
Testing and Monitoring of FlexRay

Based Applications

Roman Pallierer, Thomas M. Galla

EB (formerly DECOMSYS)

roman.pallierer@elektrobit.com, thomas.galla@elektrobit.com

October 11, 2007

mailto:roman.pallierer@elektrobit.com
mailto:thomas.galla@elektrobit.com

1 Introduction to FlexRay Based Applications

FlexRay has been developed for future in-car control applications demanding high data rates,

deterministic behavior and the support of fault tolerance. Application domains of FlexRay-

based systems include power train, chassis and body control. Furthermore, FlexRay is

considered as backbone network interconnecting several main electronic control units

(ECUs) with each other. This chapter is focused on testing and monitoring concepts for such

applications interconnected via FlexRay.

1.1 System Architecture

When describing the system architecture a distinction between the hardware and the software

aspects of the system architecture can be made. The hardware architecture shown in this

chapter reflects the state of the art in today’s automotive systems. The software architecture

presented in this chapter conforms to the AUTOSAR standard [1] (see Chapter SV).

However some simplifications are made for the sake of brevity, clarity, and simplicity (i.e.,

unnecessary details are sometimes omitted).

1.1.1 Hardware Architecture

The hardware architecture of automotive systems can be viewed at different levels of

abstraction.

On the highest level of abstraction, the system level, an automotive system consists of a number

of networks interconnected via gateways (see Figure 1). In general these networks correspond

to the different functional domains that can be found in today’s cars (i.e., chassis domain,

power train domain, body domain).

The networks themselves comprise a number of electronic control units (ECUs) which are

interconnected via a communication media (see zoom-in on network A and D in Figure 1). –

The physical topology used for the interconnection is basically arbitrary; however bus, star,

- 2 -

and ring topologies are the most common topologies in today’s cars. This level, named network

level, represents the medium level of abstraction.

N etw ork A

G atew ay

N etw ork B

G atew ay

N etw ork D

N etw ork C

E C U 4
E C U 3

E C U 0

EC U 2

EC U 5

E C U 6

E C U 1E C U 7

N etw ork D
EC U 3 E C U 4

E C U 0 E C U 1 E C U 2

N etw ork A

Figure 1: Hardware Architecture – System and Network Level

Note that conceptually speaking, a gateway is a special ECU that actually is a member of all

networks that are interconnected by this gateway.

On the lowest level of abstraction, the ECU level (Figure 2), the major parts of an ECU are of

interest. An ECU comprises one or more micro controller units (MCUs) as well as one or

more communication controllers (CCs). In most cases, exactly one MCU and one CC are

used to build up an ECU.

In order to be able to control physical processes in the car (e.g., control the injection pump of

an engine) the ECU’s MCU is connected to actuators via the MCU analog or digital output

ports. To provide means to obtain environmental information, sensors are connected to the

MCUs analog or digital input ports. We call this interface the ECU’s environmental interface.

The CC (s) facilitate(s) the physical connectivity of the ECU to the respective network(s). We

call this interface of an ECU the ECU’s network interface. The number of CCs hosted by

- 3 -

gateway ECUs thus usually equals the number of networks interconnected by the respective

gateway.

M C U
M C U

M C U

C C C C

Sensor SensorActuator

Environm enta l
In terface

N etw ork
Interface

Figure 2: Hardware Architecture – ECU Level

1.1.2 Software Architecture

The AUTOSAR software architecture makes a rather strict distinction between application

software and basic or system software. While the basic (or system) software provides

functionality like communication protocol stacks for automotive communication protocols

(e.g., FlexRay), an operating system and diagnostic modules, the application software

comprises all application specific software items (i.e., control loops, interaction with sensors

and actuators etc.). This way, the basic or system software provides the fundament, the

application software is built upon.

1.1.2.1 Application Software

Application software in AUTOSAR consists of application software components, which are

ECU and location independent and sensor-actuator components that are dependent on ECU

hardware and therefore location dependent. Whereas instances of application software

components can easily be deployed to and relocated among different ECUs, instances of

sensor-actuator components must be deployed to a specific ECU for performance/efficiency

- 4 -

reasons. Deploying multiple instances of the same component to a single ECU is supported by

the AUTOSAR component standard. A simple example for the deployment of multiple

instances of the same component is an ECU with two redundant sensors. In that scenario two

instances of the respective sensor components would be deployed to the ECU, each instance

servicing exactly one of the two sensors.

