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ABSTRACT 

The key to the required level of quality and safety in 
future distributed systems is a comprehensive 
standardized ECU (Electronic Control Unit) software 
architecture and infrastructure. 

INTRODUCTION 

The number of electronic systems in cars is continuously 
growing. Electronic systems account for up to 30% of a 
modern car’s worth. Consequently, software plays an 
ever more important role, both for the implementation of 
functions and the infrastructure. The functional software 
heavily depends on the actual system and is a 
discriminating factor of competitive importance. This, 
however, does not apply to the software infrastructure. 
The software infrastructure, which is comparable to the 
BIOS or the operating system of a PC, does not 
influence competition – it is merely the foundation on 
which functions that are relevant for competition are 
built. 

Keeping this in mind, the obvious approach is to 
standardize this software infrastructure for the sake of 
cost-effectiveness, reliability, and interoperability. This 
paper will provide a brief overview of the current status 
with respect to software infrastructure. This will be 
followed by a definition of goals to be achieved, as well 
as some insights into the AUTOSAR initiative [1], whose 
purpose is to define and standardize a comprehensive 
software infrastructure. The paper concludes with the 
introduction of TimeCore, a set of standard software 
modules for use in series applications. 

STATE OF THE ART 

Historically, if an ECU had some software infrastructure 
at all, it used to be some proprietary implementation. 
This was different for every ECU – not even parts, which 

were independent from the actual hardware, would be 
reused in another ECU.  

Of course ECU suppliers – especially those with higher 
volumes and many different types of ECUs – discovered 
the inefficiency of this approach. As a result, they started 
to implement some platform software that was used in 
an entire family of ECUs. Hardware drivers and similar 
modules became company standards by this approach. 
This solution eased the implementation of new ECUs for 
the supplier considerably, yet it did not provide any gains 
for the system integrator, be it the OEM or a system 
supplier. 

Consequently, OEMs and system suppliers took the next 
step. They no longer wanted to accept a company-
specific platform, but to have one common software 
platform for all ECUs of a system. Thus the OEMs 
started to implement their own software infrastructure 
and to demand that their suppliers use this basic 
software in any ECU supplied to them. While this 
improved the situation for the OEMs, it diminished the 
advantages of platform software for the suppliers. They 
could no longer reuse the software for different OEMs. 

Both developments, the platform software and the OEM-
specific infrastructure, show that a standardization 
driven by either of the two main groups in the automotive 
industry will not be able to achieve the goal and provide 
benefits for all participants. Any standardization that 
does not involve the entire industry will have some 
obvious drawbacks: 

� The software failure rate is high, because software 
has to be re-implemented more often than 
necessary. A supplier cannot reuse his 
implementation for another OEM, but instead has to 
implement it again to match this OEM’s software 
infrastructure. Similarly, OEMs or their software 
infrastructure providers have to develop a specific 
implementation for each OEM, thus diminishing the 
effects of reuse. 



� For the same reason, it is more or less impossible to 
argue that the implementation is field-proven, an 
important fact in safety-relevant systems. 

� Interoperability is threatened. Integrating ECUs from 
different suppliers with different software platforms 
always carries the risk of incompatibilities at the 
interfaces. 

� Most important of all, any reimplementation of the 
same functionality is inefficient. All the more so if it is 
not even relevant to competition. 

To overcome these problems the automotive industry 
has one answer – industry-wide standardization.  

OBJECTIVES 

Standardization ensures a known, fixed functionality 
together with a stable API. The advantages are obvious:  

� Standardization allows the re-use of functions and 
infrastructure.  

� Standardization facilitates exchangeability on the 
OEM as well as on the supplier side. 

� Standardization ensures interoperability. A service 
that has been standardized has a well-defined 
interface, which will be accessible by any other 
standard-conforming implementation. 

 

RE-USE 

Standardized software modules provide for better re-use 
than their proprietary counterparts. OEMs can easily re-
use the functional software in different product lines if 
they apply the same software infrastructure in them. No 
porting is required as long as the functional software 
components can access an unaltered interface. 

Suppliers, on the other hand, can re-use their software 
for different OEMs. Assuming that all OEMs agree on a 
common software architecture, the suppliers’ software 
modules will use the same interfaces for each of the 
OEMs, so no porting is required. 

Finally, the software and tool vendors can also re-use 
the software infrastructure they have implemented and 
sell it to several OEMs and suppliers.  

