
ACSGM { An adaptive CSG meshingalgorithmW. Purgathofer R.F. Tobler T.M. GallaAbstractWe present a new algorithm, called ACSGM (which isshort for Adaptive CSG Mesher), that converts scenes inCSG representation into a boundary representation (BREP) based on at triangles. The algorithm is based on themarching cube algorithm, but instead of working at a �xedresolution, the size of the cubes used in the meshing processis changed adaptively.Quite di�erent from the marching cube algorithm, whichcalculates the vertices of the triangles of the �nal mesh usinglinear interpolation, ACSGM uses ray casting for this compu-tation. This approach not only produces exact vertices butprovides some additional information (e.g. the normal vec-tors in these vertices) that can be used to generate a moreaccurate approximation of the CSG object by the �nal mesh.IntroductionCSG is a widely used modeling paradigm, but some algorithms re-quire a scene description based on a polygonal mesh (e.g. radiosity).Due to this fact a lot of meshing algorithms which convert a scenedescription given as CSG data structure into various kinds of meshesdo exist.Most of these converters will create a complete mesh for a modelaccording to the estimated resolution requirements of the applica-tion software (e.g. the algorithms described by Boender [1]). Ifthe application software changes its requirements a completely newmesh needs to be generated. 1



Since this results in a waste of computation power, because previ-ously generated meshes are discarded, we decided to design a mesh-ing algorithm that can incrementally change the mesh resolutionaccording to the desired accuracy of the generated mesh. As anexample, the application software can request a global or local limiton the maximum distance of the mesh to the surface of the origi-nal object. If the requirements change, the incremental algorithmwill then change the previously generated mesh to meet the newcriteria.Marching cube for CSGApplying the standard marching cube algorithm as proposed byLorensen and Cline [4] to CSG objects has several major drawbacks:� A CSG object is a discrete case of volume data representation,where the only possible values for the volume data are 0 (for apoint outside the object) and 1 (for a point inside the object).Therefore it is not possible to create exact intersection pointsby interpolation of the volume data along an edge. The onlypossibility is to use the midpoint of the edge as intersectionpoint, which is a rather rough approximation.� The standard algorithm is not able to represent a CSG object(or a part of the object (i.e. any node in the CSG tree)) in cases,where the object (or the part of it) lies completely within onemarching cube.� The marching cube algorithm is only able to distinguish be-tween the inside and the outside of the object, but it is notable to handle objects made up of di�erent materials correctly(i.e. represent the materials boundaries in a correct manner).One goal in the development of ACSGMwas to overcome these draw-backs. The next section describes how this goal can be achieved.Key ideasThis section deals with the key ideas of the enhancement of thestandard marching cube algorithm.2



Hierarchical structureSince the standard marching cube algorithm only works at one levelof detail it is not possible to create a �ner grained mesh for partsof the object where an approximation error is very visible becausethese parts are close to the observer or very likely to occur (e.g. atplaces of high curvature of the object's surface). To overcome thisdrawback we use a hierarchy of cubes with di�erent sizes insteadof only one level of �xed size cubes to create meshes with di�erentlevels of detail. Each cube's edge has a length that is exactly 12 ofthe length of a cube at the lower level of detail.The criterion for the subdivision of one voxel will be explainedin the next section.The hierarchical structure used in ACSGM is based on an oc-tree. Each voxel represents one marching cube and generates itsown mesh. The sub-voxels of a given voxel contain a �ner grainedmesh.This hierarchical approach has the following major advantages:� The used resolution changes according to the curvature of theobject. Thus no computation power is wasted.� A controlled re�nement of the mesh in particular places ofthe object is possible. Therefore the accuracy of parts of thegenerated mesh can be increased according to the needs of thespeci�c application.Adaptive marching cubeDue to the ispiration by the work of Campell and Fussell [2], ACSGMuses an adaptive version of the standard marching cube algorithm.Instead of using one cube of �xed size that \marches" over the wholeobject, we use the voxels of an octree to create the mesh. Each voxelis used to create a small part of the �nal mesh (its own local mesh).This local mesh represents the part of the CSG object, that lieswithin the voxel.After all local meshes have been created these meshes are puttogether to form a global mesh that is a BREP of the original CSGobject. In order to facilitate the task of the combination of the local3



