
BABEL: A Generic Data structure for Geometric Modeling
Robert F. Tobler Helwig Löffelmann Thomas Galla

Werner Purgathofer

Institute of Computer Graphics
Technical University of Vienna

Abstract
We present a basic data structure for geometric data which can be adapted to represent
common geometry representations like CSG, BSP, aso. The new data structure has been
designed to be easy to use, and easy to extend. Due to the representation of geometric data
using a directed acyclic graph, a number of the standard rendering algorithms can be used on
the data structure in a very straightforward way. The new data structure has been
implemented as a C++ library and can therefore serve as high-level tool for developing
graphics applications, or as an extension for using C++ as a modeling language.

1 Introduction
There are a lot of common data structures in computer graphics which are based on a
hierarchical representation of geometric data. When these data structures need to be
implemented a lot of the code is similar, and can be shared, if the common features of these
data structures were factored out. In this paper we present the structure of such an optimized
representation of geometric data.

The main goals in developing this data structure were the following:
• provide all the basic mechanisms for implementing a geometric data structure
• provide an easy-to-use, high level programming interface for working with a geometric

data structure
• provide an easy way to visualize the data structure using different rendering methods
• provide an object-oriented implementation of the data structure that can be easily

extended
The new data structure has been implemented in C++ [Stro 91] and can be viewed as an
extension to this language, since it provides high-level geometric data types for C++ (For this
reason it was called BABEL: Building a Better Language).

2 The Structure of BABEL

2.1 The Geometric Primitives of BABEL
Since BABEL has to represent geometric data, we have to define the basic building blocks of
our data structure. These are the geometric primitives we will use to build more complex
geometric objects. These building blocks can be classified according to their dimension n:

• n = 0: vertex
• n = 1: line, general curve
• n = 2: plane, polygon, general surface
• n = 3: sphere, cube, cylinder, aso.

Obviously the set of objects that can be represented using a data structure depends on the
geometric primitives that are available. It is therefore useful to foresee the possibility to
extend the data structure by adding additional primitives. If an programmer needs to represent
a lot of half-spheres in his application, it might be useful to add this class of objects as a new

primitive to the geometric data structure. For this reason BABEL has been designed to be
open for extensions by the user.

2.2 Operators to Build Complex Objects
In order to build more complex geometric models out of these primitives we need a way to
combine them. We chose to use a directed acyclic graph (DAG) as a hierarchical
representation of the geometric data. The leaf nodes of this graph are the geometric primitives
explained earlier, and the intermediate nodes are operators, that combine, specialize, or even
select these leaf nodes. In order to make it possible to represent standard data structures like
CSG-trees and BSP-trees [Fuch 80] with BABEL, a number of operators had to be defined,
e.g.:

• the CSG operators and, or, and sub, with two subnodes that represent the left and right
operand

• the BSP separator with two subnodes that represent the positive and negative half-space,
and a third subnode that represents the polygons contained in dividing plane

• a group operator to bundle primitives
Boundary representations are normally realized by storing a single instance for each vertex,
and referencing these vertices by each polygon that shares these vertices. This can also be
done in BABEL if we add grouping operators which define polygons. So in BABEL a simple
polygon is a specialized group that contains its vertices as subnodes.

2.3 Attributes
A geometric data structure needs to hold more than just the geometric data: we want to
represent things like color, material, and even names (for identification/selection issues) in
our data structure. All these things can be thought of as attributes to the geometry in our data
structure.

The standard way of storing these attributes, is as fields in the geometry representation. In
order to make our data structure more flexible we chose a different way of representing
attributes: each attribute is represented by a unary operator in the DAG. An attribute is valid
for all of its subnodes. Within the DAG of subnodes an attribute of the same type can override
the value of the currently valid attribute.

Some geometric properties may also be considered as attributes: take the normal to a
surface as an example. If normals are added as attributes in the DAG, the data structure can
support shading algorithms like phong shading [Buit 75].