Apart from the increased efficiency of re-using existing 
software, there is also a consideration of quality. 
Software that is used in several applications can claim to 
be field-proven. All applications that use the same piece 
of software can be considered field tests for this 
software. Thus, the more widely the same software is 
used, the better is its test coverage. The probability that 
there are dormant errors in the software decreases with 
each application. Likewise, the confidence in the quality 
of a specific software module increases with each 
application, whether it is part of the software 
infrastructure or the functional software.  

EXCHANGEABILITY 

With the possibility to re-use code there is a certain 
degree of exchangeability. OEMs are no longer bound to 
a specific software vendor. Any vendor who is able to 
apply the standardized software infrastructure can 
supply this to the OEM. 

The OEM, however, also becomes exchangeable for the 
software vendors. As mentioned above, the vendors can 
provide the same implementation to several different 
OEMs. 

INTEROPERABILITY 

A service that has been standardized offers a well-
defined interface. Hence, any other standard-conforming 
implementation can use this service without any 
alterations to the implementation. 

For this reason, in order to be fully effective, the 
standardization needs to cover all aspects of an 
infrastructure: the operating system, hardware drivers, 
interface layers, communication drivers, and service 
layers like Network Management, a Transport Layer etc.  

INITIATIVES 

HISTORICAL OVERVIEW 

In the recent years there have been several consortia, 
initiatives, and funded projects with a common goal – to 
standardize software infrastructure or at least parts of it. 
There are OSEK/VDX, HIS, and the EASIS project, to 
name but a few. The OSEK/VDX consortium [2] took 
action to standardize an operating system (OSEK OS) 
for embedded real-time applications. A communication 
access layer (OSEK COM) and a Network Management 
service (OSEK NM) complement the operating system. 
HIS [3] went a step beyond this, took the results of the 
OSEK/VDX consortium and added important software 
modules such as hardware drivers for input and output. 

A somewhat different approach is taken in the EASIS 
project [4], which is funded by the European 
Commission. In this project a group of OEMs, suppliers, 
and tool vendors have gathered with the objective to 
define a common software architecture that is suitable 
for use in safety applications in vehicles. 

The most recent development in this respect is the 
AUTOSAR initiative, which will be dealt with in the next 
section. 

THE AUTOSAR INITIATIVE 

The AUTOSAR initiative pursues the goal of establishing 
an open standard for automotive E/E architecture that 
will serve as a basic infrastructure for managing 
functions. This comprises the standardization of basic 
system functions and functional interfaces, the ability to 



integrate and transfer functions and to substantially 
improve software updates and upgrades over the 
lifetime of the vehicle. 

The objectives of AUTOSAR are [1]  

� Management of E/E complexity associated with 
growth in functional scope 

� Flexibility for product modification, upgrade and 
update 

� Scalability of solutions within and across product 
lines 

� Improved quality and reliability of E/E systems. 
 

AUTOSAR will provide a common software 
infrastructure for automotive systems in all vehicle 
domains based on standardized interfaces for the 
different layers shown in Figure 1. 

 

Figure 1: AUTOSAR Software Architecture (Source: 
www.autosar.de). 

The scope of AUTOSAR is the entire software 
infrastructure of an ECU. It covers all layers, from the 
abstraction of the actual hardware, over the so-called 
“basic software”, the AUTOSAR Run-Time Environment 
(RTE), to the interfaces for the functional software 
components.  

TIMECORE 

While an AUTOSAR-compliant software infrastructure is 
still a product of the future, there is a solution available. 
With their joint product called TimeCore, 3SOFT and 
DECOMSYS present a software kit that contains a wide 
variety of standardized software modules. TimeCore 
offers a software infrastructure similar to the intended 
coverage of AUTOSAR. 

The following paragraphs provide an overview of the 
main constituents of the TimeCore package. While the 

description naturally highlights certain features 
contained in the TimeCore product, the modules 
presented and their functionality are valid for any 
software infrastructure in an automotive ECU. 

OSEKTIME OS 

OSEKtime OS is designed as a time-driven single chip 
operating system for distributed applications like X-by-
Wire systems, which need to have synchronized access 
to various ECUs.  

OSEKtime executes functions either as interrupt service 
routines or as tasks. Interrupt service routines (ISRs) are 
triggered by interrupts and execute interrupt-related 
services. Tasks on the other hand are started at defined 
points in time. They can have one of three states. In the 
running state, the CPU is assigned to the task and its 
commands are executed. The preempted state is 
reached by a task that has been in the running state and 
was preempted by another task that is to be activated. A 
task can leave the preempted state only if the 
preempting task changes into the suspended state. An 
inactive task that can be activated is in the suspended 
state. These state changes are shown in Figure 2. 

