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Abstract— The availability of inexpensive powerful micropro-
cessors leads to increasing deployment of those electronic devices
in ever new application areas. Currently, the automotive industry
considers the replacement of mechanical or hydraulic imple-
mentations of safety-critical automotive systems (e.g., braking,
steering) by electronic counterparts (so-called “by-wire systems”)
for safety, comfort, and cost reasons.

In order to remain operational in the presence of faults, these
kinds of systems are built as fault-tolerant distributed real-time
systems consisting of interconnected control units. To assure the
correct operation of the fault tolerance mechanisms, software
implemented fault injection provides low cost and easy to control
techniques to test the system under faulty conditions.

In this paper we propose a distributed software implemented
fault injection framework based on the mobile agent approach.
Software agents are designed to utilize the real-time system’s
global time and messages to trigger the fault injection ex-
periments. We introduce a lightweight agent implementation
language to model the fault injection and the concerned system
resources, agent migration and logging of the fault injection
experiments.

We argue the feasibility of our approach by applying it
to a “drive-by-wire” application. Here, incorporating the fault
injection software in a mobile agent provides a clear separation
of the fault injection software from the application software.
Thus, the fault injection code is easily exchangeable – providing
means to inject different faults – and can be removed smoothly
from the production system after the test run is completed.

I. I NTRODUCTION AND RELATED WORK

Distributed fault-tolerant computer systems are increasingly
applied in the automotive domain to implement safety-critical
applications. In the next few years, by-wire systems improving
vehicle performance and safety features are planned to replace
mechanical and hydraulic braking and steering systems [1],
[2]. These automotive applications impose stringent require-
ments not only in trustworthiness attributes, such as reliability
and survivability, but also in real-time.

Because of these stringent demands rather strict guidelines
(e.g., MISRA C guidelines [3]) have to be adhered to when
developing automotive software. The sole adherence to pro-
gramming guidelines however is not even closely sufficient to
ensure that the whole distributed system operates correctly in

the presence of faults. Therefore the fault tolerance properties
of the distributed system have to be evaluated as well using
appropriate methods.

Among the numerous approaches established to evaluate
fault tolerance properties, fault injection plays an impor-
tant role. In particular software implemented fault injection
(SWIFI) has gained popularity due to its flexibility and
cost-efficiency [4]. Introducing a middleware layer above
the communication layer provides effective fault injection in
distributed systems. Dawson [5] proposes such a middleware
layer for fault injection in TCP/IP protocols. Koopman [6]
introduces such a layer for the automotive communication
protocol CAN.

This paper proposes an innovative approach extending the
software implemented fault injection approach by introducing
mobile agents in the middleware layer [7]–[9]. For Internet
applications, mobile agents are known for the following advan-
tages [10]: (i) reduced bandwidth consumption because they
can move computation to the data, (ii) flexibility because they
do not require specific code on a remote node, (iii) suitability
and reliability for mobile computing because they do not
require continuous network connections. We are going to use
the mobile agent approach to target the following goals:

a) Easy removal of the fault injection code:A clear
separation between application code and fault injection code
allows the removal of the fault injection code after completion
of the test run.

b) Easy adaptation of the fault injection code:By encap-
sulating the fault injection code into a mobile agent, the code
can be clearly separated and adapted in a flexible manner.

c) No explicit communication between the agents is re-
quired: The roaming concept allows autonomous operation
of the mobile agents and the coordination of the distributed
fault injection actions without message exchange between the
agents.

In order to provide meaningful test results, testing issues
like determinism, reproducibility and avoiding probe effects
must be considered in the fault injection approach. In [11]
an approach is proposed for the testing of distributed real-



time system which considers scheduling information as well
as worst case execution times to avoid probe effects. Our
approach addresses these problems in a similar manner. We
assume that our target applications are implemented on time-
driven operating systems (e.g., OSEKtime [12]) with a time-
driven communication protocol like FlexRay [13] for safety-
critical automotive applications or TTP [14], which is consid-
ered for use in the avionics sector.

