
Exploiting Mobile Agents for Structured Distributed
Software-Implemented Fault Injection

Thomas M. Galla
DECOMSYS

Dependable Computer Systems GmbH
Vienna, Austria

Email: thomas.m.galla@decomsys.com

Karin A. Hummel
Institute of Distributed and Multimedia

Systems, University of Vienna
Vienna, Austria

Email: karin.hummel@univie.ac.at

Burkhard Peer
DECOMSYS

Dependable Computer Systems GmbH
Vienna, Austria

Email: burkhard.peer@decomsys.com

Abstract
Embedded distributed real-time systems are traditionally used
in safety-critical application areas such as avionics, health-
care, and the automotive sector. Assuring dependability under
faulty conditions by means of fault tolerance mechanisms is
a major concern in safety-critical systems. From a validation
perspective, Software-Implemented Fault Injection (SWIFI) is
an approved means for testing fault tolerance mechanisms.

In recent work, we have introduced the concept of using
mobile agents for distributed SWIFI in time-driven real-time
systems. This paper presents a prototypical implementation
of the agent platform for the OSEKtime real-time operating
system and the FlexRay communication system. It is further
shown, how to implement fault injection experiments by means
of mobile agents in a structured manner following a classifica-
tion of faults in terms of domain, persistence, and perception.
Based on experiments conducted on ARM-based platforms,
selected results are described in detail to demonstrate the
potential of mobile agent based fault injection.

1. Introduction and Related Work
Software-Implemented Fault Injection (SWIFI) is a well

established means for evaluating fault tolerance mechanisms
due to flexibility and cost-efficiency reasons [1], [2]. Fuchs
showed that using SWIFI it is possible to achieve similar
failure scenarios as by means of hardware implemented fault
injection [1] since hardware failures caused by environmental
phenomena affect the system software and, thus, can be
detected and simulated at the software level. In addition to
injecting specific heuristic faults, SWIFI is further used to
inject faults based on random processes to provide a required
test coverage [3].

In distributed fault-tolerant systems, which are usually
based on redundancy concepts, the consequences of node
failures as perceived by other nodes are of major interest.
In such systems faults are perceived as different kinds of
messaging failures. From the perspective of distributed com-
puting, the first challenge for a successful SWIFI approach is
targeted to manipulating communication, that is, interfering
with the system’s middleware layer. The second challenge
arises from the need for high-quality SWIFI frameworks and

approaches. In detail, any SWIFI approach has to assure
the following major requirements: (i) after the testing phase,
the fault injection software has to be removed safely from
the system in order to prevent accidental invocation in the
production system, (ii) probe effects have to be avoided, and
(iii) traditional non-functional software quality criteria have to
be met, such as maintainability, adaptability, and reliability.

To allow for controlling of distributed inter-process commu-
nication, SWIFI is thus implemented either as an additional
middleware layer, by accessing main middleware functions, or
by dedicated middleware technologies. Dawson [4] proposes a
SWIFI middleware layer for fault injection into TCP/IP based
protocols. Similarly, Koopman et al. [5] introduce such a layer
for the automotive Controller Area Network (CAN) [6], [7]
communication protocol.

In contrast to special purpose fault injection implementa-
tions for evaluating specific fault-tolerant real-time systems,
a few related works describe new methods for implementing
SWIFI tools from a software engineering perspective. These
works address the second challenge of providing high-quality
SWIFI necessary for achieving useful test results. Martins et
al. [8] describe an approach introducing reflection and object
oriented programming to SWIFI. This approach allows to
separate the functional aspects of SWIFI, that are, the speci-
fication of the particular faults to be injected, from the non-
functional aspects related to code instrumentation necessary
to inject the faults. For high-level fault injection, GOOFI [9]
presents a generic object oriented fault injection framework
based on Java and Structured Query Language (SQL).

In [10] we have introduced the concept of using mobile
agents as a means for distributed SWIFI in time-driven real-
time systems. Mobile agents [11], [12] are programs which
decide when and where to migrate to in an autonomous man-
ner. The agents are supported by agent platforms executing the
agents. By migrating, mobile agents may invoke procedures
locally and, thus, reduce network communication overhead in
distributed systems [13]. We exploit mobile agents in order to:

• assure easy deployment and removal of the fault injection
code, which is realized by the migration concept of
mobile agents,

• assure adaptability by encapsulating the fault injection
logic in the agent, and

• realize distributed fault injection by either deploying
multiple agents or by using agent migrating from one
node to another.

