by other tasks on the one hand and by interrupts (and the respective ISRs) on the 
other hand. While the preemption caused by other tasks can be derived from the task scheduler (i.e. from 
the dispatching table), one can only make assumptions about the preemptions caused by the interrupts. 

Once supplied with valid parameters, the tasks are assigned to physical execution units, namely ECUs. 
Depending on this assignment, message relations can be derived. These message relations are resolved 
either as local (inter-task) communication or as global (inter-ECU) communication. Similarly to tasks, 
attributes like period, offset and data type are supplied to messages. 

Using TimeCore’s SIMSYSTEM block set for Simulink, which provides special blocks for ECUs and 
tasks as well as connectors for the modeling of the message relations, the previously described 
partitioning can be performed. The resulting partitioned architecture-allocated functional model can then 
be used to simulate the effect of task execution times on the overall system. 



5.2 The Architectural Model 
The architectural model solely contains architectural information. This model is derived from the 
architecture allocated functional model by removing all functional aspects from the model. 

The architectural model can be split into a software model containing tasks and messages, and a hardware 
model containing ECUs, communication controllers, and communication media. The DESIGNER tool 
manages the architectural model and provides a graphical user interface for manipulating the model (see 
Figure 6). 

 
Figure 6: The DESIGNER GUI 

Based on the information contained in this model, a communication schedule and appropriate 
configuration data for the communication controllers can be generated automatically. 

The task schedule currently has to be designed by hand (using the DESIGNER GUI). In future extensions 
of the TimeCore tool chain however, this task schedule will be generated automatically similarly to the 
communication schedule. 

5.3 The Virtual Prototype 
After the task and communication schedules have been created, this scheduling information is back 
annotated into the architecture-allocated functional model. In this step, the SIMSYSTEM connectors are 
replaced by SIMCOM connectors with the ability to simulate communication according to the 
communication schedule generate in the architectural model. The resulting model is called the virtual 
prototype. 

Any simulation performed with this virtual prototype uses a special simulation engine that takes temporal 
(e.g. communication latencies) and functional (e.g. quantization errors) aspects of the communication 
among the tasks into account. Therefore, the virtual prototype exhibits the same functional and temporal 
behavior as the real system. Using the virtual prototype, errors made during system design can be 
identified very early in the development process prior to building a real hardware prototype of the system. 



5.4 Middleware Code Generation 
Using the data contained in the architectural model, the GENERATOR produces OSEKtime FTCom 
compliant middleware code. Hereby, for each message, dedicated optimized code is generated taking into 
account the peculiarities of each specific message. The major benefit of this approach, when compared to 
a general communication stack, is the fact that parameters like signal length and position of the signal 
within the communication frame are constants in the generated code and allow for strength optimizations 
during compilation. Thus, this approach drastically reduces the execution time of the rather time 
consuming actions that have to be performed by the OSEKtime FTCom compliant middleware layer. 

5.5 Application Code Generation 
Using SIMTARGET, a target module for Real-Time Workshop, the virtual prototype can be used for the 
generation of application code. Hereby, for each SIMCOM connector, a call to the respective OSEKtime 
FTCom API function provided by the generated middleware code is produced during application code 
generation. 

5.6 OIL Export and ECU Configuration 
Based on the information contained in the architectural model, the OILEXPORTER generates an OIL file 
for every ECU in the distributed system. The OSEKtime configuration in these files is consistent between 
the various ECUs and time driven tasks so that they can meet their time-based boundary conditions. 
However, there are still operating system resources in a single ECU, which can or have to be configured 
with the ProOSEK Configurator (Figure 7) independently from the rest of the time-driven network: 

� The starting points of time-driven tasks, which do not have a network, related context or the 
enabling of IRQs may be adjusted to the conditions of an ECU. In this way, an ECU specific 
fine adjustment can be achieved. 

� The OSEK/VDX configuration is not part of the global configuration and therefore not 
contained in the OIL files generated by the OILEXPORTER. An OSEK/VDX subsystem has 
to be completely configured with the ProOSEK Configurator. 

After finishing the configuration, procedure the ProOSEK Configurator finally generates an operating 
system kernel which is optimized according to the underlying OIL information. 

 
Figure 7: The ProOSEK Configurator GUI 



By the planned embedding of the TimeCore into the tresos environment, it will be possible to extend the 
configuration procedure to a wider scope. With tresos, components like I/O drivers, cryptographic 
libraries or a bootloader can be configured together with the operating system. The integrated approach of 
tresos makes sure that all inter-module dependencies are resolved. For example, OSEK/VDX tasks 
needed by a driver will be configured automatically in the proper way with respect to the whole system. 

5.7 Compile and Link 
In a last development step all generated code parts (operating system code, application code, and 
middleware code) are compiled separately and linked together, resulting in the executable application 
program, which can be downloaded onto a single ECU. 

For a summary, Figure 8 illustrates the overall TimeCore development process. 

 
Figure 8: TimeCore Development Process 

6 Making Ends Meet 
As stated in the development process section, several assumptions about parts of the system have to be 
made during design time. At system run-time, however it is essential to ensure that the assumptions made 
during system design time really hold during operation. 



In the following it is illustrated how design assumptions can be enforced by services provided by the 
OSEKtime operating system. 

6.1 Worst Case Execution Times 
All task scheduling and all message exchange latency calculations are based on the worst case execution 
time of the application and the system tasks. If, however, one of the tasks exceeds the assumed worst case 
execution time, the behavior of the system deviates from the modeled and simulated behavior. 
Furthermore, once this happens, the overall system behavior is no longer clearly defined. 

Using the deadline monitoring service provided by the OSEKtime operating system and by placing the 
task deadlines close to the tasks latest possible termination time (i.e. task start time plus worst case 
execution time), the assumptions made about the task WCET at design time can be enforced at run time. 
If in such a setup a task exceeds its assumed worst case execution time, the operating system can initiate 
error handling strategies or guide the whole system into a safe state, thus maintaining a defined overall 
system behavior. 

6.2 Interrupt Occurrence 
Apart from assumptions about the WCETs of tasks, assumptions about the occurrence of interrupts (and 
about possible preemptions of tasks resulting from these interrupt occurrences) have been made. If due to 
a malfunction of the interrupt line, one interrupt occurs more often than initially assumed, the system 
behavior again deviates from the modeled behavior since the increased occurrences of interrupts causes 
more task preemptions, which in turn causes increased real WCETs. 

With the interrupt supervision service of OSEKtime, the occurrence of interrupts can be limited to the 
number of occurrences assumed during system design time. Thus whenever this feature is used 
appropriately, a deviation of the system behavior during run-time caused by interrupt showers is 
prevented. 

7 Conclusion 
TimeCore provides a combination of the time-driven operating system OSEKtime OS and the fault-
tolerant middleware layer OSEKtime FTCom. Due to the time-driven operation, tight temporal 
synchronization can be achieved in the distributed system. 

An integrated development process using a model-based approach guides the application developer from 
system design to optimized application code. At different levels of abstraction the intermediate system 
models facilitate system verification at an early stage in the development process without the need to 
build up a hardware prototype of the system. 

Run-time services of the operating system like deadline monitoring and interrupt supervision ensure that 
assumptions made during system design hold during the system’s run-time. 

The predictability resulting from the tight temporal synchronization together with the inherent fault 
tolerance provided by OSEKtime FTCom and the increased overall test coverage through the use of 
standard software components makes TimeCore well suited for deployment in safety-critical automotive 
applications. 
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