meshes, the level of detail between two neighboring cubes should notdi�er by more than one level.If the mesh created by one voxel is not accurate enough (i.e. themesh is only a poor approximation of the original object surface),then the voxel is divided into 8 sub-voxels, and each of the sub-voxels creates its own local mesh. The decision whether the meshis accurate enough is primarily based on the following simple rules:� If the material of the object changes more than once along anyedge of the cube, or more than one intersection between oneedge of the cube and the object takes place, the approximationthat can be created by this cube is inaccurate in any case.� If the distance between the object's surface and the mesh ex-ceeds a speci�c maximum, a further subdivision has to takeplace.� If the bounding box of any CSG node of object is completelywithin the cube, the mesh is inaccurate for sure, since thisspecial node will not be represented by the �nal mesh.Additionally some application speci�c classi�cation functions for theaccuracy of the resulting mesh can be introduced:CSG modeler: For this type of application, a viewpoint dependentre�nement of the mesh might be desirable. Therefore an addi-tional criterium to re�ne the part of the mesh that are closerto the observer to a higher level of detail can be employed inthe algorithm.Radiosity: When generating meshes for radiosity, a good approachmight be to base the re�nement on the BF criterium intro-duced by Hanrahan, Salzman and Aupperle [3].Surface ow: For applications that visualize surface ow, an ap-propriate criteriummight be to re�ne parts that cause extremeturbulences of the ow (i.e. numerical instabilities in the so-lution).Thus a controlled re�nement of speci�c parts of the mesh is possible.Due to the exibility of the algorithm, this re�nement can be drivenby the application's needs. 4



Ray casting for intersectionsInstead of classifying each vertex of the marching cube, we inter-sect each edge of the cube with the object using ray tracing. Theadvantages of this approach are discussed in the next sections.Exact intersections: Using the exact intersections provided bythe ray caster enhances the quality of the �nal mesh compared tothe standard marching cube algorithm, which uses the midpoints ofthe intersecting edges.Surface correction: The standard marching cube performs verybadly in situations where polyhedral CSG objects have to be meshed.In some of these situations it would even be possible to obtain acorrect representation of the object using a boundary representationbased on at polygons. In order to provide a better result in thesesituations, we decided to incorporate a technique we call surfacecorrection into our algorithm.
output with

surface correction

output without

surface correction

CSG

Object

Marching

Cube

Figure 1Figure 1 shows an example, where the standard marching cubealgorithm would cut o� the vertex of the cube, whereas ACSGM isable to reconstruct the correct surface of the object due to surfacecorrection.A detailed description how surface correction is incorperated intothe algorithm will be given later on.5



Multiple materials: Using ray casting for the computation of in-tersections has the enormous advantage that we are able to considermaterial boundaries. Thus we are not bound to a binary classi�ca-tion like the one made by the standard marching cube algorithm.
Figure 2Using ray casting enables us to deal with objects made up ofmultiple materials, since the ray caster generates a hit at every ma-terial boundary (i.e. at every transition between di�erent materials).Therefore, we are able to represent the material boundaries, thatare present in the CSG object, in the �nal mesh. Figure 2 shows anexample where a sphere has been united with a box. Since both CSGprimitives are made up of di�erent materials, the whole CSG objectcontains a material boundary. Since ACSGM uses ray casting forthe computation of the intersection points, this material boundarywill be present in the generated mesh (right part of �gure 2).Basic algorithmComputation of intersection pointsIn order to obtain vertices for the triangle mesh, each edge of thecurrent cube is intersected with the CSG object using ray casting.The ray caster produces a hit at every material transition alongthe edge of the cube. If more than one intersections occur alongone edge of the cube, the midpoint of all these intersection points istaken as vertex at the current level of detail. Since this is only an ap-proximation that discards features of the CSG object that are smallcompared to the size of the marching cube, a further re�nement hasto take place.After the computation of the vertices some material informationhas to be assigned to them. To be able to perform a correct assign-ment, it has to be distiguished between enter hits (i.e. hits where a6



CSG object is entered) and leave hits (i.e. hits where the edge leavesa CSG object). In the �rst case, the material of the CSG object,that is entered by the edge at the point of the hit, is taken as thematerial of the vertex. In the latter case, the material of the objectthat is left is chosen. In case of several intersection points alongthe edge, the material of the �rst and the last intersection point isassigned to the vertex that is obtained by computing the midpointof all intersection points.In the last step of this part of the algorithm a value is assigned tothe vertex, depending on the number of intersections for this speci�cedge. If the number of intersections is odd, the value of the vertexis 1, if it is even, a value of 0 is assigned to the vertex.Connecting the intersection pointsWe consider the intersection points of every edge of a face (each facehas a minimum of 0 and a maximum of 4 intersection points) andconnect these points according to the classi�cation shown in �gure3 depending on the value of each point.From the �ve possible cases with 4 intersection points, two ofthem, which are rather complex (the connections of the lines wouldmake up a bowtie polygon), can be reduce to simpler ones as in-dicated by two arrows in �gure 3. The mistake that is de�nitivelymade by this simpli�cation is either corrected by one of the follow-ing steps of the algorithm, which is called surface correction or bya further subdivision of the cube.The classi�cation shown in �gure 3 is unambiguous except forone case, where intersections are encountered with all four edges,and the intersection point of each edge has the value 1. This am-biguity is solved by taking the normal vectors in the intersectionpoints (a piece of information provided by the ray caster) into ac-count.When two points are connected to form one line, the materialthat is common to both points is chosen and assigned to both ofthe points. In the case that the two points have both materials incommon, two lines will be created out of the single line, and each linewill get one of the two materials. Since one intersection point canbe endpoint of two lines, ACSGM creates two instances of the pointin this case, where each of the two has its own material. Therefore7