Another main challenge is to implement an agent platform
in the target field of bus devices since these devices have
very limited resources in terms of CPU power and available
memory. A Java-based agent platform addressing consumer
devices has been introduced with LEAP (Lightweight Exten-
sible Agent Platform based on JADE [15], [16]), and several
lightweight Java virtual machines (JVM) are available for
these devices, while Jbed [17] addresses the real-time field
embedding the operating system in the JVM. Penya [18]
proposes a new platform for embedded systems which is based
on Java as well. In contrast, we propose to implement our own
agent platform which is especially tailored to fault injection
in by-wire systems. The main reasons are:

• There is no JVM available for our target system.
• There is only a limited functionality of a JVM required.
• Fault injection code requires specific means to address

the above described requirements of determinism, repro-
ducibility and avoiding probe effects.

The paper is structured as follows: Section 2 argues our
concepts and approach in detail. Section 3 explains imple-
mentation issues and presents the implementation architecture
and the agent implementation language. Section 4 shows an
example application where this agent-based fault injection can
be applied and discusses possible benefits and drawbacks.

II. CONCEPTS ANDAPPROACH

Using software implemented fault injection [4], we aim
at testing the reliability and survivability attributes of the
fault tolerance mechanisms implemented in automotive safety-
critical distributed systems. The approach assumes that hard-
ware failures caused by environmental phenomena effect the
system software and thus can be detected at the software level.
Table I shows both the fault hypothesis and the mapping
between a possible cause of a fault and the perception on
hardware and software layers.

The proposed fault injection approach is capable of injecting
symmetric and asymmetric message loss and message muti-
lation, and bitflips in application data of the nodes’ RAM.
Bitflips in ROM – mainly resulting in fatal operating system
errors – are not covered. The fault injection software manip-
ulates messages and application data to inject the proposed
faults. Hereby, access to the application’s memory is required.
This is usually possible in automotive embedded systems
since the used devices do not provide memory protection.
Furthermore, means to lookup the right address in memory
are needed. Commonly, this information is provided by a so-
called “MAP file” which is produced during compilation.

Typical
Environmental
Phenomena

Hardware Failures Failure Perception

Physical
Disconnection, Local
Electro-Magnetic
Disturbance, Short
Circuit

Incoming Link Fail-
ure

Asymmetric Message
Loss/Mutilation

Physical
Disconnection, Local
Electro-Magnetic
Disturbance, Short
Circuit

Outgoing Link Fail-
ure

Symmetric Message
Loss/Mutilation

Physical
Disconnection,
Electro-Magnetic
Disturbance, Short
Circuit

Channel Failure Multiple,
Simultaneous
Symmetric or
Asymmetric Message
Loss/Mutilation

Local Electro-
Magnetic
Disturbance

ROM Bitflips Corrupted
Application Data
Structures, Arbitrary
Application Behavior,
Fatal Operating
System Failures

Local Electro-
Magnetic
Disturbance

RAM Bitflips Corrupted
Application Data
and Data Structures,
Arbitrary Application
Behavior, Fatal
Operating System
Failures

TABLE I

FAULT HYPOTHESIS

The fault injection software should be clearly separated
from the system under test to allow easy removal after the
test runs are completed. Encapsulating the fault injection
experiment within mobile agents [7], [8] ensures that there is
no code remaining on the node under test after the mobile
agent has terminated or left the node. In order to support
mobile agents, an agent platform on each node has to be
provided to en/decapsulate and to send/receive the agents in
a reliable way. In our approach we use one special mobile
agent as an interpreter agent, which migrates to the node
first and is used to execute the second type of mobile agents,
the fault injection and monitoring agents. The results of the
fault injection experiments are sent to an external evaluation
platform.

Multiple similar or different, dependent or independent
faults are injected by exploiting the mobile agents’ ability
to roam between the nodes of a distributed system and to
decide autonomously which faults to inject. Hereby, the fault
injection can either be triggered by time or events, like
message reception. In order to inject the required faults in
parallel, one mobile agent is cloned and roams to each node
under test. Furthermore, it is possible to model fault chains, i.e.
a sequence of faults on one node, and – in principle – also on
different nodes. In contrast to agent systems using messages
for coordination issues, in our approach the mobile agents
do not exchange messages with one another. The reasons
for this restriction are the limited bandwidth available on the
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Fig. 1. Fault Injection Setup

real-time network and the determinism of the fault injection
experiment, which allows to decide upon coordination issues
before runtime.

To avoid probe effects caused by the fault injection software,
mobile agents are scheduled in a way to prevent temporal inter-
ference with the application tasks. Since the targeted real-time
system uses static scheduling, it is possible to predict and use
just the free time slots for the execution of the fault injection
software. As a consequence, the assumed time granularity for
the fault injection experiment is adjusted depending on the
calculated CPU load before runtime.