Since our approach is targeted to time-driven real-time systems
we assume the existence of a global time and the possibility to
access the application’s memory area. The latter condition is
usually met by current real-time system architectures and can
be exploited to interfere with the system’s middleware layer.

This paper enhances our former works by demonstrating
the feasibility of our approach. We present a prototypical
implementation of the concept including the agent implemen-
tation language based on the time-driven operating system
OSEKtime [14] and the time-driven communication protocol
FlexRay [15] which is used for safety-critical automotive
applications. We further show, how mobile agents can be im-
plemented for structured fault injection based on a commonly
used classification of failures and faults in terms of domain,
persistence, and perception. Finally, we use an example appli-
cation to demonstrate the results achievable by fault injection
experiments.

The remainder of this paper is structured as follows: Sec-
tion 2 summarizes the concept of SWIFI based on mobile
agents, while Section 3 introduces structured SWIFI based
on a commonly used fault classification. Section 4 details the
implementation and Section 5 describes the experiments con-
ducted and results achieved by applying the agent prototype
to an example application. Section6 concludes this work.

2. Mobile Agent Based SWIFI
In this section, we describe the concept of using mobile

agents for SWIFI in brief by introducing the mobile agent
paradigm and the proposed system architecture.

2.1. On Mobile Agents

Mobile agents [11], [12], [16], [17] have been introduced
as a new communication paradigm during the last decade.
Instead of sending messages from one process to another
or transferring passive information, autonomous migration of
code is proposed. In order to support mobile agents, an agent
platform on each node has to be provided to en/decapsulate
and to send/receive the agents in a reliable way. Hence, large
databases may be searched after migration to the database and
inter-process communication may take place locally. From a
performance perspective, migration of code is preferred when
the migration costs are lower than the message transfer costs
in terms of network load.

In case mobile agents migrate statefully, that is, the code
and execution status is transferred, the term strong migration
is used, while weak migration is used for stateless migration.
Note, that strong migration requires more sophisticated tech-
niques. The sequence of locations (or migrations) can be used
for ordering of activities, in particular when strong migration
is performed. In our mobile agent based SWIFI approach, we
address both migration types.

2.2. Hardware and Software Architecture

The overall architecture is depicted in Figure 1. In addition
to the fault injection agents (FI agents), our fault injection
approach consists of one dedicated central fault injection
development and evaluation unit, a gateway node, and several
computing nodes.

Figure 1. Fault injection architecture

The computing nodes (i.e., the nodes under test) execute
the distributed real-time application and are connected via a
real-time communication network which is used for message
exchange according to a communication protocol with real-
time capabilities supported by the middleware. The execution
of this communication protocol is done by a dedicated commu-
nication controller, whereas the main CPU of the computing
nodes executes the application tasks under the control of a
real-time operating system. These application tasks exchange
information by means of messages, which are either delivered
locally or sent over the communication network in case the
tasks are located on different computing nodes.

The fault injection (FI) development and evaluation unit
is used for the development of the fault injection agents, for
the triggering of the initial migration of the fault injection
agents and for the collection, evaluation, and presentation
of the results of the fault injection actions. Furthermore, it
may send control messages, like a termination request which
forces the agents to terminate immediately, to the mobile
agents by means of message broadcasting. This fault injection
development and evaluation unit is connected to a non real-
time network.

The gateway node acts as an entry point for the mobile
agents and relays control messages from the fault injection
development and evaluation unit to the real-time network
of the computing nodes. For this purpose the gateway is
connected to both the non real-time network and the real-time
network.

2.3. Principle of Mobile Agent Based Fault Injection

On each computing node, an instance of the agent platform
which interprets and executes the fault injection agent is
installed prior to the start of the fault injection experiment.

After successful installation of the agent platform, the fault
injection agents are allowed to migrate to these nodes and to
perform their fault injection actions in an autonomous fashion.

