ACSGM — An adaptive CSG meshing
algorithm

W. Purgathofer R.F. Tobler T.M. Galla

Abstract

We present a new algorithm, called ACSGM (which is
short for Adaptive CSG Mesher), that converts scenes in
CSG representation into a boundary representation (BREP
) based on flat triangles. The algorithm is based on the
marching cube algorithm, but instead of working at a fixed
resolution, the size of the cubes used in the meshing process
is changed adaptively.

Quite different from the marching cube algorithm, which
calculates the vertices of the triangles of the final mesh using
linear interpolation, ACSGM uses ray casting for this compu-
tation. This approach not only produces exact vertices but
provides some additional information (e.g. the normal vec-
tors in these vertices) that can be used to generate a more
accurate approximation of the CSG object by the final mesh.

Introduction

CSG is a widely used modeling paradigm, but some algorithms re-
quire a scene description based on a polygonal mesh (e.g. radiosity).
Due to this fact a lot of meshing algorithms which convert a scene
description given as CSG data structure into various kinds of meshes
do exist.

Most of these converters will create a complete mesh for a model
according to the estimated resolution requirements of the applica-
tion software (e.g. the algorithms described by Boender [1]). If
the application software changes its requirements a completely new
mesh needs to be generated.



Since this results in a waste of computation power, because previ-
ously generated meshes are discarded, we decided to design a mesh-
ing algorithm that can incrementally change the mesh resolution
according to the desired accuracy of the generated mesh. As an
example, the application software can request a global or local limit
on the maximum distance of the mesh to the surface of the origi-
nal object. If the requirements change, the incremental algorithm
will then change the previously generated mesh to meet the new
criteria.

Marching cube for C5G

Applying the standard marching cube algorithm as proposed by
Lorensen and Cline [4] to CSG objects has several major drawbacks:

e A CSG object is a discrete case of volume data representation,
where the only possible values for the volume data are 0 (for a
point outside the object) and 1 (for a point inside the object).
Therefore it is not possible to create exact intersection points
by interpolation of the volume data along an edge. The only
possibility is to use the midpoint of the edge as intersection
point, which is a rather rough approximation.

¢ The standard algorithm is not able to represent a CSG object
(or a part of the object (i.e. any node in the CSG tree)) in cases,
where the object (or the part of it) lies completely within one
marching cube.

e The marching cube algorithm is only able to distinguish be-
tween the inside and the outside of the object, but it is not
able to handle objects made up of different materials correctly
(i.e. represent the materials boundaries in a correct manner).

One goal in the development of ACSGM was to overcome these draw-
backs. The next section describes how this goal can be achieved.
Key ideas

This section deals with the key ideas of the enhancement of the
standard marching cube algorithm.



Hierarchical structure

Since the standard marching cube algorithm only works at one level
of detail it is not possible to create a finer grained mesh for parts
of the object where an approximation error is very visible because
these parts are close to the observer or very likely to occur (e.g. at
places of high curvature of the object’s surface). To overcome this
drawback we use a hierarchy of cubes with different sizes instead
of only one level of fixed size cubes to create meshes with different
levels of detail. Each cube’s edge has a length that is exactly % of
the length of a cube at the lower level of detail.

The criterion for the subdivision of one voxel will be explained
in the next section.

The hierarchical structure used in ACSGM is based on an oc-
tree. Each voxel represents one marching cube and generates its
own mesh. The sub-voxels of a given voxel contain a finer grained
mesh.

This hierarchical approach has the following major advantages:

e The used resolution changes according to the curvature of the
object. Thus no computation power is wasted.

o A controlled refinement of the mesh in particular places of
the object is possible. Therefore the accuracy of parts of the
generated mesh can be increased according to the needs of the
specific application.

Adaptive marching cube

Due to the ispiration by the work of Campell and Fussell [2], ACSGM
uses an adaptive version of the standard marching cube algorithm.
Instead of using one cube of fixed size that “marches” over the whole
object, we use the voxels of an octree to create the mesh. Each voxel
is used to create a small part of the final mesh (its own local mesh).

This local mesh represents the part of the CSG object, that lies
within the voxel.

After all local meshes have been created these meshes are put
together to form a global mesh that is a BREP of the original CSG
object. In order to facilitate the task of the combination of the local



meshes, the level of detail between two neighboring cubes should not
differ by more than one level.

