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1 Introduction 
During the last few years, major automotive companies have been striving for the 
deployment of standard software components since the potential benefits of standard 
software components are huge [1], a key motivation for the formation of the AUTOSAR 
consortium. Important issues in this context are safety (increased test depth of standard 
software components), software reuse, for the possibility to combine software components 
supplied by different vendors, and last but not least cost reasons in order to cope with ever 
reducing development cycles. 

TimeCore [2], a joint product of 3SOFT GmbH and DECOMSYS GmbH, provides a well-
integrated set of such standard software components. Apart from its major components, the 
time-driven operating system OSEKtime OS [3], the event-driven operating system 
OSEK/VDX OS [4], and the fault-tolerant communication layer OSEKtime FTCom [5], 
TimeCore features  

• a transport layer for the transmission of data packets larger than maximum transfer 
unit (MTU) of the underlying communication system and  

• a network management service taking care of coordinated mode changes of all ECUs 
connected to the communication network. 

This article focuses on these latter two services, namely transport layer and network 
management. 

2 FlexRay Transport Layer 
In general, a transport layer facilitates the transmission of messages whose length is greater 
than the maximum transfer unit (MTU) of the underlying communication system. On the 
sender’s side, the transport layer will split such long messages into multiple packets, which 
can be handled by the underlying communication system. On the receiver’s side, the 
transport layer reassembles these packets again. 

TimeCore provides implementations of this transport layer that are built on top of the CAN 
communication system and on top of the FlexRay communication system [6, 7]. Whereas the 
CAN transport layer is compliant to the ISO standard [8], the FlexRay implementation can 
only be close to this standard due to the lack of an appropriate standard for FlexRay. 
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2.1 Basic Operation 
The FlexRay implementation of the TimeCore transport layer provides acknowledged peer-
to-peer data transfer of up to 16 megabytes. The different frame types used by the transport 
layer are very similar to the ones used in the ISO transport layer for CAN. 

If the amount of data to be sent is smaller than the maximum payload of a transport layer 
frame, only a so-called single frame is sent. If this transmission is performed successfully, 
the recipient answers with a flow control frame containing a positive acknowledgment (

(a)). In case the transmission of the single frame is faulty, the sender answers with a flow 
control containing a negative acknowledgment (Figure 1(b)). 

Figure 
1

In case the data to be sent is larger than the maximum payload of a transport layer frame, 
segmentation must take place at the sender side and reassembly at the recipient’s side. In 
that case the sender transmits a so-called first frame (which contains the total amount of data 
bytes to be transferred). The receiver answers with a flow control clear to send frame. 
Triggered by this flow control clear to send frame, the sender transmits a block of up to 16 
consecutive frames, each one containing a chunk of data and a unique sequence number. 
The exact amount of consecutive frames within a block is determined by the block size 
parameter in the flow control clear to send frame of the receiver. After a complete 
transmission of a block of consecutive frames, the recipient again has to trigger the next 
block of consecutive frames by a flow control clear to send frame. This procedure is repeated 
until all data has been transferred to the receiver. If this is the case the receiver 
acknowledges the complete transmission with a flow control frame containing a positive 
acknowledgement (Figure 1(d)). If some consecutive frame is not received correctly, the 
receiver has the possibility to request the retransmission of all consecutive frames contained 
in current block starting from the consecutive frame that has been incorrectly received by 
transmitting a flow control frame containing a negative acknowledgement and the sequence 
number of the first frame to retransmit (Figure 1(c)). 
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Figure 1: Segmented and Unsegmented Data Exchange 



Different from the ISO transport layer for CAN, the FlexRay implementation of the TimeCore 
transport layer supports the handling of multiple parallel transport layer connections at the 
same time. – In that case each connection is uniquely identified by the 2-tuple made up of 
sender and the receiver address or by a unique session ID (Section 2.3). 