Multiple similar or different, dependent or independent
faults are injected by exploiting the mobile agents’ ability to
roam between the nodes and to decide autonomously which
faults to inject. Hereby, the fault injection can either be
triggered by time or events, like (control) message reception.
In order to inject the required faults in parallel, one mobile
agent is cloned and roams to each node under test.

Additionally, it is possible to model fault chains, i.e. a
sequence of faults on one node, and – in principle – also on
different nodes. In contrast to agent systems using messages
for coordination issues, in our approach the mobile agents do
not exchange messages with one another. The reasons for this
restriction are the limited bandwidth available on the real-time
network and the determinism of the fault injection experiment,
which allows to decide upon coordination issues before run-
time by means of a common notion of time provided by the
real-time network. However, for the communication with the
fault injection development and evaluation unit, bandwidth is
statically allocated for the exchange of control messages. Thus,
this messaging is non-intrusive to the communication of the
real-time application under test.

To avoid probe effects caused by the fault injection software,
mobile agents are scheduled in a way to prevent temporal inter-
ference with the application tasks. Since the targeted real-time
system uses static scheduling, it is possible to predict and use
just the free time slots for the execution of the fault injection
software. As a consequence, the assumed time granularity for
the fault injection experiment is adjusted depending on the
calculated CPU load before runtime. In a similar manner the
bandwidth required for the migration of the agents is statically
allocated and thus exclusively reserved for this purpose.

The effects of the injected faults are perceived and logged
by the agent on the local computing node in a non-volatile
memory. After the completion of the fault injection experiment
the logged data is retrieved from the non-volatile memory
and transferred back to the fault injection development and
evaluation unit.

3. Structured Fault Injection Framework
This section introduces the faults considered for structured

fault injection, describes how the different faults are injected
based on the mobile agent approach, and summarizes the
development process necessary for implementing the fault
injection code.

3.1. On Faults and Failures

Regarding to failures, we use the definition provided in [18],
where Avižienis et al. define a failure as

an event that occurs when the delivered service [of
a system] deviates from the correct service.

Since a service is a sequence of the system’s external states,
a (service) failure means that at least one external state of the

system deviates from the correct system state. Such a deviation
in an external state is called an error. The hypothesized cause
of the error is termed a fault.

Avižienis et al. provide a classification of failures according
to the following dimensions:

• Domain: Here, content (value domain) vs. timing (time
domain) failures are distinguished. For content failures,
the service data deviates from the service specification.
In case of timing failures, a service is delivered at a point
in time deviating from the service specification.

• Detectability: Depending on whether service failures are
reported to the user a distinction between signaled and
unsignaled failures is made.

• Consistency or Perception: In case a service failure is
perceived in a similar manner by all system components,
the term consistent (in this paper called symmetric)
failure is used. Otherwise, the term inconsistent (in this
paper called asymmetric or byzantine) failure is used.

• Consequences: Due to the environmental consequences,
minor failures are distinguished from catastrophic fail-
ures.

As far as failures are concerned, the distinction between sig-
naled and unsignaled failures and the differentiation between
minor and catastrophic failures does not have any impact on
the fault injection setup. Avižienis et al. further provide a
detailed classification of faults. From a fault injection setup’s
perspective however, the occurrence of the fault is the only
attribute that has to be considered. Here, transient, intermittent,
and permanent faults are distinguished. Transient faults are
defined as faults occurring only once, intermittent faults may
happen repeatedly, and permanent faults remain in the system.

As a consequence, in this paper we focus on an approach
capable of injecting transient, intermittent, and permanent
faults that cause consistent and inconsistent failures in both
the time and the value domain by means of SWIFI. Formally,
we define each fault as a 3-tuple c as follows:

c =< c1, c2, c3 >, where (1)

c1 ∈ {value, time} (2)

c2 ∈ {transient , intermittent , permanent} (3)

c3 ∈ {symmetric, asymmetric} (4)

Hereby, c1 denotes the domain of the corresponding failure,
c2 denotes the persistence of the fault, and c3 denotes the
perception of the failure. Figure 2 illustrates and summarizes
the resulting 12 fault classes in a geometrical manner.