The targeted hardware platforms are characterized by lim-
ited processor power and limited memory capacity. Although
they are comparable with consumer devices, like PDAs or
mobile cell phones, they are not targeted by mainstream
distributed systems development focusing on script and byte-
code language support like e.g. Java Virtual Machines. The
JVM size ranges from about 40 kB (KJava) up to 2.3 MB (fat
version of Jeode) targeting hardware architectures like ARM,
StrongARM, SH3/4 and similar ones [19]. Many platforms
offer mobility support, like implementing J2ME MIDP [20],
garbage collection and a set of Java classes, e.g. Java AWT for
GUI. The features, however, are not needed for our small fault
injection setup, and garbage collection makes it difficult to
implement deterministic execution in terms of time. Following
the requirement of keeping the software needed for fault
injection as small as possible, we decided to develop a new
fault injection language compiler and a lightweight interpreter

capable of interpreting the byte-code of mobile agents.

III. I MPLEMENTATION OF THE APPROACH

In the following section the implementation approach is pre-
sented. After a short description of the hardware architecture
and the development process with respect to the mobile agents,
the principle of operation of the fault injection based on mobile
agents is illustrated, and the agent implementation language is
presented.

A. Hardware/Software Architecture

The overall architecture (as depicted in Figure 1) of our
approach consists of one dedicated central fault injection
development and evaluation unit, a gateway node, and several
computing nodes.

Thecomputing nodes(i.e., the nodes under test) execute the
distributed real-time application and are interconnected via a
real-time communication network which is used for message
exchange according to a communication protocol with real-
time capabilities. The execution of this communication proto-
col is done by a dedicated communication controller, whereas
the main CPU of the computing nodes executes the application
tasks under the control of a real-time operating system. These
application tasks exchange information by means of messages,
which are either delivered locally or sent over the commu-
nication network in case the tasks are located on different
computing nodes.

The fault injection development and evaluation unitis used
for the development of the fault injection agents, for the trig-



fault scenario −→ entry +

entry −→ ON node trigger action+

node −→ NODE number
trigger −→ AT TIME number| ON MESSAGE messagename
action −→ fi action | migration | log action | TERMINATE

fi action −→ messageloss | messagemutilation | memorymutilation
messageloss −→ LOSE MESSAGE messagename
messagemutilation −→ CHANGE MESSAGE CONTENT messagenameTO data
memorymutilation −→ CHANGE MEMORY CONTENT locationTO data

migration −→ MIGRATE TO node

log action −→ messagelog | memorylog
messagelog −→ LOG MESSAGE CONTENT messagename
memorylog −→ LOG MEMORY CONTENT location

location −→ address| variablename
address −→ number

variablename −→ /* identifier */
messagename −→ /* arbitrary character sequence */
data −→ /* byte sequence */
number −→ /* sequence of digits */

Fig. 2. Definition of the Agent Implementation Language

gering of the initial migration of the fault injection agents and
for the collection, evaluation and presentation of the results of
the fault injection actions. Furthermore, it may send control
messages, like a termination request which forces the agents
to terminate immediately, to the mobile agents by means of
message broadcasting. This fault injection development and
evaluation unit is connected to a non real-time network.

The gateway nodeacts as an entry point for the mobile
agents and relays control messages from the fault injection
development and evaluation unit to the real-time network
of the computing nodes. For this purpose the gateway is
connected to both the non real-time network and the real-time
network.

In the current implementation Ethernet with TCP/IP as
communication protocol is used as non real-time network.
FlexRay together with the FlexRay communication protocol
is used as real-time network. As far as operating systems are
concerned, Win2k is used on the fault injection development
and evaluation unit, Linux with RTAI [21] real-time extension
is used on the gateway node and the real-time operating system
OSEKtime [12] is used on the computing nodes.

B. Development Process

In the field of safety-critical systems the actions performed
by the system are planned and fixed at system design time.
Commonly this information (e.g., the application tasks exe-
cuted on each node as well as the messages transmitted and
received by each computing node) is stored in a so-called
“design database”. Based on the information stored in this
database, middleware layers for message exchange including
memory regions for the local storage of the message data (so-
called “message buffers”) and operating system configuration,
like task dispatching tables, are generated in an automatic
fashion.