2.2 Addressing Scheme 
In order to address different ECU within a network in a unique fashion, each ECU is given a 
unique physical address (similar to the IP addresses). TimeCore’s addressing scheme 
supports direct addressing (sending a message to a specific node), broadcast addressing 
(sending a message to all nodes in the network), and multicast addressing (sending a 
message to a specific subset of nodes). Furthermore, TimeCore’s addressing scheme 
distinguishes between physical addressing (based on an ECU’s physical address) and 
functional addressing (based on the functions performed by a specific ECU). 

2.3 Frame Format 
The different types of frames (as described in Section 2.1) used by the transport layer adhere 
to the frame format depicted in Figure 2. – The frame format is designed for MTUs of at least 
32 bytes. 
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Figure 2: FlexRay Transport Layer Frame Format 

Hereby byte 0 is a control byte that defines the layout of the remaining frame. The session bit 
defines whether a connection of the transport layer is identified by the 2-tuple of sender- and 
receiver address or by a unique session number. The address length bit indicates whether 8 
or 16 bit addresses are used. The sender address type defines whether the source address 
identifies a single ECU (physical addressing) or a single function (functional addressing). 
Depending on the receiver address type bits, the semantics of the target address (single 
ECU, single function, group of ECUs, group of functions) is determined. 

Byte 1 and 2 (in case of 16 bit addresses) contain the target address, whereas byte 3 and 4 
(in case of 16 bit addresses) contain the source address. 

Byte 5 determines the frame type (i.e., single frame, first frame, consecutive frame, or flow 
control frame) and contains the sequence number in case of consecutive frames. 



Byte 6 contains the first byte of the data length in case of single- and first frames, the desired 
block size in case of flow control clear to send frames, and the sequence number in case of 
flow control negative acknowledge frames. 

Byte 7 and 8 contain subsequent bytes of the data length depending on the actual amount of 
data bytes to be transmitted. 

Using this frame format, the maximum payload length for a transport layer frame is 28 bytes 
in case of 32 byte MTUs. 

2.4 FlexRay Schedule 
The FlexRay implementation of the transport layer makes use of the dynamic part of FlexRay 
for the transmission of the transport layer frames. Hereby the bandwidth available to the 
transport layer can flexibly be chosen upon system design time. A contingent region of 
minislots within the dynamic part of FlexRay is reserved for the transport layer. This region is 
divided into three distinct sub regions as depicted in . The setup depicted in  
assumes that the FlexRay network is connected via a dedicated master gateway to the main 
diagnostic network of the car (currently CAN). – Thus diagnostic access to the different 
ECUs connected to FlexRay or even flash download has to take place via this master 
gateway. 

Figure 3 Figure 3

Figure 3: Transport Layer FlexRay Schedule 
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Region1 is reserved for the communication from the master gateway to the different ECUs. 
Hereby a dedicated number of minislots can be reserved for the communication with each 
ECUs, thus allowing for precise offline bandwidth allocation on a per ECU basis. 

Region 2 is reserved for the communication from each ECU to the master gateway. Since 
the required bandwidth for this communication will be rather small (only diagnostic 
responses) a single minislot per ECU is reserved here. 

Region 3 serves as a broadcast region, where the master gateway is able to communicate 
with multiple ECUs at the same time. 

2.5 Configuration 
The implementation of the transport layer consists of static code sections and configuration 
files. The configuration files contain the communication settings for the transport layer like 
allocated FlexRay buffers, number of send and receive slots for the master gateway and the 
involved ECUs and addressing information.  

The transport layer set-up is configured for all nodes together using a dedicated configuration 
tool. This tool is implemented as plug-in of the Timeore toolchain. During execution it 
performs the following tasks: 



• Slot Assignment: With the aid of the configuration tool a certain amount of minislots 
can be reserved for the transport layer within FlexRay’s dynamic segment. From this 
pool of reserved minislots, a defined number can be assigned to each ECU (

). 
Figure 

4

Figure 4: Transport Layer Configuration – Assigning Slot and Reserving FlexRay Buffers 

• Buffer Reservation: For the previously defined minislots a pool of FlexRay buffers is 
reserved (Figure 4). 