3.2. Injecting Faults

In order to inject these faults the fault injection software
manipulates received and/or transmitted messages and appli-
cation data. Hereby, access to the application’s memory is
required. This is usually possible in embedded systems, for
example, in the automotive industry, since the used devices
do not provide memory protection mostly for cost reasons.
Additionally, means to lookup the right memory address for
the desired message or for the application data are needed.

Figure 2. Fault classification

According to the domain the fault injection software deter-
mines what type of fault to inject as described by Table 1.
While for the value domain the message content is altered, in
the time domain the reception or transmission of a new value
is postponed which is modeled by using the last (old) value.

Table 1. Injecting faults in the time and value domain

c1 value time
FI function alter message content use old value

Due to persistence (Table 2), these fault injection actions
are defined in terms of frequency and occurrence of the fault
injection function. For the intermittent faults, the periods are
configurable and may change during runtime.

Table 2. Configuring fault injection due to persistence

c2 transient intermittent permanent
FI configuration once periodically permanently

Finally, the perception of the failures caused by the injected
faults can be configured as described in Table 3. Symmetric
failures can be easily implemented by manipulating messaging
at the sender because all nodes will perceive the alteration
in a similar manner. Otherwise, manipulating messaging at a
subset of the receiving nodes allows for injecting faults causing
asymmetric failures. Hence, the 12 different fault classes listed
in Figure 2 can be implemented by looking up the appropriate
dimension value in each table.

Table 3. Configuring fault injection due to perception

c3 symmetric asymmetric
FI configuration alter send buffer alter receive buffer

3.3. Development Process

In the field of embedded systems many actions performed
by the system are planned and fixed at system design time.

Figure 3 depicts the application development process extended
by the fault injection implementation steps.

Commonly the design information (e.g., the application
tasks executed on each node as well as the messages trans-
mitted and received by each computing node) is stored in a
so-called design database. Based on the information stored in
this database, middleware code (the middleware layer) and
operating system (OS) configurations, like task dispatching
tables are generated in an automatic fashion. The middleware
layer hides communication details from the application by
means of a standardized application programming interface
and allocates memory regions for the local storage of the
message data (so-called “message buffers”).

These automatically generated operating system configura-
tion and middleware layer files are compiled and linked with
the application source code. This produces an executable file
for the computing node and the map-file, which contains a
mapping of symbolic information (i.e., variable names and
function names) to the corresponding memory locations on
the computing nodes.

The fault injection agents are implemented in a dedicated
FI agent implementation language, which is translated into
a byte-code via the FI agent compiler. This compile step is
performed on the fault injection development and evaluation
unit prior to the actual run-time. The symbolic information
(i.e., message and variable names) is transformed into physical
memory addresses using the contents of the design database
and the map-file.

Figure 3. Development process

4. Prototypical Implementation
The prototypical implementation is targeted at time-driven

real-time systems which do not provide memory protection. As
a consequence, we can make use of the global time provided

(a) (b)

Figure 4. NodeARM prototype platform (a) schematic overview, (b) snapshot

by the real-time network and inject faults by manipulating the
RAM (including the communication buffers) of a node. The
approach supports both strong, that is, stateful, and weak, that
is stateless, agent migration.

In this section, we describe the prototype hardware used
for the implementation as well as the core functions of the
implementation, that are, the FI agent byte code generator
based on the FI agent implementation language specification,
and the FI agent platform including the interpreter and the
agent structure. The FI agent implementation language defines
a small set of operations for the fault injection experiments in a
batch-oriented manner. Caused by this small set of operations,
we decided not to use any existing byte code generator, like
Java language compilers, but to implement a lightweight and
specific language.

4.1. Prototype Hardware

The implementation was done on an embedded automotive
prototyping platform based on an Altera ”Excalibur” device,
which integrates an industry-standard 166 MHz ARM922T
processor with an APEX 20KE FPGA device-like architecture.
Figure 4(a) provides a simplified schematic overview of the
prototyping platform, whereas Figure 4(b) depicts a snapshot
of the prototyping platform.

The platform provides 64 MByte of SDRAM, 32 MByte of
FLASH, and multiple on-board interfaces (2 CAN interfaces,
2 LIN interfaces, 1 Ethernet interface, 24 digital I/O lines,
4 analog I/O lines). Within the APEX 20KE FPGA device
the design for a FlexRay communication controller is located.
The prototyping platform makes use of the OSEKtime real-
time operating system [14] and the FlexRay communication
system [15], [19] as real-time network.