a line that is created in this way has a de�ned single material.
two edges intersecting with the object

three edges intersecting with the object

four edges intersecting with the object

0

0

0

0

1

1

ambiguous

(use normal vectors)

0

1

1

1

11

1 0

0

0

0

0

0

1

1

0

0

0

0

0

reduce to less

complex cases

0

0

1

1

0

0

1

1

Figure 3Afterwards these lines are split into two parts by an additionalpoint that is calculated by intersecting the tangential planes in theendpoints of the line with the plane that is de�ned by the face ofthe cube that contains this line.In cases, where the normal vectors in the endpoints of the lineare linear dependent, no split point is generated. Figure 4 illustratesthis fact.The generation of this split point is the part of the surface cor-rection incorporated in the presented algorithm.8



here a split point

is generated

for this line no split

point is generated

Figure 4Building temporary polygonsIn the next step the single lines are concatenated to form polygons.Since we want polygons with a well de�ned material, only linesconsisting of the same material are connected.Normally the concatenation of several lines to polygons is noteasy to accomplish, since the case where two or more polygons shareone edge and therefore have one line in common, has to be treatedin a special way. Due to the previous step all lines that are commonto two polygons have been duplicated, because the two endpointshave had both materials in common. This holds for polygons thatconsist of the same material as well, since in that case the verticesof the common line have both materials in common, too. The onlydi�erence in this case is, that actually all four materials are equal,but nevertheless two lines are created. Thus it is su�cient to con-nect lines with the same endpoints and the same material in thoseendpoints.Splitting polygons into trianglesIn general the vertices of the polygons created in the previous sectionwill not lie on one plane and therefore it is required to split thesepolygon into several at triangles, which is done by the computationof the so called complex split point.The computation of the intersection point is based on the fol-lowing equation: 9



N � ~x = ~c (1)where N is a n� 3 matrix with the normal vectors in the di�erentintersection points as rows. The vector ~c consists of the constantsfrom the equations for the di�erent tangential planes. Since thislinear equation system is in the most cases overdetermined (thereare only 3 unknowns and n linear equations), we use singular valuedecomposition to obtain the least-squares solution as described byPress, Flannery, Teukolsky and Vetterling [5].In some special cases (i.e. when the tangential planes in the in-tersection points are parallel) the normal vectors in the intersectionpoints are linear dependent and therefore the di�erent equations arelinear dependent as well. This may lead to an underdetermined sys-tem which of course has no unique solution. If this is the case, wehave to distinguish between two di�erent cases:� If all linear equations are mutually linear dependent, the mid-point of all vertices is used to split the polygon into triangles.� If there are exactly two linear independent equations, the mid-point of all line split points is taken as complex split point(�gure 5).
intersection points

line split points

complex split pointFigure 5The choice of complex split point is the second part of the surfacecorrection. 10



Combining the local meshesIn order to obtain a mesh that is free from T-vertices, we have toensure, that the faces of neighboring cubes that touch each other,have exactly the same intersection points. Even the lines resultingfrom connecting these intersection points must be the same.This requirement is obviously ful�lled for cubes of the same size,since both cubes intersect the same edgeswith the object resulting inthe same intersection points with the same classi�cation. Thereforeneighboring cubes of equal size do not lead to any problem.If the neighboring cubes are of di�erent size, the situation is notthat rosy, since in this case in general the intersection points willnot be the same. Thus the larger cube discards its own intersectionpoints and adopts the intersection points of all smaller cubes thatshare a part of the speci�c face with it. Thus it is guaranteed in arather simple way that neighboring cubes always have exactly thesame intersection points on a face they share with each other andthat the resulting lines are the same as well.The only thing left to consider is the fact that by inheritingintersection points (and their connections) from a neighboring cube,it might happen that some of these points lie exactly on one edge ofthe face, where the inheritance takes place. Therefore they do notonly a�ect the face where the intersections has taken place, but theneighboring face along the speci�c edge as well. If the number ofpoints that lie on the edge stays the same (i.e. no additional pointsthat lie on the edge have been inherited), the new lines can beadopted without any further adaptations, since in this case, theintersection points must be the same. This is guaranteed, since weuse exact intersections.If the number increases (a decrease in the number of intersectionpoint is not possible), we have to modify the lines of the neighboringface (i.e. move their vertices) in order to obtain a valid mesh. Sincethe number of intersections between two neighboring cubes can onlydi�er by the amount of 1 (this is obvious, because the level di�er-ence of two neighboring cubes must not exceed one, and only oneintersection point per edge is generated), only two di�erent casesfor each edge (one with a vertex with odd value, the other one witha vertex with an even value) have to be considered. Figure 6 showsboth of them. 11