Application software components as well as sensor-actuator components are interconnected

via so-called connectors. These connectors represent the exchange of data, usually called

“signals” in automotive domain, among the connected components. The characterics,

requirements and the constraints on such a signal exchange are specified as attributes of the

respective connector. – Hereby the following classes of characteristics, requirements and

constraints have to be considered:

Timing characteristics and requirements: This class defines the temporal properties

of the signal exchange, namely the properties occurrence, period, latency, and jitter.

As far as the occurrence of a signal exchange is concerned, a distinction between

periodic exchange, sporadic exchange and aperiodic exchange can be made. While

for periodic and sporadic exchanges, constraints on the temporal distance between

two consecutive signal exchanges can be specified, no such constraints can be given

for aperiodic exchanges. The period of the signal exchange is hereby the temporal

distance between two consecutive signal exchanges in case of periodic signals (P in

Figure 3). In case of sporadic signals the period defines the minimum temporal

distance between any two consecutive signal exchanges (sometimes also called

minimum interarrival time). For aperiodic signals, the period property is not used.

The latency (in iL Figure 3) of a signal exchange is defined as the temporal distance

between the initiation of the signal transmission at the sender (i.e., the point in time

the sending application software component calls the sending API service) and the

- 5 -

signal reception at the receiver (i.e., the point in time the received signal is available at

the receiving application software component). Given the characteristics of

periodic/sporadic signals exchanged through a given network, it is possible to evaluate

a priori the worst latency for each signal; for example, in [2] the authors have shown

how to evaluate this worst case for a FlexRay network while in Chapter (see HH) in

this book, is presented the evaluation method of the same characteristic for a CAN

network is presented. Properties can be required on the latency of signals such as the

maximum allowable latency (for example, has to be always lower than in iL maxL Figure

3) or an imposed mean value M (for example,
i

L
i

i∑
 has to be equal to M in Figure

3). The deviation of the actual observed latency of the exchange of a specific signal

from the mean latency is termed jitter. Since minimizing the jitter is of utmost

importance to ensure high quality distributed control loops, the maximum allowable

jitter is another important attribute of the connector (for example, has

to be less than a given value in

)(MLabs i −

maxJ Figure 3). Note that transmission guarantee

requirements (e.g., guaranteed vs. best effort transmission) can easily be expressed by

means of the mean latency and the maximum allowable jitter parameter. In particular,

setting the required mean latency of a connector for example to a value different from

infinity and requiring that the maximum jitter is smaller than a defined value

formulates a requirement for a guaranteed transmission with bounded jitter. Setting

the required mean latency to infinity however and requiring a maximum jitter that is

smaller than a defined value formulates a requirement for a non guaranteed

transmission which however in case the transmission takes place has a bounded jitter.

- 6 -

P P P

L i L i L i

Transm iss ion o f s ignal
P Transm iss ion period
L i Latency of the s igna l in the ith period

S igna l transm ission event a t the sender s ide
S igna l reception event a t the rece iver s ide

t

Figure 3: Characteristics for a Periodic Signal Exchange

Fault-tolerance requirements: This class defines the fault-tolerance properties of the

signal exchange, namely the properties redundancy type, redundancy degree, and

additional parameters for a certain redundancy type. As far as the redundancy type is

concerned a distinction between spatial redundancy (i.e., signal exchange via multiple

physical communication channels) and temporal redundancy (i.e., performing the

signal exchange multiple times with the same signal value within a given interval) can

be made. The number of different physical communication channels or the number

of time-redundant signal exchanges within a specific interval is defined by the

property redundancy degree. Since both types of redundancy (namely spatial and

temporal) can be combined for a single signal exchange, a separate instance of the

redundancy property is required for spatial and temporal redundancy. For the

temporal redundancy an additional attribute is required to specify the minimum

temporal distance between two consecutive replicas of a signal exchange. The

rationale behind this attribute is the requirement that for example disturbance bursts

with a maximum duration of ε have to be tolerated. In that case, the minimum

temporal distance between two consecutive replicas of the signal exchange has to be

larger than the maximum disturbance burst duration ε in order to be able to tolerate

such kind of burst. For further information on how to determine the distribution of

the replica for a TDMA based protocol, you can refer to [3]. Explicitly specifying the

- 7 -

redundancy type is not required, since this information is implicitly defined via the

spatial and the temporal redundancy degree.

1.1.2.2 Basic or System Software

In addition to the application software components, AUTOSAR also defines a layered

architecture of basic (or system) software modules, which provide a basic platform for the

execution of the application software components.

