
05AE-340
Standard Software Modules - One Key for Future Distributed

Systems

Roman Nossal, Thomas M. Galla
DECOMSYS

Jochen Olig
3SOFT

Copyright © 2005 SAE International

ABSTRACT

The key to the required level of quality and safety in
future distributed systems is a comprehensive
standardized ECU (Electronic Control Unit) software
architecture and infrastructure.

INTRODUCTION

The number of electronic systems in cars is continuously
growing. Electronic systems account for up to 30% of a
modern car’s worth. Consequently, software plays an
ever more important role, both for the implementation of
functions and the infrastructure. The functional software
heavily depends on the actual system and is a
discriminating factor of competitive importance. This,
however, does not apply to the software infrastructure.
The software infrastructure, which is comparable to the
BIOS or the operating system of a PC, does not
influence competition – it is merely the foundation on
which functions that are relevant for competition are
built.

Keeping this in mind, the obvious approach is to
standardize this software infrastructure for the sake of
cost-effectiveness, reliability, and interoperability. This
paper will provide a brief overview of the current status
with respect to software infrastructure. This will be
followed by a definition of goals to be achieved, as well
as some insights into the AUTOSAR initiative [1], whose
purpose is to define and standardize a comprehensive
software infrastructure. The paper concludes with the
introduction of TimeCore, a set of standard software
modules for use in series applications.

STATE OF THE ART

Historically, if an ECU had some software infrastructure
at all, it used to be some proprietary implementation.
This was different for every ECU – not even parts, which

were independent from the actual hardware, would be
reused in another ECU.

Of course ECU suppliers – especially those with higher
volumes and many different types of ECUs – discovered
the inefficiency of this approach. As a result, they started
to implement some platform software that was used in
an entire family of ECUs. Hardware drivers and similar
modules became company standards by this approach.
This solution eased the implementation of new ECUs for
the supplier considerably, yet it did not provide any gains
for the system integrator, be it the OEM or a system
supplier.

Consequently, OEMs and system suppliers took the next
step. They no longer wanted to accept a company-
specific platform, but to have one common software
platform for all ECUs of a system. Thus the OEMs
started to implement their own software infrastructure
and to demand that their suppliers use this basic
software in any ECU supplied to them. While this
improved the situation for the OEMs, it diminished the
advantages of platform software for the suppliers. They
could no longer reuse the software for different OEMs.

Both developments, the platform software and the OEM-
specific infrastructure, show that a standardization
driven by either of the two main groups in the automotive
industry will not be able to achieve the goal and provide
benefits for all participants. Any standardization that
does not involve the entire industry will have some
obvious drawbacks:

� The software failure rate is high, because software
has to be re-implemented more often than
necessary. A supplier cannot reuse his
implementation for another OEM, but instead has to
implement it again to match this OEM’s software
infrastructure. Similarly, OEMs or their software
infrastructure providers have to develop a specific
implementation for each OEM, thus diminishing the
effects of reuse.

� For the same reason, it is more or less impossible to
argue that the implementation is field-proven, an
important fact in safety-relevant systems.

� Interoperability is threatened. Integrating ECUs from
different suppliers with different software platforms
always carries the risk of incompatibilities at the
interfaces.

� Most important of all, any reimplementation of the
same functionality is inefficient. All the more so if it is
not even relevant to competition.

To overcome these problems the automotive industry
has one answer – industry-wide standardization.

OBJECTIVES

Standardization ensures a known, fixed functionality
together with a stable API. The advantages are obvious:

� Standardization allows the re-use of functions and
infrastructure.

� Standardization facilitates exchangeability on the
OEM as well as on the supplier side.

� Standardization ensures interoperability. A service
that has been standardized has a well-defined
interface, which will be accessible by any other
standard-conforming implementation.

RE-USE

Standardized software modules provide for better re-use
than their proprietary counterparts. OEMs can easily re-
use the functional software in different product lines if
they apply the same software infrastructure in them. No
porting is required as long as the functional software
components can access an unaltered interface.

Suppliers, on the other hand, can re-use their software
for different OEMs. Assuming that all OEMs agree on a
common software architecture, the suppliers’ software
modules will use the same interfaces for each of the
OEMs, so no porting is required.

Finally, the software and tool vendors can also re-use
the software infrastructure they have implemented and
sell it to several OEMs and suppliers.

Apart from the increased efficiency of re-using existing
software, there is also a consideration of quality.
Software that is used in several applications can claim to
be field-proven. All applications that use the same piece
of software can be considered field tests for this
software. Thus, the more widely the same software is
used, the better is its test coverage. The probability that
there are dormant errors in the software decreases with
each application. Likewise, the confidence in the quality
of a specific software module increases with each
application, whether it is part of the software
infrastructure or the functional software.