  

• Definition of Groups: In this step address groups can be defined and ECUs can be 
defined to be members of these groups. In the left part of Figure 5 for example a 
group named “Wheel” is defined with the ECUs Slave1Controller, Slave2Controller, 
Slave3Controller as group members. 

• Generation of Configuration Files: In the last step, the configuration tool produces 
a set of configuration files which contain the information entered in the previous three 
steps. – Hereby one file for each ECU is generated in the chosen directory (Figure 5). 

  
Figure 5: Transport Layer Configuration – Definition of Groups and Configuration File 

Generation 



2.6 Higher Layer Protocols 
Based on the services provided by the transport layer, higher-level services as well as 
diagnostic protocols can be implemented. Boot loading or flash programming services (as 
widely used by today’s automotive manufacturers for performing maintenance updates in the 
field) are examples for such higher-level services. A representative for the field of diagnostic 
protocols is KWP2000 [9], an ISO standard which describes a set of functions with which an 
ECU can be diagnosed using a dedicated tester tool. 

2.7 Comparison to ISO TP for CAN 
When compared to the ISO transport layer for CAN, the FlexRay implementation for 
TimeCore provides several advantages: 

• Acknowledged Data Exchange: Different from the ISO TP for CAN the FlexRay 
implementation provides acknowledgment to the sender of a transmission, whether or 
not the transmission has been successfully received by the recipient. 

• Partial Retransmission: If some consecutive frames within a block of consecutive 
frames are not received correctly, the recipient can request retransmission of these 
frames. 

These advantages lead on the one hand to secured transmissions and on the other hand to 
shorter transmission times in the presence of transmission errors. 

3 Network Management 
Network management [10] in the automotive area handles the controlled coordinated startup 
and shutdown of the communication of multiple ECUs within a network. The shutdown of the 
network (and the accompanying transitions of the ECUs into a low-power or even a power-
down mode) is in general done to reduce the network’s power consumption in situations, 
where the functions of the respective ECUs are not required (e.g., when the car is safely 
stored in a garage). 

3.1 Basic Operation 
The basic idea of network management (NM) is that the application of each ECU can decide 
whether or not the ECU requires network communication. In case it does not require network 
communication, the application requests its local network management instance to transit 
into sleep mode. This transition however is not performed instantaneously. The network 
management instead sets the sleep indication flag within its periodically transmitted NM 
frame (see Sections 3.2 and 3.3). This way the whole ECU signals its desire to go to sleep 
mode to all other ECUs. Other ECUs that agree with the decision to transit into sleep mode 
can signal this agreement by setting the sleep acknowledge flag within their own cyclically 
transmitted NM frames. As soon as all ECUs agree on the decisions to transit into sleep 
mode, this transition really takes place. As long as a single ECU objects to this decision 
(since it for example still requires network communication) all ECUs stay awake. 

A transition between the awake mode and the sleep mode is indicated to application by 
means of callback functions. Within this callback function, the application can perform proper 
actions according to the actual transition (e.g., put the whole ECU into a low power mode in 
case of a transition to sleep mode). 

3.2 Frame Format 
The frame format for the FlexRay NM (depicted in Figure 6) is chosen in a way to be 
compatible to the OSEK NM. Hereby each NM frame consists of a total of 8 bytes. 
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Figure 6: FlexRay Network Management Frame Format 

Byte 0 of the frame holds the source node ID for compatibility reasons. Byte 1 contains a set 
of flags used by the NM protocol. While the sleep indication and the sleep acknowledgement 
flag are really needed by the protocol, the ring flag is just kept for OSEK compatibility and is 
always set. All other bits within byte 1 and the remaining six bytes (byte 2 to 7) are reserved 
for future extensions. 

Note that neither source node ID nor target node ID have to be transmitted explicitly within 
NM frame. The source node ID can be determined solely from the point in time the 
transmission of the NM frame takes place (see Section 3.3). Nevertheless the source node 
ID is transmitted in order to keep the NM frame format compatible with the OSEK NM frame 
format. The transmission of the target node ID is not required either, since the FlexRay NM 
uses logical broadcast communication. 