4.2. FI Agent Implementation Language

The structure of the FI agent implementation language
follows an event-action scheme, where actions are triggered
by pre-defined events. In addition, the mobile agents use node
location information to control the context of the fault injection
experiments.

Triggered by time or on appearance of control messages the
mobile agent decides on the action to perform. The temporal

trigger conditions are based on the global time (in units of
microseconds) provided by the real-time network. The action
is either a migration to another node, the manipulation of
messages or the mutilation of memory areas. Furthermore,
the agent may log results of the fault injection experiment
and terminate.

Based on a simple grammar (for details see [10]), fault
injection scenarios can be described. By means of the pro-
totypical implementation we validated the major parts of the
grammar. The instruction set of the byte code supported by
the FI agent platform is defined in an interface declaration
file. Hence, the capabilities and the memory footprint of the
FI agent platform can be scaled by means of this interface
declaration file. In principle, the agent byte code supports the
following operation types:

• basic operations (e.g., killme() used to terminate the
agent),

• stack and arithmetic operations (e.g., push()),
• control flow operations (e.g., return()),
• register operations, which are used to inject the faults

in the value and time domain (e.g., rset() used to
consume a value from the stack and write it to a register),
and

• agent migration operations (e.g., sendstfl() used for
stateful migration of the agent).

In Table 4, three examples for byte code operations are
listed, that are, the push() operation which pushes a value
onto the stack, the memset<x>() operation (for <x> ∈
8, 16, 32) which writes to a specific memory address, and the
sndstfl() operation which invokes stateful agent migra-
tion. Figure 5 illustrates the mapping of a simple agents’s
source code to the corresponding byte code operations.

Table 4. Agent bytecode operation examples

Instruction Operand1 Operand2 ...
Name Type Name Type

push() value int32 - - ...
memset<x>() regnr int8 - - ...
sndstfl() hostid uint8 - - ...

\\agent source \\byte code operation

ON NODE 0x1 AT_TIME 100 \\controlled by agent platform
MIGRATE_TO NODE 0x0A sndstfl 0x0A

ON NODE 0x1 AT_TIME 200
CHANGE_MESSAGE_CONTENT wheel_angle TO 0xAC push 0x00944101 \\push memory address to stack

pop \\move memory address to register 0
mget16 0 \\read memory address to stack
push 0xAC \\push value 0xAC to stack
iadd \\write sum of last two stack values to stack
mset16 0 \\write sum to memory address stored in register 0

ON NODE 0x1 AT_TIME 300
MIGRATE_TO NODE 0x0B sndstfl 0x0B

Figure 5. Mapping of an example agent source to the byte code operations

4.3. FI Agent Structure and Platform

Mobile agents migrate from one FI agent platform to
another. On each FI agent platform, an interpreter task ex-
ecutes, which is a stack-based program written in the ANSI-C
programming language. The interpreter executes the agent’s
code and tracks the operations executed. The invocation time
of an agent is determined by the task schedule of the agent
platform and by the agent code itself by means of the agent’s
ability to read the current global time of the real-time network.

Figure 6. Agent structure

Figure 6 depicts the structure of an agent and the informa-
tion used by the agent platform to execute the agent. In case
the agent code proposes migration to another node, a move
status bit is set in the agent’s status flags and the program
execution is stopped. Then, the agent platform prepares the
agent for migration by performing the following steps:

1) The agent ID, version, source and destination address,
register size, stack size, and code size are inserted into
the stateless header. In case stateless migration is used,
goto step 4).

2) In case of stateful migration, the instruction pointer,
return stack pointer, variable stack pointer, and status
or error bytes are inserted into the stateful header.

3) The return stack and the variable stack are compressed
and copied to the corresponding areas of the agent body.

4) The agent byte code is compressed and copied to the
agent body.

After these preparation actions, the agent is transmitted
by means of the transport layer. For the migration of the
agents and for the transfer of the logged data a variation of

the ISO/DIS 15765-2.2 transport protocol [20] is used. This
protocol was originally developed for CAN networks for the
exchange of data packets which are larger than the maximum
transfer unit (MTU) of the underlying network.