  

Figure 2: OSEKtime Task States 

The activation times of the tasks are stored in a so-
called dispatcher table during system configuration. A 
dispatcher uses the information stored in this table to 
activate the tasks according to their activation times. The 
dispatcher itself is usually triggered from a non-
maskable interrupt.  

The dispatcher table is processed cyclically. If a time-
driven task is still in the running state when the 
activation time of another time-driven task is reached, 
the first task passes over to the preempted state and 
stays there until the interrupting task is finished. This 
kind of scheduling is called stack-based scheduling; no 
priorities are assigned to the tasks - only the activation 
times define the precedence between different tasks. 
The later a task is started the less likely it is that another 
task can interrupt it while it is being executed. 



Depending on the design of the application, a dispatcher 
round can include times during which no tasks or 
interrupt service routines are active. A task named 
ttIdleTask is assigned to the CPU during these idle 
times. This task is provided by the OS, has no entry in 
the dispatcher table and no deadline assigned. Its sole 
purpose is to take up CPU time otherwise unused. 

The occurrence of interrupts is also supervised and 
controlled by the operating system. An interrupt source 
is only switched on through an entry in the dispatcher 
table. After an interrupt is raised, its interrupt service 
routine will be executed. Then the operating system 
switches off the interrupt source and it can only be 
switched on again by a new entry in the dispatcher table. 
In this way, the whole dispatcher round can be divided 
into unconnected time intervals where a particular 
interrupt can occur at most once within one of these 
intervals. 

The dispatcher’s sole duty during run time is to cyclically 
execute the dispatcher table. It does not check for any 
task constraints etc. The configuration of the distributed 
system has to take care of these issues. Besides 
information about existing constraints between tasks, 
e.g., a mutual exclusion due to access to a common 
resource, the knowledge of the worst case execution 
time (WCET) [5,6,7,8] of every task and interrupt service 
routine is essential to plan the course of a dispatcher 
round. 

OSEK/VDX SUBSYSTEM 

If an application consists of a time-critical part and a 
more complex, non time-critical part, then OSEKtime 
offers an interesting solution for it: Instead of the idle 
task described above, one can integrate an OSEK/VDX 
subsystem. This OSEK/VDX subsystem acts as the idle 
task for the OSEKtime OS. Whenever the OSEKtime OS 
is idle, i.e., no task is being executed, the OSEK/VDX 
subsystem is run.  

OSEK/VDX is a standard for an operating system that 
was designed for applications in the area of car body 
electronics or power train. It provides the user with 
system services like tasks, interrupt service routines, 
counters, alarms, and resources. It also offers an event 
mechanism for the signaling between tasks and interrupt 
service routines.  

OSEK/VDX is a configurable and static system. Since 
every system service that an application wants to use 
must be defined and configured before compile time, 
there is no dynamic management of system resources. 
This results in an operating system kernel that is tailored 
to the needs of the corresponding application and that 
can therefore be highly optimized. 

OSEKTIME FTCOM 

FTCom (Fault Tolerant Communication) [2] provides all 
associated ECUs with a global time to which they 

synchronize their local time base. Furthermore, it is 
responsible for the fault tolerant sending and receiving of 
messages between the distributed communication 
partners in a temporally deterministic way.  

The fault tolerant mechanisms of FTCom consist of the 
replication and reduction of messages. On the sender’s 
side, the FTCom layer replicates a single application 
message into several instances and transmits these via 
redundant communication paths (e.g. on different 
communication channels). On the recipient’s side, 
FTCom reduces the several instances of the received 
message to a single application message that is 
provided to the application. 

FLEXRAY 

In order to achieve the above-mentioned determinism at 
the communication level, OSEKtime FTCom in 
TimeCore uses the FlexRay time-driven communication 
protocol [9,10].  

The FlexRay communication medium is accessed 
synchronously in a slot-based manner. Time is divided 
into equally sized slots that are owned exclusively by 
ECUs for transmitting their data. Slot assignment is done 
off-line during the system planning stage, thus 
eliminating any on-line competition for the 
communication medium. FlexRay integrates two 
different communication paradigms, time-driven and 
event-driven media access. In the so-called static 
segment, communication access follows a TDMA 
scheme with equally sized slots. In the dynamic segment 
an event-driven minislotting scheme is applied. The 
dynamic segment includes a prioritization scheme, thus 
enabling variable bandwidth distribution during run time.  