The AUTOSAR basic software is horizontally subdivided into different types of services,

namely:

- input/output services, which provide standardized access to sensors, actuators and

ECU onboard peripherals,

- memory services, which facilitate the access to internal and external (mainly non-

volatile) memory,

- system services, which contain modules like operating system, ECU state

management a.s.o.,

- and last but not least the communication services, which provide a

communication stack used for access to the different vehicle networks (i.e., LIN,

CAN, and FlexRay).

Communication Services

The communication services are a group of modules for vehicle communication (CAN, LIN,

and FlexRay). The communication stack built up by the modules of the communication

services is depicted in Figure 4. – Hereby the striped boxes indicate communication protocol

specific modules. The “XXX” is thereby a placeholder for the respective communication

protocol (i.e., CAN, LIN, FlexRay). Thus the AUTOSAR communication services contain

- 8 -

communication protocol specific instances of the transport protocol (TP) and network

management (NM).

P D U R outer
X X X N etw ork
M anagem ent

X X X In terface

G eneric N etw ork
M anagem ent

XX X T ransport
P rotoco l

D iagnostic
C om m . M anagerA U TO S A R C O M

X X X D river

C C

A U TO S A R R untim e E nvironm ent

A pplica tion

M C U

Figure 4: AUTOSAR Communication Services

XXX Transport Protocol (TP): In AUTOSAR the transport protocol is used to

perform segmentation and reassembly of large PDUs (called messages) transmitted

and received by the diagnostic communication manager. In AUTOSAR a dedicated

TP is used for each communication protocol (CAN, LIN, FlexRay). These protocols

are rather similar or even compatible (in certain configuration settings) to the ISO TP

for CAN [6] specified in ISO/DIS 15765-2.2.

PDU Router: The PDU router module provides two major services. On the one hand it

dispatches PDUs received via the underlying interfaces (e.g., FlexRay interface) to

the different higher layers (COM, diagnostic communication manager). On the other

hand the PDU router performs gateway functionalities between different

- 9 -

communication networks by forwarding PDUs from one interface to another of

either the same (e.g., FlexRay FlexRay) or of different type (e.g., CAN

FlexRay).

COM: The COM module provides signal-based communication to the higher layers

(RTE). The signal-based communication service of COM can be used for intra-

ECU communication as well as for inter-ECU communication. In the former case,

COM mainly uses shared memory for this intra-ECU communication, whereas for

the latter case at the sender side COM packs multiple signals into a PDU and

forwards this PDU to the PDU router in order to issue the PDU’s transmission via

the respective interface. On the receiver side, COM obtains a PDU from the PDU

router, extracts the signals contained in the PDU and forwards the extracted signals

to the higher software layers.

Diagnostic Communication Manager (DCM): The diagnostic communication

manager provides services which allow a tester device to control diagnostic functions

in an ECU via the communication network (i.e., CAN, LIN, FlexRay). Hereby the

DCM supports KWP2000 [5] standardized in ISO/DIS 14230-3 and the unified

diagnostic services (UDS) protocol [2] standardized in ISO/DIS 14229-1.

Network Management (NM): Network management provides means for the

coordinated transition of the ECUs in a network into and out of a low-power (or

even power down) sleep mode. AUTOSAR NM is hereby divided into two

modules: a communication protocol independent module (generic NM) and a

communication protocol dependent module (CAN NM, LIN NM, and FlexRay

NM).

XXX Interface: The Interface module is protocol specific, meaning that dedicated

interfaces for the different communication protocols (i.e., FlexRay, CAN, and LIN)

- 10 -

do exist. Based on the frame-based services provided by the respective drivers (see

below) the Interface modules facilitate the sending and the reception of protocol data

units (PDUs), where multiple PDUs can be packed into a single frame at the sending

ECU and have to be extracted again at the receiving ECU. – In FlexRay the point in

time when this packing and extracting of PDU takes place as well as the point in

time, when the frames containing the packed PDUs are handed over to the respective

driver for transmission or retrived from the driver upon reception is governed by the

temporal scheduling of so-called communication jobs of the FlexRay Interface. Hereby

each communication job can consist of one or more communication operations, each of

these communication operations handling exactly one communication frame

(including the PDUs contained in this frame).

XXX Driver: Just like the Interface module, the Driver module is protocol specific as

well. The Driver module provides the basis for the Interface module, by facilitating

the transmission and the reception of frames via the respective communication

controller.

Runtime Environment (RTE): The AUTOSAR RTE provides the interface between

application software components and the basic software modules as well as the

infrastructure services that enables communication to occur between application

software components.

Application Layer: Actually this layer is not part of the AUTOSAR basic software

modules layered architecture, since this layer contains the AUTOSAR application

software components described in Section 4.