5. Experimental Proof of Concept
For demonstration purpose we conduct distributed fault in-

jection experiments using simple sine and ramp test functions.
Hereby, four NodeARM nodes are used for the experiments
as depicted in Figure 7. The sine node calculates the original
sine function. The ramp node generates a periodic ramp with
different gradients (note, that a gradient of 0 denotes that the
value should be constant). The combine node adds the two
values received and generates an altered sine curve which is
then sent to the extract node. By subtracting the ramp value
from the value received from the combine node, the extract
node is able to restore the original sine function.

Figure 7. Experimental setup: sine-ramp

For the fault injection experiments, mobile agents migrate
to a specific node and inject faults by altering the send and
receive buffers of the respective nodes. Send buffers are altered
to inject symmetric faults, whereas receive buffers of different
nodes are altered in different ways to inject asymmetric faults.
The output of each node is tracked by means of log files which
are evaluated in a post fault injection manner. The results of the
fault injection experiments are visualized as deviations from
the original sine function.

The fault injection experiments are structured according to
the fault classification presented in Section 3 (Figure 2). We
will describe three major representatives selected from these
classes which show the most interesting results. Additionally,
we will present a case where multiple faults are injected. All

-1000

-500

 0

 500

 1000

 1500

 0 200 400 600 800 1000 1200 1400

F
un

ct
io

n
va

lu
e

Cycles (1 cycle = 5ms)

Ramp

Combine

Extract

(a)

-1500

-1000

-500

 0

 500

 1000

 1500

 0 200 400 600 800 1000 1200 1400

F
un

ct
io

n
va

lu
e

Cycles (1 cycle = 5ms)

Ramp

Combine

Extract

(b)

Figure 8. Experiment (a) < value, permanent , symmetric >, (b) < value, permanent , asymmetric >

results represent the system state as perceived by the extract
node over time measured in cycles (1 cycle = 5ms). The curves
show the values received from the ramp and the combine
node, as well as the results calculated by the extract node
respectively.

5.1. Fault Injection in the Value Domain

Figure 8(a) depicts a permanent fault (c =<
value, permanent , symmetric >) injected by a mobile
agent which has migrated to the ramp node. Here, the agent
resets the ramp function value in the node’s send buffer
to the constant value v = 391 (assuming gradient 0 of the
ramp). Thus, the combine node generates a function which
simply adds the constant value of 391 to the original sine
value. Since the change is consistently perceived by the
extract node, this node subtracts the received (faulty) offset
from the combine node’s value. Consequently, the curve for
the extract host depicts the original sine function. In the
system under operation, such a situation may occur in case
of a crash failure (or a propagation of a crash failure) and
the application logic is responsible for tolerating this fault
(similarly to the extract node in the example).

A similar case is depicted in Figure 8(b) for perma-
nent asymmetric fault injection in the value domain (c =<
value, permanent , asymmetric >). In contrast to the sym-
metric case, the mobile agent agent migrates to the combine
host and changes the ramp node messages to the constant
value v = 391 by altering the receive buffer. The extract node
perceives the original ramp function values as depicted by the
ramp curve. The extract node is not able to reconstruct the
original sine value because it is not aware of the ramp fault at
the combine host. The remaining offset at cycle 711 is given
as: offset = sine() + v − ramp(). During the next cycle, the
ramp function is set to 0 and the extract node calculates the
same value as the combine node. Such failures are typical
byzantine failures, which might occur, for example, in case of
incoming link failures of a single node.

For transient and intermittent failures, the results observed
by the mobile agent based experiments are similar. However,

differences in the consequences due to the period or the point
of occurrence in time can be observed.

5.2. Fault Injection in the Time Domain

In addition to value domain fault injection, we have further
conducted experiments targeting timing failures. Here, the
sending of a new value is delayed by resending another (old)
value instead. For c =< time, permanent , asymmetric >,
Figure 9(a) depicts a scenario where a mobile agent migrated
to the extract node and injected a permanent temporal delay of
2 cycles. The effects of this fault are marginal, except at cycle
747. Here, this injected fault causes a significant spike at the
sine value reconstructed by the extract node. Timing failures
might occur due to increased process execution times caused
by, for example, cache misses, pipeline stalls, or complex
exception handling.