EXCHANGEABILITY

With the possibility to re-use code there is a certain
degree of exchangeability. OEMs are no longer bound to
a specific software vendor. Any vendor who is able to
apply the standardized software infrastructure can
supply this to the OEM.

The OEM, however, also becomes exchangeable for the
software vendors. As mentioned above, the vendors can
provide the same implementation to several different
OEMs.

INTEROPERABILITY

A service that has been standardized offers a well-
defined interface. Hence, any other standard-conforming
implementation can use this service without any
alterations to the implementation.

For this reason, in order to be fully effective, the
standardization needs to cover all aspects of an
infrastructure: the operating system, hardware drivers,
interface layers, communication drivers, and service
layers like Network Management, a Transport Layer etc.

INITIATIVES

HISTORICAL OVERVIEW

In the recent years there have been several consortia,
initiatives, and funded projects with a common goal – to
standardize software infrastructure or at least parts of it.
There are OSEK/VDX, HIS, and the EASIS project, to
name but a few. The OSEK/VDX consortium [2] took
action to standardize an operating system (OSEK OS)
for embedded real-time applications. A communication
access layer (OSEK COM) and a Network Management
service (OSEK NM) complement the operating system.
HIS [3] went a step beyond this, took the results of the
OSEK/VDX consortium and added important software
modules such as hardware drivers for input and output.

A somewhat different approach is taken in the EASIS
project [4], which is funded by the European
Commission. In this project a group of OEMs, suppliers,
and tool vendors have gathered with the objective to
define a common software architecture that is suitable
for use in safety applications in vehicles.

The most recent development in this respect is the
AUTOSAR initiative, which will be dealt with in the next
section.

THE AUTOSAR INITIATIVE

The AUTOSAR initiative pursues the goal of establishing
an open standard for automotive E/E architecture that
will serve as a basic infrastructure for managing
functions. This comprises the standardization of basic
system functions and functional interfaces, the ability to

integrate and transfer functions and to substantially
improve software updates and upgrades over the
lifetime of the vehicle.

The objectives of AUTOSAR are [1]

� Management of E/E complexity associated with
growth in functional scope

� Flexibility for product modification, upgrade and
update

� Scalability of solutions within and across product
lines

� Improved quality and reliability of E/E systems.

AUTOSAR will provide a common software
infrastructure for automotive systems in all vehicle
domains based on standardized interfaces for the
different layers shown in Figure 1.

Figure 1: AUTOSAR Software Architecture (Source:
www.autosar.de).

The scope of AUTOSAR is the entire software
infrastructure of an ECU. It covers all layers, from the
abstraction of the actual hardware, over the so-called
“basic software”, the AUTOSAR Run-Time Environment
(RTE), to the interfaces for the functional software
components.

TIMECORE

While an AUTOSAR-compliant software infrastructure is
still a product of the future, there is a solution available.
With their joint product called TimeCore, 3SOFT and
DECOMSYS present a software kit that contains a wide
variety of standardized software modules. TimeCore
offers a software infrastructure similar to the intended
coverage of AUTOSAR.

The following paragraphs provide an overview of the
main constituents of the TimeCore package. While the

description naturally highlights certain features
contained in the TimeCore product, the modules
presented and their functionality are valid for any
software infrastructure in an automotive ECU.

OSEKTIME OS

OSEKtime OS is designed as a time-driven single chip
operating system for distributed applications like X-by-
Wire systems, which need to have synchronized access
to various ECUs.

OSEKtime executes functions either as interrupt service
routines or as tasks. Interrupt service routines (ISRs) are
triggered by interrupts and execute interrupt-related
services. Tasks on the other hand are started at defined
points in time. They can have one of three states. In the
running state, the CPU is assigned to the task and its
commands are executed. The preempted state is
reached by a task that has been in the running state and
was preempted by another task that is to be activated. A
task can leave the preempted state only if the
preempting task changes into the suspended state. An
inactive task that can be activated is in the suspended
state. These state changes are shown in Figure 2.

Figure 2: OSEKtime Task States

The activation times of the tasks are stored in a so-
called dispatcher table during system configuration. A
dispatcher uses the information stored in this table to
activate the tasks according to their activation times. The
dispatcher itself is usually triggered from a non-
maskable interrupt.

The dispatcher table is processed cyclically. If a time-
driven task is still in the running state when the
activation time of another time-driven task is reached,
the first task passes over to the preempted state and
stays there until the interrupting task is finished. This
kind of scheduling is called stack-based scheduling; no
priorities are assigned to the tasks - only the activation
times define the precedence between different tasks.
The later a task is started the less likely it is that another
task can interrupt it while it is being executed.