These automatically generated operating system configura-
tion and middleware layer files are compiled and linked with
the application source code. This produces an executable file
for the computing node and the MAP file, which contains
a mapping of symbolic information (i.e., variable names and
function names) to the corresponding memory locations on the
computing nodes.

The fault injection agents are implemented in a dedicated
fault injection implementation language, which is translated
into a bytecode via thefault injection language compiler. This
compile step is performed on the fault injection development
and evaluation unit prior to the actual run-time. Hereby the
symbolic information (i.e., message and variable names) is
transformed into physical memory addresses using the con-
tents of the design database and the MAP file.

C. Principle of Operation

Prior to run-time instances of a special agent – theinter-
preter agent– migrate to each computing node in the real-time
network. This interpreter agent performs the execution of the
fault injection agents and incorporates an interpreter for the
agents’ bytecode. Since the interpreter agent itself cannot use
an agent platform for its own execution, it has to be present in
binary form and must be compiled for each different hardware
platform of the computing nodes.

Once an instance of the interpreter agent has migrated to
each computing node, the actual fault injection agents are
allowed to migrate to these nodes and to perform their fault
injection actions in an autonomous fashion.

The effects of the injected faults are perceived and logged
by the agent on the local computing node. Since it is common
practice in the automotive industry to use non-volatile memory
(e.g., EPROM) for the storage of the loggged data, we decided
to make use of this apporach as well. After the completion



ON NODE 0x1 AT_TIME 100 CHANGE_MESSAGE_CONTENT wheel_angle TO 0xAC
ON NODE 0x1 ON_MESSAGE failure LOSE_MESSAGE break_pressure
ON NODE 0x1 AT_TIME 300 CHANGE_MEMORY_CONTENT system_status TO 0x42
ON NODE 0x1 AT_TIME 2400 LOG_MESSAGE_CONTENT break_pressure
ON NODE 0x1 AT_TIME 2500 LOG_MEMORY_CONTENT 0x0815
ON NODE 0x1 AT_TIME 3000 MIGRATE_TO NODE 0x30

Fig. 3. Example Usage of the Agent Implementation Language

of the fault injection experiment the logged data is retrieved
from the non-volatile memory and transferred back to the fault
injection development and evaluation unit.

For the migration of the agents and for the transfer of
the logged data the ISO transport protocol [22] is used. This
protocol was originally developed for CAN networks for the
exchange of data packets which are larger than the maximum
transfer unit (MTU) of the underlying network.

D. Agent Implementation Language

The structure of the agent implementation language follows
an event-action scheme, where actions are triggered by pre-
defined events. In addition, the mobile agents use node location
information to control the context of the fault injection exper-
iments. Figure 2 shows the lightweight grammar used for the
mobile agents.

Triggered by time or on appearance of control messages
the mobile agent decides on the action to perform. The action
is either a migration to another node, the manipulation of
messages or the mutilation of memory. Furthermore, the agent
may log results of the fault injection experiment or terminate.

Hereby, for messages sent via the real-time network, the
message instance name or the message name are unique
symbolic names. These symbolic names are stored in the
design database of the distributed system. After reception or
prior to transmission the messages, as well as the message
instances, are stored in the message buffers on the transmitting
and receiving computing nodes. A unique mapping to the
memory addresses of these message buffers is possible via
the MAP file. The variable name is the name of a program
variable, which again can be translated into a memory address
using the MAP file.

The temporal trigger conditions are based on the global time
(in units of microseconds) provided by the communication
system. In case the global time reaches the time specified
in a temporal trigger condition, the corresponding actions are
invoked.

Figure 3 illustrates the agent implementation language via
an example. Here the data of the messagewheel_angle
is changed to0xAC at time 100 on node0x1 , afterwards
the fault injection software simulates a loss of the mes-
sagebreak_pressure upon the reception of the control
messagefailure , and furthermore changes the value of
the variablesystem_status to 0x42 at time 300 . In
the following, at time2400 the contents of the message
break_pressure and at time2500 the contents of the
memory cell at address0x0815 are logged. Finally, the agent
is instructed to migrate to node0x30 at time3000 .

IV. EVALUATION

In this section an evaluation of the presented approach is
made based on an example application from the automotive
domain.