2.4 Transformations
Although transformations have a profound effect on the geometry of an object they have also
been implemented as attributes (unary operators). This makes it very easy for different objects
to share some geometric information. Consider the example of multiple chairs of a single type
in a room: there is only one representation of the geometry of a chair, but it is reused by
multiple references using different transformations.

3 Manipulating BABEL Objects
The main purpose of a geometry data structure is the implementation of various geometric
algorithms. In order to support a simple way of expressing these algorithms a number of
manipulation methods have been implemented.

3.1 Graph Operations
A number of algorithms need to modify the DAG that represents geometric data. Due to the
general nature of our data structure the common functionality of theses algorithms could be
factored out and a number of tools could be provided, which reduce the aomount of code

necessary for implementing these algorithms. The following tools for these operations have
been implemented:

graph iterators: These iterators make it possible to iterate over a BABEL DAG in prefix,
postfix, or infix order.

substitution methods: These methods allow the substitution of subtrees that satisfy given
conditions.

tagging facility: This allows to allocate a tag bit for each node of the DAG, and thereby
simplifies all algorithms that need to mark certain nodes. Some of the graph iterators
depend on the functionality provided by this facility.

DAG optimizers: For various applications it is necessary to rearrange the BABEL DAG to
achieve maximum preformance, e.g.: for raytracing the transformation nodes should be
collected so that only the minimal number of necessary transformations remain in the
DAG.

3.2 Storing and Retrieving
Of course a data structure is only useful, if it can be easily stored and retrieved. The design of
BABEL includes a general scheme for storing and retrieving a DAG. Using a postorder walk
of the DAG, each leaf node of the tree can be stored after all its subnodes have already be
stored. This facilitates a very simple retrieval algorithm that can recreate all references to
subnodes of a node in the tree, as soon as it has been retrieved. Since this algorithm is
incorporated into the basic functionality of our data structure, implementing the storage and
retrieval methods for single nodes is very simple, and consists mainly of storing and
retrieving of all private data of the node.

In order to achieve maximal portability of the data, we decided to use a purely textual
representation of the data. The syntax of this textual representation was chosen to be a very
small subset of valid C++ (see the example below). This allows to include geometric data into
the executable of an application, which may be useful to shield the application from
manipulations.

Example of BABEL file format:

Solid getSolidTest()
{
 SolidArray s(11);
 int i = 0;

 s[0] = Solid::newVertex(Pnt3D(0,1,0));
 s[1] = Solid::newRGB(s[0],RGB(0,0,0));
 s[2] = Solid::newVertex(Pnt3D(0,0,2));
 s[3] = Solid::newRGB(s[2],RGB(1,1,1));
 s[4] = Solid::newVertex(Pnt3D(0,3,1));
 s[5] = Solid::newTriangle(s[1],s[3],s[4]);
 s[6] = Solid::newRGB(s[4],RGB(1,0,0));
 s[7] = Solid::newVertex(Pnt3D(0,2,3));
 s[8] = Solid::newRGB(s[7],RGB(0,1,0));
 s[9] = Solid::newTriangle(s[3],s[6],s[8]);
 s[10] = Solid::newGroup() << s[5] << s[9];

 return s[10];
}

3.3 Rendering
Without a decent way of rendering, a geometric data structure would be pretty useless. For
this reason BABEL has been designed to easily support various different rendering algorithms.
The hierarchical structure of the representation, is very natural for the following algorithms:

z-buffer [Catm 74]: Since all attributes are unary operators in the DAG, a depth first walk
of the DAG in prefix order will produce all attributes and primitives in the correct
sequence for rendering them into the z-buffer. Obviously this algorithm does not
natively support CSG operators, therefore some CSG conversion algorithm must be
applied to the DAG first.

raytracing [Appe 68]: A CSG raytracer [Roth 82] is already based on a hierarchical data
structure and only needs to handle polygonal data as well in order to cope with the
BABEL DAG

BSP: As indicated earlier, an additional node can be introduced, that encodes the division
of the rendering space in two halves along a given plane. Again CSG operators are not
natively supported and need to be converted before applying the algorithm.