5.3. Virtual Fault Injection Chains

Distributed fault injection is enabled by the ability of the
agents to migrate to arbitrary nodes. This distributed fault
injection can either be realized by migrating several agents
before the experiment is conducted or by including agent
migration as a means to model fault causalities as fault chains.

Figure 9(b) depicts a virtual fault injection chain, that
is, a sequence of faults which model causality by means
of event ordering. Due to the availablility of a global time
base provided by the real-time network, logical ordering of
fault injections can easily be achieved by invoking these
experiments at different, subsequent points in time. Here, two
transient value failures are injected in an asymmetric manner.
One mobile agent migrated to the extract node and injected
a fault (a temporary different constant value) into the receive
buffer for the ramp node at cycle 551. Since the combine node
does not perceive this fault, this fault does not influence the
combine value.

Additionally, another mobile agent migrated to the combine
node and injected another fault (again a temporary different
constant value) into the receive buffer for messages from the
ramp node at cycle 627. The curve representing the value
calculated by the combine node shows the effect. Since the

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

 0 200 400 600 800 1000 1200 1400 1600

F
un

ct
io

n
va

lu
e

Cycles (1 cycle = 5ms)

Ramp

Combine

Extract

(a)

-1500

-1000

-500

 0

 500

 1000

 1500

 0 200 400 600 800 1000 1200 1400 1600

F
un

ct
io

n
va

lu
e

Cycles (1 cycle = 5ms)

Ramp

Combine

Extract

(b)

Figure 9. Experiment (a) < time, permanent , asymmetric > and (b) virtual fault chain < value, transient , asymmetric >

extract node perceives a different ramp value, this node cannot
reconstruct the original sine signal. Thus, this asymmetric
virtual fault chain is perceived as two failures at the extract
host when compared to the original sine function.

6. Conclusion
In this paper we showed experimentally that mobile agents

are a feasible means for deterministic and reliable software-
implemented fault injection. We presented the implementation
details of the lightweight fault injection agent platform based
on the time-driven real-time operating system OSEKtime [14]
and real-time communication protocol FlexRay [15]. Both
technologies are in particular suitable for automotive systems.
The mobile agents make use of system resources utilizing
the mapping information generated at compile time, of the
global time provided by the FlexRay communication protocol,
and of the communication primitives provided by the FlexRay
transport layer.

We presented a framework for structured fault injection
based on a commonly used classification of faults and failures
and showed the feasibility of using mobile agents for the
respective fault injection experiments. We conducted fault in-
jection experiments for an example sine and ramp application
for both value and time domain failures with different degrees
of persistence. Additionally, faults causing both symmetric and
asymmetric failures have been injected and virtual fault chains
have been experimentally evaluated.

Hence, we have demonstrated, that mobile agents are well
suited for structured fault injection. In addition to the benefits
achieved by encapsulating the fault injection logic into a
mobile agent in terms of adaptability and ease of deployment
and removal, we further see the strength of the approach for
modeling the distributed nature of faults and fault chains.

7. References
[1] E. Fuchs, “Software Implemented Fault Injection,” Ph.D. dissertation,

Institute for Computer Engineering, Vienna University of Technology,
Treitlstrasse 3/182-1, A-1040 Vienna, Austria, Apr. 1996.

[2] J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs, and G. H. Leber,
“Comparison of Physical and Software-Implemented Fault Injection
Techniques,” IEEE Transactions on Computers, vol. 52, no. 9, pp. 1115–
1133, 2003.

[3] R. R. Some, W. S. Kim, G. Khanoyan, L. Callum, A. Agrawal, and
J. J. Beahan, “Software-Implemented Fault Injection Methodology for
Design and Validation of System Fault Tolerance,” in Proceedings of the
International Conference on Dependable Systems and Networks. IEEE
Computer Society, 2001, p. 0501.

[4] S. Dawson, F. Jahanian, T. Mitton, and T.-L. Tung, “Testing of Fault-
Tolerant and Real-Time Distributed Systems via Protocol Fault Injec-
tion,” in Proceedings of the 26th Annual Symposium on Fault-Tolerant
Computing, 1996, pp. 404–414.