A. Example Application

For the evaluation of the presented framework, a distributed
real-time system for an automotive application – thedrive-by-
wire application– is used. This distributed system used by this
application consists of 15 computing nodes interconnected via
the FlexRay communication system. Four of these 15 nodes –
the so-calledsteering nodes– take care of aligning the road
wheels according to the computed steering angle. This steering
angle is derived from the driver’s input, which is obtained via
a side stick by four so-calledstick nodesand contains the
desired change of the vehicle velocity (accelerate, decelerate)
as well as requested direction of movement (left, right). Four
brake nodesare responsible for applying the desired change in
vehicle velocity to the road wheels. For the supervision and the
management of the different power sources (i.e., battery and
alternator) threepower nodesare used. – Figure 4 illustrates
the architecture of the drive-by-wire application.

For the implementation of the nodes of the drive-by-wire
application, ES1600 boards developed by ETAS are used.
These boards are of single Europa size and can be plugged
into a VME backplane for reasons of power-supply and
communication.1 Each of these boards hosts an MPC555 mi-
crocontroller clocked at 40 MHz, providing 2 MB of external
SRAM and 4 MB of external flash EEPROM.

Each node hosts two FlexRay communication controllers,
which are located on a dedicated adaption board of the
ES1600. Hereby one of the two FlexRay communication con-
trollers is connected to two FlexRay communication channels,
whereas the second FlexRay communication controller is only
connected to a single communication channel. Thus this setup
provides a total of three communication channels.

The communication via the communication channels is
performed in a static cyclic fashion using the FlexRay com-
munication protocol. The duration of a communication cycle2

is 8 milliseconds.

B. Fault Hypothesis and Degree of Fault Tolerance

Both the computing nodes as well as the communication
channels in the drive-by-wire application are assumed to

1The drive-by-wire application does not make use of the VME bus. The
VME backplane is solely used for means of power-supply.

2During a communication cycle all messages are exchanged between the
different nodes.
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Fig. 4. Architecture of the Drive-By-Wire Application

exhibit only one failure mode: fail silent. The components
either produce correct results, detectable invalid results or no
results at all.

As far as fault tolerance is concerned, the drive-by-wire
application is designed to be able to tolerate the failure of
two arbitrary computing nodes, two arbitrary communication
channels, and two arbitrary communication links.

C. Applying the Agent-Based SWIFI Approach

The inherent safety-criticality of the drive-by-wire applica-
tion requires the testing of its fault tolerance mechanisms and
redundancies in the presence of faults. Injecting these fault
via physical fault injection is hard to control. In particular
the injection of asymmetric faults is hard to do by means
of physical fault injection. Using software implemented fault
injection however provides a much more controlled means
to perform the fault injection. In particular the previously
presented mobile agent-based approach is well-suited for this
task.

With the presented approach, asymmetric faults can be
injected via multiple agents located on different computing
nodes by mutilating or losing the messages in the message
buffers of a subset of the receiving nodes.

If symmetric faults are to be injected, message loss or
message mutilation is either injected at the sending node or at
all receiving nodes.

The coordination of the mobile agents is mainly done by
utilizing the global time provided by the FlexRay communi-
cation system (i.e., each agent injects the faults at pre-defined
points in time). Only the external fault injection development

and evaluation unit may send additional control messages to
the mobile agents. In this way the communication overhead is
reduced and a temporal agent coordination in the microsecond
range is achieved. This is a fact which is important in the
drive-by-wire application due to its rather small cycle time.

After completion of the test runs, the agents can smoothly
be removed from the volatile SRAM of the ES1600 by
performing a simple power cycle (power down followed by
power up) of the respective node.

V. CONCLUSION

In this paper we introduced a novel method of a software
implemented fault injection approach that exploits the con-
cepts of mobile agents for testing reliability and survivability
attributes of distributed fault-tolerant real-time systems. There-
fore we proposed a customized agent-based platform that can
be applied under the extreme limited resource capabilities of
automotive by-wire systems. The mobile agent-based platform
resides within the middleware layer between communication
and application supporting deterministic fault injection simul-
taneously on different nodes of the distributed system. To
achieve an efficient implementation, we introduced a specific
fault injection language that meets the restricted resource ca-
pabilities of the automotive target systems and allows access to
system resources utilizing the mapping information generated
at compile time. We applied our approach to a drive-by-wire
system to argue its feasibility.

We see the benefits of this testing technique – encapsulating
the whole fault injection code into a mobile agent – also
applicable for other trustworthy systems: no explicit message



passing is required during test experiments, the fault injection
code can easily be removed after the test experiments, and a
high flexibility for the test experiments is achieved due to easy
adaptation of the mobile agent code.
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