3.3 FlexRay Schedule 
TimeCore’s network management is built on top of the FlexRay communication system, 
where the first slot within the dynamic part is used for the exchange of network management 
data using so-called network management frames amongst the ECUs participating in 
network management. – This slot is temporally multiplexed between all participating nodes, 
which results in predictable transmission1 of the network management data and low 
bandwidth consumption. The transmission schedule after which the pattern of NM frames is 
repeated (i.e., each NM participant has transmitted its own NM frame) is called a network 
management cycle. 

In order to achieve the previously described temporal multiplexing, each ECU compares the 
current cycle counter value of the FlexRay communication system (modulo the length of a 
network management cycle) with its own network management ID. In case of a match, the 
ECU is allowed to transmit within the first dynamic slot of this communication cycle. 
Otherwise some other ECU is allowed to transmit and all other ECUs have to receive this 
transmission. 

3.4 Configuration 
Similar to the transport layer the implementation of the network management layer consists 
of static code sections and configuration files. The configuration files contain the settings for 
the network management layer like allocated buffers as well as send and receive slots and a 
unique network management ID for each ECU.  
The transport layer set-up is configured for all ECUs using a dedicated configuration tool. 
This tool is implemented as plug-in of the TimeCore toolchain. Figure 7 illustrates the GUI of 
the configuration tool. Hereby the GUI elements labeled Network Management provide the 
possibility to reserved minislots within the dynamic segment of FlexRay for use by the 
network management algorithm. 

                                                      
1 In a valid FlexRay configuration (i.e., dynamic part is at least long enough to accommodate the first dynamic 
slot), transmission within the first dynamic slot is guaranteed to take place. 



 
Figure 7: Network Management Configuration 

3.5 Comparison to OSEK NM 
When comparing the FlexRay NM to OSEK NM, FlexRay NM provides the following 
advantages: 

• Prevention of Network Congestion Upon Power Up: Since FlexRay NM uses a 
static cyclic transmission pattern that is controlled by the global timing of the FlexRay 
communication system, the network load produced by FlexRay NM is constant in all 
possible scenarios. OSEK NM however produces high network load when multiple 
ECUs are powered up simultaneously, since each of the ECUs starts transmitting NM 
frames in an uncoordinated unsynchronized fashion until the logical ring structure of 
OSEK NM is established. 

• Fast Response: Since FlexRay NM makes use of the broadcast nature of the 
communication, the response time (i.e., the time between the request of going into 
sleep mode (under the assumption that none of the other ECU objects this decision) 
and the actual transition into sleep mode) of FlexRay NM is much smaller than the 
response time of the OSEK NM, where is sleep indication has to be propagated 
through the whole logical ring. 

• Deterministic Operation in Faulty Scenarios: A major drawback of OSEK NM is 
the fact that faulty scenarios lead to indeterminism. The failure of a single ECU 
causes the logical ring to be broken. The mending of the broken ring requires 
additional communication which induces additional network load. In FlexRay NM 
failures of single ECUs are consistently perceived by all recipients and thus no 
additional communication is required. This results in a deterministic operation even in 
faulty scenarios. 

These advantages lead to a fast, deterministic operation of the FlexRay NM with defined 
network load even under faulty conditions. 

4 Conclusion 
TimeCore provides a combination of the time-driven operating system OSEKtime OS, the 
event-driven operating system OSEK/VDX OS, and the fault-tolerant communication layer 
OSEKtime FTCom. 



With its transport layer, TimeCore provides the basis for higher-level services like diagnostics 
and flash download – services required and used by almost every automotive company for 
software updates and diagnostics in the field. 

TimeCore’s network management facilitates the coordinated startup of all ECUs connected 
to the network as well as the transition of the ECUs into a low-power or even a power-down 
mode in order to reduce power consumption in dedicated operation modes of the car (e.g., 
when placed in the garage). 

By providing these two essential services in addition to its predictable time-driven operating 
system and its fault-tolerant communication layer, TimeCore again underlines that it is well 
suited for deployment in today’s and future automotive applications. 
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