[5] P. Koopman, E. Tran, and G. Hendrey, “Toward Middleware Fault
Injection for Automotive Networks,” in Proceedings of the 28th Annual
International Symposium on Fault-Tolerant Computing, 1998. [Online].
Available: http://www.chillarege.com/fastabstracts/ftcs98/359.html

[6] ISO, “Road Vehicles – Controller Area Network (CAN) – Part 1: Data
Link Layer and Physical Signalling,” ISO (International Organization for
Standardization), 1, rue de Varembe, Case postale 56, CH-1211 Geneva
20, Switzerland, Tech. Rep. ISO/DIS 11898-1, 2003.

[7] ISO, “Road Vehicles – Controller Area Network (CAN) – Part 2:
High-Speed Medium Access Unit,” ISO (International Organization for
Standardization), 1, rue de Varembe, Case postale 56, CH-1211 Geneva
20, Switzerland, Tech. Rep. ISO/DIS 11898-2, 2003.

[8] W. Martins and A. C. A. Rosa, “A Fault Injection Approach Based on
Reflective Programming,” in Proceedings of the International Confer-
ence on Dependable Systems and Networks, 2000, p. 407.

[9] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson, “GOOFI: Generic
Object-Oriented Fault Injection Tool,” in Proceedings of the Interna-
tional Conference on Dependable Systems and Networks, 2001, p. 0083.

[10] T. M. Galla, K. A. Hummel, and R. Pallierer, “Software-Implemented
Fault Injection for Safety-Critical Distributed Systems by Means of
Mobile Agents,” in Proceedings of the 37th Annual Hawaii International
Conference on System Sciences. IEEE Computer Society, 2004, p.
90302a.

[11] D. Chess, C. Harrison, and A. Kershenbaum, “Mobile Agents: Are They
a Good Idea?” IBM, Tech. Rep. IBM Research Report Rc 19887, Dec.
1994.

[12] J. E. White, “Mobile Agents,” in Software Agents, J. M. Bradshaw, Ed.
MIT Press, 1997, pp. 437–472.

[13] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems -
Concepts and Design, 3rd ed. Pearson Education, 2001.

[14] OSEK, “OSEK/VDX – Time-Triggered Operating System,” OSEK,
Tech. Rep., July 2001. [Online]. Available: http://www.osek-
vdx.org/mirror/ttos10.pdf

[15] R. Mores, G. Hay, R. Belschner, J. Berwanger, C. Ebner, S. Fluhrer,
E. Fuchs, B. Hedenetz, W. Kuffner, A. Krüger, P. Lohrmann,
D. Millinger, M. Peller, J. Ruh, A. Schedl, and M. Sprachmann,
“FlexRay – The Communication System for Advanced Automotive
Control Systems,” in Proceedings of the SAE 2001 World Congress.
Detroit, MI, USA: Society of Automotive Engineers, Mar. 2001.

[16] A. Fuggetta, G. P. Picco, and G. Vigna., “Understanding Code Mobility,”
IEEE Transactions on Software Engineering, vol. 24, no. 5, pp. 342–361,
May 1998.

[17] D. S. Milojicic, W. LaForge, and D. Chauhan, “Mobile Objects and
Agents (MOA),” in Proceedings of the 4th USENIX Conference on
Object-Oriented Technologies and Systems (COOTS). Santa Fe, NM,
USA: USENIX, Apr. 1998.

[18] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic Con-
cepts and Taxonomy of Dependable and Secure Computing,” IEEE
Transactions on Dependable and Secure Computing, vol. 1, no. 1, pp.
11–33, 2004.

[19] T. Führer, F. Hartwich, R. Hugel, and H. Weiler, “FlexRay – The
Communication System for Future Control Systems in Vehicles,” in
Proceedings of the SAE 2003 World Congress & Exhibition. Detroit,
MI, USA: Society of Automotive Engineers, Mar. 2003.

[20] ISO, “Road Vehicles – Diagnostics on Controller Area Networks (CAN)
– Part 2: Network Layer Services,” ISO (International Organization for
Standardization), 1, rue de Varembe, Case postale 56, CH-1211 Geneva
20, Switzerland, Tech. Rep. ISO/DIS 15765-2.2, April 2003.