If the mesh created by one voxel is not accurate enough (i.e. the
mesh is only a poor approximation of the original object surface),
then the voxel is divided into 8 sub-voxels, and each of the sub-
voxels creates its own local mesh. The decision whether the mesh
is accurate enough is primarily based on the following simple rules:

o [f the material of the object changes more than once along any
edge of the cube, or more than one intersection between one
edge of the cube and the object takes place, the approximation
that can be created by this cube is inaccurate in any case.

o If the distance between the object’s surface and the mesh ex-
ceeds a specific maximum, a further subdivision has to take
place.

¢ If the bounding box of any CSG node of object is completely
within the cube, the mesh is inaccurate for sure, since this
special node will not be represented by the final mesh.

Additionally some application specific classification functions for the
accuracy of the resulting mesh can be introduced:

CSG modeler: For this type of application, a viewpoint dependent
refinement of the mesh might be desirable. Therefore an addi-
tional criterium to refine the part of the mesh that are closer
to the observer to a higher level of detail can be employed in
the algorithm.

Radiosity: When generating meshes for radiosity, a good approach
might be to base the refinement on the BF criterium intro-
duced by Hanrahan, Salzman and Aupperle [3].

Surface flow: For applications that visualize surface flow, an ap-
propriate criterium might be to refine parts that cause extreme

turbulences of the flow (i.e. numerical instabilities in the so-
lution).

Thus a controlled refinement of specific parts of the mesh is possible.
Due to the flexibility of the algorithm, this refinement can be driven
by the application’s needs.



Ray casting for intersections

Instead of classifying each vertex of the marching cube, we inter-
sect each edge of the cube with the object using ray tracing. The
advantages of this approach are discussed in the next sections.

Exact intersections: Using the exact intersections provided by
the ray caster enhances the quality of the final mesh compared to
the standard marching cube algorithm, which uses the midpoints of
the intersecting edges.

Surface correction: The standard marching cube performs very
badly in situations where polyhedral CSG objects have to be meshed.
In some of these situations it would even be possible to obtain a
correct representation of the object using a boundary representation
based on flat polygons. In order to provide a better result in these
situations, we decided to incorporate a technique we call surface
correction into our algorithm.

Marching
Lii]l)  Cube
csG |
{Object
output with output without
surface correction surface correction
Figure 1

Figure 1 shows an example, where the standard marching cube
algorithm would cut off the vertex of the cube, whereas ACSGM is
able to reconstruct the correct surface of the object due to surface
correction.

A detailed description how surface correction is incorperated into
the algorithm will be given later on.

Ut



Multiple materials: Using ray casting for the computation of in-
tersections has the enormous advantage that we are able to consider
material boundaries. Thus we are not bound to a binary classifica-
tion like the one made by the standard marching cube algorithm.

)

Figure 2

Using ray casting enables us to deal with objects made up of
multiple materials, since the ray caster generates a hit at every ma-
terial boundary (i.e. at every transition between different materials).
Therefore, we are able to represent the material boundaries, that
are present in the CSG object, in the final mesh. Figure 2 shows an
example where a sphere has been united with a box. Since both CSG
primitives are made up of different materials, the whole CSG object
contains a material boundary. Since ACSGM uses ray casting for
the computation of the intersection points, this material boundary
will be present in the generated mesh (right part of figure 2).

Basic algorithm

Computation of intersection points

In order to obtain vertices for the triangle mesh, each edge of the
current cube is intersected with the CSG object using ray casting.
The ray caster produces a hit at every material transition along
the edge of the cube. If more than one intersections occur along
one edge of the cube, the midpoint of all these intersection points is
taken as vertex at the current level of detail. Since this is only an ap-
proximation that discards features of the CSG object that are small
compared to the size of the marching cube, a further refinement has
to take place.

After the computation of the vertices some material information
has to be assigned to them. To be able to perform a correct assign-
ment, it has to be distiguished between enter hits (i.e. hits where a



CSG object is entered) and leave hits (i.e. hits where the edge leaves
a CSG object). In the first case, the material of the CSG object,
that is entered by the edge at the point of the hit, is taken as the
material of the vertex. In the latter case, the material of the object
that is left is chosen. In case of several intersection points along
the edge, the material of the first and the last intersection point is
assigned to the vertex that is obtained by computing the midpoint
of all intersection points.

In the last step of this part of the algorithm a value is assigned to
the vertex, depending on the number of intersections for this specific
edge. If the number of intersections is odd, the value of the vertex
is 1, if it is even, a value of 0 is assigned to the vertex.

Connecting the intersection points

We consider the intersection points of every edge of a face (each face
has a minimum of 0 and a maximum of 4 intersection points) and
connect these points according to the classification shown in figure
3 depending on the value of each point.