edge with an even

number of intersections

edge with an odd

number of intersectionsFigure 6In the last step all local meshes (of the desired resolution) arecombined to form the global mesh. If a part of the object has notbeen re�ned to this desired resolution, the local mesh at a lowerlevel of detail is taken (which has a su�cient accuracy). Due tothe patching described above all local meshes �t together and noT-vertices are produced.ImplementationACSGM was developed under IRIX 5.3 on a Silicon Graphics work-station using the SGI Delta/C++ compiler. Since the algorithmdoes not require any speci�c hardware, it can easily be ported toany other platform.The software environment we used for the implementation of thealgorithmwas VEGA (ViennaEnvironment forGraphicsApplications),a C++ library developed by Tobler, L�o�elmann and Purgathofer [6],that greatly facilitatesmost of the common tasks in computer graph-12



ics.Most of the data structures used by ACSGM were based on BA-BEL (Building A Better Language). BABEL again is a C++ classlibrary, that was developed by Tobler, L�o�elmann and Galla [RE-FRENCE], which enhances C++ by some special modeling classes.ResultsIn order to point out the advantages of surface correction, a plaincube was used as input to the algorithm. For the visualizationperspective projection was chosen.Meshes created with surface correction turned on are comparedwith meshes created without surface correction.The right part of �gure 7 shows a level 1 mesh consisting of 8polygons, that was generated without surface correction. Obviouslythis mesh only provides a very poor approximation of the originalobject, since all vertices are cut o�.

Figure 7The left part of �gure 7 shows a level 1 mesh which was generatedwith surface correction turned on. This mesh, which is made up of48 polygons, provides a perfect approximation of the original CSG13



object (i.e. the maximal distance between the polygons of the meshand the surface of the original object is 0).Summary and further outlookThe presented meshing algorithm produces a triangular mesh outof a CSG object using an adaptive hierarchical marching cube algo-rithm based on an octree.Although the new algorithm is very well suited for applicationswhich need an early (rough) approximation of the CSGmodel whichcan be incrementally re�ned, several improvements are possible.Since ACSGM produces obtuse triangles in some cases, thesehave to be dealt with in the application software, or an additionalstep of mesh relaxation can be appended.A suitable mesh relaxation could also be used to increase theaccuracy of mesh vertices located at G1 discontinuities of the ob-jects, since these vertices will normally be approximated accordingto the intersection of the tangential planes in the vicinity of thediscontinuity.In order to speed up the algorithm, it might be desirable todelay the use of the ray caster till a speci�c level of detail has beenreached, since the computation of intersection points between theedges of the voxel and the CSG object is a rather time consumingtask.Another possible enhancement as far as execution time is con-cerned is to prevent the mesh generation in cases where it is known,that the result will be inaccurate and that a �ner subdivision hasto take place anyway.References[1] E. Boender, Finite Element Mesh Generation from CSG Models,PhD thesis, Technical University Delft, 1992.[2] A.T. Campell and D.S. Fussell, Adaptive Mesh Generation for GlobalDi�use Illumination, Computer Graphics, 24, 4, [155{164], August1990. 14



[3] P. Hanrahan, D. Salzman, and L. Aupperle, A Rapid HierarchicalRadiosity Algorithm, Computer Graphics, 25, 4, [197{206], July1991.[4] W.E. Lorensen and H.E. Cline, Marching Cubes: A High Resolution3D Surface Construction Algorithm, Computer Graphics, 21, 4, [163{169], July 1987.[5] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,Numerical Recepies in C, Press Syndicate of the University of Cam-bridge, 1988.[6] R.F. Tobler, H. L�o�elmann, and W. Purgathofer, VEGA - ViennaEnvironment for Graphics Applications, In Winter School of Com-puter Graphics, Plzen, February 1995.

15