Depending on the design of the application, a dispatcher
round can include times during which no tasks or
interrupt service routines are active. A task named
ttIdleTask is assigned to the CPU during these idle
times. This task is provided by the OS, has no entry in
the dispatcher table and no deadline assigned. Its sole
purpose is to take up CPU time otherwise unused.

The occurrence of interrupts is also supervised and
controlled by the operating system. An interrupt source
is only switched on through an entry in the dispatcher
table. After an interrupt is raised, its interrupt service
routine will be executed. Then the operating system
switches off the interrupt source and it can only be
switched on again by a new entry in the dispatcher table.
In this way, the whole dispatcher round can be divided
into unconnected time intervals where a particular
interrupt can occur at most once within one of these
intervals.

The dispatcher’s sole duty during run time is to cyclically
execute the dispatcher table. It does not check for any
task constraints etc. The configuration of the distributed
system has to take care of these issues. Besides
information about existing constraints between tasks,
e.g., a mutual exclusion due to access to a common
resource, the knowledge of the worst case execution
time (WCET) [5,6,7,8] of every task and interrupt service
routine is essential to plan the course of a dispatcher
round.

OSEK/VDX SUBSYSTEM

If an application consists of a time-critical part and a
more complex, non time-critical part, then OSEKtime
offers an interesting solution for it: Instead of the idle
task described above, one can integrate an OSEK/VDX
subsystem. This OSEK/VDX subsystem acts as the idle
task for the OSEKtime OS. Whenever the OSEKtime OS
is idle, i.e., no task is being executed, the OSEK/VDX
subsystem is run.

OSEK/VDX is a standard for an operating system that
was designed for applications in the area of car body
electronics or power train. It provides the user with
system services like tasks, interrupt service routines,
counters, alarms, and resources. It also offers an event
mechanism for the signaling between tasks and interrupt
service routines.

OSEK/VDX is a configurable and static system. Since
every system service that an application wants to use
must be defined and configured before compile time,
there is no dynamic management of system resources.
This results in an operating system kernel that is tailored
to the needs of the corresponding application and that
can therefore be highly optimized.

OSEKTIME FTCOM

FTCom (Fault Tolerant Communication) [2] provides all
associated ECUs with a global time to which they

synchronize their local time base. Furthermore, it is
responsible for the fault tolerant sending and receiving of
messages between the distributed communication
partners in a temporally deterministic way.

The fault tolerant mechanisms of FTCom consist of the
replication and reduction of messages. On the sender’s
side, the FTCom layer replicates a single application
message into several instances and transmits these via
redundant communication paths (e.g. on different
communication channels). On the recipient’s side,
FTCom reduces the several instances of the received
message to a single application message that is
provided to the application.

FLEXRAY

In order to achieve the above-mentioned determinism at
the communication level, OSEKtime FTCom in
TimeCore uses the FlexRay time-driven communication
protocol [9,10].

The FlexRay communication medium is accessed
synchronously in a slot-based manner. Time is divided
into equally sized slots that are owned exclusively by
ECUs for transmitting their data. Slot assignment is done
off-line during the system planning stage, thus
eliminating any on-line competition for the
communication medium. FlexRay integrates two
different communication paradigms, time-driven and
event-driven media access. In the so-called static
segment, communication access follows a TDMA
scheme with equally sized slots. In the dynamic segment
an event-driven minislotting scheme is applied. The
dynamic segment includes a prioritization scheme, thus
enabling variable bandwidth distribution during run time.

Both segments strictly adhere to the above-mentioned
exclusive ownership of slots providing a key foundation
for an important FlexRay feature, composability. As each
ECU owns slots exclusively, it is possible to develop
ECUs autonomously and to integrate them later without
side effects.

FlexRay also supports fault-tolerant clock
synchronization and provides a global time base to
OSEKtime FTCom.

FLEXRAY NETWORK MANAGEMENT

Network management (NM) in the automotive area
handles the controlled startup and shutdown of the
communication across a shared communication
infrastructure. In particular, Network Management
coordinates the common view of the network where
each node can initiate a shutdown or a wakeup of the
communication system during normal system operation.
In TimeCore, NM is based on the FlexRay
communication system.

FLEXRAY TRANSPORT LAYER

In general, a transport layer supports the transmission of
messages whose length is greater than the maximum
payload length of the underlying communication system.
On the sender’s side, the Transport Layer will split such
long messages into packets that the underlying
communication system can handle. The transport layer
reassembles these packets on the receiver’s side.

The support of direct addressing (sending a message to
a specific node), broadcasts (sending a message to all
nodes in the network), and multicasts (sending a
message to a specific subset of nodes) is also
implemented in the Transport Layer. Consequently the
Transport Layer provides a unique address to every
node addressable via the Transport Layer, addresses for
groups of nodes, and a broadcast address.