From the five possible cases with 4 intersection points, two of
them, which are rather complex (the connections of the lines would
make up a bowtie polygon), can be reduce to simpler ones as in-
dicated by two arrows in figure 3. The mistake that is definitively
made by this simplification is either corrected by one of the follow-
ing steps of the algorithm, which is called surface correction or by
a further subdivision of the cube.

The classification shown in figure 3 is unambiguous except for
one case, where intersections are encountered with all four edges,
and the intersection point of each edge has the value 1. This am-
biguity is solved by taking the normal vectors in the intersection
points (a piece of information provided by the ray caster) into ac-
count.

When two points are connected to form one line, the material
that is common to both points is chosen and assigned to both of
the points. In the case that the two points have both materials in
common, two lines will be created out of the single line, and each line
will get one of the two materials. Since one intersection point can
be endpoint of two lines, ACSGM creates two instances of the point
in this case, where each of the two has its own material. Therefore

I



a line that is created in this way has a defined single material.

two edges intersecting with the object

0 1 0 1
I \o \1
0 1
three edges intersecting with the object
> IO
1 0
four edges intersecting with the object
1 0 0
1\}1 1 J<>(D
1 1 0
ambiguous 1

reduce to less
complex cases

mna)

Figure 3

(use normal vectors)
0

Afterwards these lines are split into two parts by an additional
point that is calculated by ntersecting the tangential planes in the
endpoints of the line with the plane that is defined by the face of

the cube that contains this line.

In cases, where the normal vectors in the endpoints of the line
are linear dependent, no split point is generated. Figure 4 illustrates

this fact.

The generation of this split point is the part of the surface cor-

rection incorporated in the presented algorithm.



et for this line no split
o point is generated

here a split point
is generated

Figure 4

Building temporary polygons

In the next step the single lines are concatenated to form polygons.
Since we want polygons with a well defined material, only lines
consisting of the same material are connected.

Normally the concatenation of several lines to polygons is not
easy to accomplish, since the case where two or more polygons share
one edge and therefore have one line in common, has to be treated
in a special way. Due to the previous step all lines that are cornmon
to two polygons have been duplicated, because the two endpoints
have had both materials in common. This holds for polygons that
consist of the same material as well, since in that case the vertices
of the common line have both materials in common, too. The only
difference in this case is, that actually all four materials are equal,
but nevertheless two lines are created. Thus it is sufficient to con-
nect lines with the same endpoints and the same material in those
endpoints.

Splitting polygons into triangles

In general the vertices of the polygons created in the previous section
will not lie on one plane and therefore it is required to split these
polygon into several flat triangles, which is done by the computation
of the so called complex split point.

The computation of the intersection point is based on the fol-
lowing equation:



N.Z2 = ¢ (1)

where N is a n X 3 matrix with the normal vectors in the different
intersection points as rows. The vector ¢ consists of the constants
from the equations for the different tangential planes. Since this
linear equation system is in the most cases overdetermined (there
are only 3 unknowns and n linear equations), we use singular value
decomposition to obtain the least-squares solution as described by
Press, Flannery, Teukolsky and Vetterling [5].

In some special cases (i.e. when the tangential planes in the in-
tersection points are parallel) the normal vectors in the intersection
points are linear dependent and therefore the different equations are
linear dependent as well. This may lead to an underdetermined sys-
tern which of course has no unique solution. If this is the case, we
have to distinguish between two different cases:

o [f all linear equations are mutually linear dependent, the mid-
point of all vertices is used to split the polygon into triangles.

o [f there are exactly two linear independent equations, the mid-
point of all line split points is taken as complex split point

(figure 5).

- @ intersection points
’ O line split points
fo NON Py . O complex split point

Figure 5

The choice of complex split point is the second part of the surface
correction.

10



Combining the local meshes

In order to obtain a mesh that is free from T-vertices, we have to
ensure, that the faces of neighboring cubes that touch each other,
have exactly the same intersection points. Even the lines resulting
from connecting these intersection points must be the same.

This requirement is obviously fulfilled for cubes of the same size,
since both cubes intersect the same edges with the object resulting in
the same intersection points with the same classification. Therefore
neighboring cubes of equal size do not lead to any problem.

If the neighboring cubes are of different size, the situation is not
that rosy, since in this case in general the intersection points will
not be the same. Thus the larger cube discards its own intersection
points and adopts the intersection points of all smaller cubes that
share a part of the specific face with it. Thus it is guaranteed in a
rather simple way that neighboring cubes always have exactly the
same intersection points on a face they share with each other and
that the resulting lines are the same as well.