Due to the nature of the BABEL DAG, the implementation for various functionality can easily
be shared. This is very obvious if you consider the BSP node: once implemented it can
trivially be extended to serve as optimization for the other two rendering algorithms.

4 The Implementation of BABEL

4.1 Solid and SolidNode
BABEL was implemented as a library in C++ using the VEGA Libraries [Tobl 95]. The
complete interface of the data structure is provided by the so called Solid class. All
implementation details are hidden from the user by this class. Each Solid represents a DAG
(i.e. each Solid holds a pointer to a DAG) of SolidNodes, which provide the actual
functionality (see figure 4.1). No matter what type of element is represented by such a DAG,
the users handle for that object is a Solid: this is an intentionanl break of the C++ type
system since the language type system was not considered powerful enough to support the
structure we wanted. For this reason we had to implement our own type concept (this is
described in the next section).

SolidNode

Solid

Figure 4.1: Solid and SolidNode

The main advantage of this approach is the fact, that one SolidNode can be shared by
several Solids, which reduces the amount of memory used (see figure 4.2). The classes
Solid and SolidNode also implement a reference counting scheme for SolidNodes, so
that the user does not have to bother with freeing the memory for SolidNodes when they
are not used anymore (as soon as the reference counter of a SolidNode becomes zero, the
SolidNode will automatically be freed, since no Solid points to it).

SolidTriangle

SolidVertex

SolidTriangle

SolidVertex SolidVertexSolidVertex

Solid Solid

Solids

Figure 4.2: triangles sharing vertices

4.2 The Type Concept
BABEL uses an extended type concept to check the compatibility of two Solids. Each
Solid can have two different orthogonal types (which are totally independent):

implementation type: This type reflects the implementation of the Solid, and is defined
by the class hierarchy. It is used to determine the exact type of a Solid. This type is
not considered for geometric compatibility checks.

geometric type: This type defines the geometry of a Solid. It is used for compatibility
checks in assignments and other statements. The geometric type does not depend on the
implementation of the underlying node class.

Since C++ only supports a single type for each identifier at compile time, the use of two
orthogonal types requires that the type checking is postponed until the program is actually
executed. Therefore in BABEL type mismatches are only discovered at runtime.

Since the Solid class provides the only interface to the BABEL class hierarchy, it must
have all abilities of every underlying class derived from SolidNode. Thus it has to mirror
the functionality of all underlying classes. As the type and the provided functionality of a
Solid cannot be checked at compile time, this check has to be done at runtime. If a function
is called, that is not implemented for a specific Solid, a runtime error occurs.

4.3 The Class Hierarchy
Due to the separation of implementation type and geometric type, it was possible to base the
design of the BABEL class hierarchy on implementation issues only. A small part of the
BABEL class hierarchy can be seen in figure 4-3.

Within this class hierarchy, some classes which have very similar behavior are located at
very different positions. As an example, SolidPolygon is derived from SolidNaryNode,
whereas SolidTriangle is derived from SolidTernaryNode. But in a geometric sense, a
SolidTriangle is a SolidPolygon. In order to support a hierarchy of geometric types, the
implementation of the geometric type is based on the divisibility relation: each node class is
assigned an integer tag. If the tag of class A is dividable by the tag of class B without
remainder, then class B is a descendent of class A in the geometric type hierarchy.

...

SolidNode SolidLeaf

SolidUnaryOperator

SolidBinaryOperator

SolidTernaryOperator

SolidNaryOperator

SolidTriangle

SolidAttribute

SolidTransformation

SolidVertex

SolidColor

SolidCSGoperator

SolidCSGand

SolidCSGor

SolidCSGsub

SolidSphere

SolidCube

SolidLine

SolidGroup

SolidPolygon

SolidPolyline

Figure 4-3: A part of the BABEL class hierarchy.