CAN DRIVER AND CAN TRANSPORT LAYER

A CAN driver is also included in TimeCore. The driver
can be operated in interrupt and polled mode. The
number of message objects is user-definable, and a
priority based message queue is also supported.

The working principle of the included CAN transport
layer is similar to the transport layer for FlexRay.

KWP2000

KWP2000 is a standard for a diagnostic layer. It
describes a set of functions with which an ECU can be
diagnosed from a tester tool. The diagnostic layer is
based on the Transport Layer. Within TimeCore, the
KWP2000 layer can be accessed via CAN and FlexRay.

Figure 3: TimeCore Architectural Overview

TOOLING

All components of TimeCore require configuration before
run time. The software modules are set up to match the
requirements of the application exactly. Services that are
not used by the application are not configured into the
run-time software of TimeCore. This leads to highly

optimized code with respect to execution time and
memory consumption.

To configure TimeCore the development engineer can
make use of the comprehensive toolset from
DECOMSYS and 3SOFT, which is included in
TimeCore. The DECOMSYS::DESIGNTOOLS tool suite
with its graphical user interface allows the user to design
the architectural model of his distributed system. Based
on this model, the DECOMSYS::DESIGNER configures
the FlexRay communication system and builds a
communication schedule. Finally it generates FTCom
code, which takes the particularities of each signal into
account. tresos, a configuration tool that is used to
configure OSEK/VDX, OSEKtime and all CAN
components, is also part of TimeCore. During
configuration, tresos resolves inter-component
dependencies automatically. For example, an interrupt
service routine used by the CAN Driver will be added
automatically to the OSEK/VDX configuration. Both
tools, DECOMSYS::DESIGNER and tresos, are well-
integrated and thus support the user in configuring all
modules during the development cycle.

CONCLUSION

This paper has stated the case for a standardized
software infrastructure in automotive ECUs. We have
argued that the objectives of re-use, exchangeability,
and interoperability can only be achieved if all players in
the automotive market, OEMs and suppliers alike, agree
on one standard for software modules that are to be
used in any ECU.

With its joint product TimeCore, DECOMSYS and
3SOFT deliver a set of software modules that meets all
requirements of automotive applications. TimeCore
comprises a time-driven as well as an event-driven
operating system, communication layers, network
management service, etc.

While TimeCore is readily available, several automotive
companies have teamed up in the AUTOSAR
consortium with the goal of standardizing the software
infrastructure for automotive electronics. As soon as a
set of AUTOSAR standards becomes available,
DECOMSYS and 3SOFT will provide an updated,
AUTOSAR-compliant version of TimeCore.

REFERENCES

1. AUTOSAR Website. www.autosar.org
2. OSEK/VDX Website. www.osek-vdx.org
3. HIS Website. www.automotive-his.de
4. EASIS Website. www.easis-online.org
5. P. Puschner. Timing Analysis for Real-Time

Programs. PhD thesis, Technische Universität Wien,
Institut für Technische Informatik, Treitlstraße
3/3/182-1, 1040 Vienna, Austria, 1993

6. Raimund Kirner. Extending Optimising Compilation
to Worst-Case Execution Time Analysis. PhD thesis,

Technische Universität Wien, Institut für Technische
Informatik, Treitlstraße 3/3/182-1, 1040 Vienna,
Austria, May 2003

7. C. Y. Park and A. C. Shaw. Experiments with a
Program Timing Tool based on a Source-Level
Timing Schema. IEEE Computer, 24(5):48–57, May
1991

8. P. Puschner and A. V. Schedl. Computing Maximum
Task Execution Times – A Graph-Based Approach.
The Journal of Real-Time Systems, 13:67–91, 1997

9. FlexRay Consortium Website. www.flexray.com
10. A Manager’s Guide to FlexRay. Automotive Design

and Production, September 2002.
http://www.flexray.com/publications/a_manager_gui
de.pdf

CONTACT

Please direct questions or comments about this article to
Roman Nossal at DECOMSYS - Dependable Computer
Systems, Hardware und Software Entwicklung GmbH,
Stumpergasse 48/28, A-1060 Vienna, Austria;
nossal@decomsys.com; www.decomsys.com

DECOMSYS and 3SOFT are development members of
the FlexRay consortium.

Roman Nossal is product manager at DECOMSYS. He
has a PhD in computer science from the Vienna
University of Technology and an MBA in General
Management from Danube University in Krems, Austria.

Thomas M. Galla is the technical coordinator of all
DECOMSYS developments. He has a PhD in computer
science from the Vienna University of Technology.

Jochen Olig is senior software engineer with 3SOFT
GmbH. He has studied engineering at the University of
Erlangen-Nuernberg.

Jochen Olig can be contacted at

3SOFT GmbH Frauenweiherstrasse 14, D-91058
Erlangen, Germany. Jochen.Olig@3SOFT.de