The only thing left to consider is the fact that by inheriting
intersection points (and their connections) from a neighboring cube,
it might happen that some of these points lie exactly on one edge of
the face, where the inheritance takes place. Therefore they do not
only affect the face where the intersections has taken place, but the
neighboring face along the specific edge as well. If the number of
points that lie on the edge stays the same (i.e. no additional points

that lie on the edge have been inherited), the new lines can be
adopted without any further adaptations, since in this case, the
intersection points must be the same. This is guaranteed, since we
use exact intersections.

If the number increases (a decrease in the number of intersection
point is not possible), we have to modify the lines of the neighboring
face (i.e. move their vertices) in order to obtain a valid mesh. Since
the number of intersections between two neighboring cubes can only
differ by the amount of 1 (this is obvious, because the level differ-
ence of two neighboring cubes must not exceed one, and only one
intersection point per edge is generated), only two different cases
for each edge (one with a vertex with odd value, the other one with
a vertex with an even value) have to be considered. Figure 6 shows
both of them.

11



edge with an even edge with an odd
number of intersections number of intersections

Figure 6

In the last step all local meshes (of the desired resolution) are
combined to form the global mesh. If a part of the object has not
been refined to this desired resolution, the local mesh at a lower
level of detail is taken (which has a sufficient accuracy). Due to
the patching described above all local meshes fit together and no
T-vertices are produced.

Implementation

ACSGM was developed under IRIX 5.3 on a Silicon Graphics work-
station using the SGI Delta/C++ compiler. Since the algorithm
does not require any specific hardware, it can easily be ported to
any other platform.

The software environment we used for the implementation of the
algorithm was VEGA (Vienna Environment for Graphics Applications),
a C++ library developed by Tobler, Loffelmann and Purgathofer [6],
that greatly facilitates most of the common tasks in computer graph-

12



ics.

Most of the data structures used by ACSGM were based on BA-
BEL (Building A Better Language). BABEL again is a C4++ class
library, that was developed by Tobler, Loffelmann and Galla [RE-
FRENCE], which enhances C++ by some special modeling classes.

Results

In order to point out the advantages of surface correction, a plain
cube was used as input to the algorithm. For the visualization
perspective projection was chosen.

Meshes created with surface correction turned on are compared
with meshes created without surface correction.

The right part of figure 7 shows a level 1 mesh consisting of 8
polygouns, that was generated without surface correction. Obviously
this mesh only provides a very poor approximation of the original
object, since all vertices are cut off.

i\

Figure 7
The left part of figure 7 shows a level 1 mesh which was generated

with surface correction turned on. This mesh, which is made up of
48 polygons, provides a perfect approrimation of the original CSG

13



object (i.e. the maximal distance between the polygons of the mesh
and the surface of the original object is 0).

Summary and further outlook

The presented meshing algorithm produces a triangular mesh out
of a CSG object using an adaptive hierarchical marching cube algo-
rithm based on an octree.

Although the new algorithm is very well suited for applications
which need an early (rough) approximation of the CSG model which
can be incrementally refined, several improvements are possible.

Since ACSGM produces obtuse triangles in some cases, these
have to be dealt with in the application software, or an additional
step of mesh relaxation can be appended.

A suitable mesh relaxation could also be used to increase the
accuracy of mesh vertices located at G! discontinuities of the ob-
jects, since these vertices will normally be approximated according
to the intersection of the tangential planes in the vicinity of the
discontinuity.

In order to speed up the algorithm, it might be desirable to
delay the use of the ray caster till a specific level of detail has been
reached, since the computation of intersection points between the
edges of the voxel and the CSG object is a rather time consuming
task.

Another possible enhancement as far as execution time is con-
cerned is to prevent the mesh generation in cases where it is known,
that the result will be inaccurate and that a finer subdivision has
to take place anyway.

References

[1] E. Boender, Finite Element Mesh Generation from CSG Models,
PhD thesis, Technical University Delft, 1992.

[2] A.T. Campell and D.S. Fussell, Adaptive Mesh Generation for Global
Diffuse Ilumination, Computer Graphics, 24, 4, [155-164], August
1990.

14



[3]

[6]

P. Hanrahan, D. Salzman, and L. Aupperle, A Rapid Hierarchical
Radiosity Algorithm, Computer Graphics, 25, 4, [197-206], July
1991.

W.E. Lorensen and H.E. Cline, Marching Cubes: A High Resolution
3D Surface Construction Algorithm, Computer Graphics, 21, 4, [163—
169], July 1987.

W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
Numerical Recepies in C, Press Syndicate of the University of Cam-
bridge, 1988.

R.F. Tobler, H. Loffelmann, and W. Purgathofer, VEGA - Vienna
Environment for Graphics Applications, In Winter School of Com-
puter Graphics, Plzen, February 1995.