4.4 C++ as Modeling Language
Since C++ was used as implementation language for BABEL, and the complete interface to
the functionality of the data structure is represented by one single class, operator overloading
for this class makes it possible to use C++ as a high level modeling language for geometric
objects and CSG models. This is comparable to the 2D-modeling of PASCAL/Graph [Bart
81]. C++ is a full-featured language without arbitrary restrictions as opposed to other
Modeling languages like the language of the MIRA system [Magn 83] or SOL the modeling
language of the RISS system [Gerv 88]. For this reason, various modeling tasks that need
complex calculations to determine various object parameters can be easily accomplished.
Another advantage of this strategy is, that future extensions of C++ will automatically be
available for modeling purposes.

5. Conclusion and Future Development
The main functionality of BABEL together with a ray-tracer and an interface to the Silicon
Graphics GL have been implemented. At our institute BABEL has been used in various
projects for different purposes:

Modeling: A constraint based modeler was implemented using the BABEL data structures.
Virtual Environments: Various small VR test applications have been implemented using

BABEL .

CSG to BREP conversion: A novel conversion algorithm for BABEL was implemented.
All these projects exhibited considerable savings in both, development time, and code size
thanks to the high level of functionality provided by BABEL.

But BABEL is an open-ended project, and thus there are numerous ways to extend its
functionality. Among these are:

Parametrized objects: Parameter nodes and parametrized attributes to support dynamic
geometric objects.

Generalized transformations: including tapering, twisting and bending operators for
simplification of modeling tasks

Space subdivisions: grid or octree nodes for fast access to geometric objects
Radiosity: attribute nodes specific to radiosity and a radiosity implementation that works

on solids

References
[Appe 68] Appel, A.: “Some Techniques for Shading Machine Renderings of Solids”.

Proceedings of the Spring Joint Computer Conference, pp. 37-45, 1968.
[Bart 81] Barth, W., Dirnberger, J., Purgathofer, W.: “The high-level Graphics

Programming Language PASCAL/Graph”. Proceedings of EUROGRAPHICS ’81
(ed. J. Encarnacao), North Holland Publ. Comp, pp. 151-164, September 1981.

[Buit 75] Bui-Tong, Phong: “Illumination for Computer Generated Pictures”.
Communications of the ACM 18(6), pp. 311-317, June 1975.

[Catm 74] Catmull, E.: “A Subdivision Algorithm for Computer Display of Curved
Surfaces”. Ph.D. Thesis, Report UTEC CSc 74-133, University of Utah, Salt Lake
City, UT, December 1974.

[Fuch 80] Fuchs, H., Kedem, Z.M., Naylor, B.F.: “On Visible Surface Generation by A
Priori Tree Structures”. Proceedings of the SIGGRAPH ’80, Computer Graphics
14(3), pp. 124-133, July 1980.

[Gerv 88] Gervautz, M., Purgathofer, W.: “RISS - Ein Entwicklungssystem zur Generierung
realistischer Bilder” (RISS - A Development System for Genrating Realistic
Images). Visualiserungstechniken und Algorithmen (ed. W. Barth), Informatik
Fachberichte 182, pp. 61-79, September 1988.

[Magn 83] Magnenat-Thalmann, N., Thalmann, D.: “The use of high level graphical types in
the MIRA animation system”, IEEE Computer Graphics an Applications 3(9), pp.
9-16, 1983.

[Roth 82] Roth, S.: “Ray Casting for Modeling Solids”. Computer Graphics and Image
Processing 18(2), pp. 109-144, February 1982.

[Stro 91] Stroustrup, B.: The C++ Programming Language, 2nd edition, Addison Wesley,
1991.

[Tobl 95] Tobler, R.F., Löffelmann, H., Purgathofer, W.: “VEGA: Vienna Environment for
Graphics Applications”. Proceedings of the 3rd Winter School of Computer
Graphics and Visualization, pp. 323-238, Pilzen, February 1995.