Both segments strictly adhere to the above-mentioned 
exclusive ownership of slots providing a key foundation 
for an important FlexRay feature, composability. As each 
ECU owns slots exclusively, it is possible to develop 
ECUs autonomously and to integrate them later without 
side effects. 

FlexRay also supports fault-tolerant clock 
synchronization and provides a global time base to 
OSEKtime FTCom. 

FLEXRAY NETWORK MANAGEMENT 

Network management (NM) in the automotive area 
handles the controlled startup and shutdown of the 
communication across a shared communication 
infrastructure. In particular, Network Management 
coordinates the common view of the network where 
each node can initiate a shutdown or a wakeup of the 
communication system during normal system operation. 
In TimeCore, NM is based on the FlexRay 
communication system. 



FLEXRAY TRANSPORT LAYER 

In general, a transport layer supports the transmission of 
messages whose length is greater than the maximum 
payload length of the underlying communication system. 
On the sender’s side, the Transport Layer will split such 
long messages into packets that the underlying 
communication system can handle. The transport layer 
reassembles these packets on the receiver’s side. 

The support of direct addressing (sending a message to 
a specific node), broadcasts (sending a message to all 
nodes in the network), and multicasts (sending a 
message to a specific subset of nodes) is also 
implemented in the Transport Layer. Consequently the 
Transport Layer provides a unique address to every 
node addressable via the Transport Layer, addresses for 
groups of nodes, and a broadcast address. 

CAN DRIVER AND CAN TRANSPORT LAYER 

A CAN driver is also included in TimeCore. The driver 
can be operated in interrupt and polled mode. The 
number of message objects is user-definable, and a 
priority based message queue is also supported. 

The working principle of the included CAN transport 
layer is similar to the transport layer for FlexRay. 

KWP2000 

KWP2000 is a standard for a diagnostic layer. It 
describes a set of functions with which an ECU can be 
diagnosed from a tester tool. The diagnostic layer is 
based on the Transport Layer. Within TimeCore, the 
KWP2000 layer can be accessed via CAN and FlexRay. 

 

Figure 3: TimeCore Architectural Overview 

TOOLING 

All components of TimeCore require configuration before 
run time. The software modules are set up to match the 
requirements of the application exactly. Services that are 
not used by the application are not configured into the 
run-time software of TimeCore. This leads to highly 

optimized code with respect to execution time and 
memory consumption.  

To configure TimeCore the development engineer can 
make use of the comprehensive toolset from 
DECOMSYS and 3SOFT, which is included in 
TimeCore. The DECOMSYS::DESIGNTOOLS tool suite 
with its graphical user interface allows the user to design 
the architectural model of his distributed system. Based 
on this model, the DECOMSYS::DESIGNER configures 
the FlexRay communication system and builds a 
communication schedule. Finally it generates FTCom 
code, which takes the particularities of each signal into 
account. tresos, a configuration tool that is used to 
configure OSEK/VDX, OSEKtime and all CAN 
components, is also part of TimeCore. During 
configuration, tresos resolves inter-component 
dependencies automatically. For example, an interrupt 
service routine used by the CAN Driver will be added 
automatically to the OSEK/VDX configuration. Both 
tools, DECOMSYS::DESIGNER and tresos, are well-
integrated and thus support the user in configuring all 
modules during the development cycle. 

CONCLUSION 

This paper has stated the case for a standardized 
software infrastructure in automotive ECUs. We have 
argued that the objectives of re-use, exchangeability, 
and interoperability can only be achieved if all players in 
the automotive market, OEMs and suppliers alike, agree 
on one standard for software modules that are to be 
used in any ECU. 

With its joint product TimeCore, DECOMSYS and 
3SOFT deliver a set of software modules that meets all 
requirements of automotive applications. TimeCore 
comprises a time-driven as well as an event-driven 
operating system, communication layers, network 
management service, etc.  

While TimeCore is readily available, several automotive 
companies have teamed up in the AUTOSAR 
consortium with the goal of standardizing the software 
infrastructure for automotive electronics. As soon as a 
set of AUTOSAR standards becomes available, 
DECOMSYS and 3SOFT will provide an updated, 
AUTOSAR-compliant version of TimeCore. 
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