When looking at FlexRay Driver, FlexRay Interface, FlexRay Transport Protocol, and

COM, communication at different levels of abstraction and granularity is facilitated, namely

- 11 -

frame level, PDU level, message level and signal level. – Note that all of the previously listed

requirements can be applied to any of these different levels of abstraction.

1.2 The FlexRay Protocol

In 2000 BMW, DaimlerChrysler, Philips and Freescale (Motorola) founded the FlexRay

consortium [6, 7] with the objective to develop a new communication protocol for high-

speed control applications in vehicles to increase safety, reliability and comfort. Since then the

Consortium has grown to a number of more than 100 members including some of the

automotive industry’s largest and most influential players, such as General Motors, Ford and

Bosch among others. In 2006, the BMW Group implemented the first FlexRay-based series

application in the X5 family [8] demonstrating the performance of this new communication

technology on the road.

The FlexRay protocol provides fast, deterministic and fault-tolerant communication to

overcome the performance limits of previously established protocols in the automotive

domain, e.g. CAN. Therefore, FlexRay supports two communication channels, each

operating at a data rate of up to 10 Mbit/s. The FlexRay communication scheme includes a

static and dynamic segment. Data transmission in the static segment is fully deterministic with

guaranteed frame latency and jitter, whereas the dynamic segment provides a flexible

bandwidth allocation for asynchronous data transmission. For the deployment of the FlexRay

protocol all parameters of the communication scheme, such as the length and properties of the

static and dynamic segment, have to be configured statically. These parameters highly depend

on the requirements of the application.

Testing and monitoring approaches have to consider the detailed configuration parameters of

FlexRay. Furthermore, the deterministic timing of the static and dynamic segment can be

used to establish an efficient simulation environment.

- 12 -

For a detailed description of the static and dynamic segment, and the timing in FlexRay please

refer to chapter FlexRay.

- 13 -

2 Objectives for Testing and Monitoring

Automotive systems often have to meet dependability requirements, due to the inherently

safety critical nature of these kinds of systems (especially as far as the chassis domain is

concerned). According to Laprie et al. [7] testing is one mean to establish the desired amount

of dependability. Through testing the following goals can be achieved:

Fault removal: In the development phase of a system, design faults can be detected by

means of testing and can be removed from the system, thus resulting in a higher

dependability of the system.

Fault forecasting: When exposed to realistic load scenarios and when supplied with

input that is close to real life, the frequency and the severity of faults can be assessed

prior to system deployment (i.e., prior to start of production of the car). Based on this

data forecasts regarding faults occurring in the field can be made.

Basically a distinction between static testing and dynamic testing can be made. Static testing

comprises practices to verify the system without actual execution. Practices like static analysis

(e.g., inspections, walk-throughs, data flow analysis, complexity analysis, static source code

checks by compilers or dedicated source code checkers) or theorem proving by means of

prover engines fall into this category. Since static testing of FlexRay-based systems is not

fundamentally different from static testing of non FlexRay-based system, we will not address

the practices of static testing any further.

In dynamic testing the system is exercised with a defined set of stimuli (the so-called test

vectors) in order to judge – based on the responses of the system to these test stimuli –

whether the system behaves according to its specification or whether the systems’ responses

deviate from this specification. Such a deviation from the system’s specification is termed a

failure of the system.

- 14 -

When conducting dynamic tests on a system however it is important to have proper means to

monitor and record the response of the device under test to the test stimuli. In networked

systems, the test stimuli can to a large degree be provided via the communication media.

Similarly the responses of the device under test are to a large degree visible on the

communication media as well. Therefore for properly testing (parts of) networked systems,

some kind of monitoring device to record the network traffic as well as some device capable of

providing the proper stimuli via the network are required.

2.1 “Criteria” to Test and Monitor

When testing a system (or a part of a system), the main interest lies in finding out whether the

system behaves according to its specification or whether the observed behavior of the system

deviates from the system’s specification. Such a deviation can take place either in the time, in

the value domain, or in the code domain.

2.1.1 Deviations in the Time Domain

When looking for deviations in the temporal domain, all timing-related requirements listed in

Section 1.1.2.1 have to be taken into consideration and have to be applied at the different

levels of granularity (i.e., frame level, PDU level, message level, and signal level).

As far as the period requirement of a connector is concerned, tests have to be conducted to

validate that for periodic or sporadic information exchanges, the observed period matches the

required period. In FlexRay, for frames scheduled in the static segment, this period is

guaranteed by the FlexRay protocol in fault-free scenarios. For frames scheduled in the

guaranteed part of the dynamic segment, the observed period may deviate by a maximum of

almost the length of the dynamic segment (see Figure 5).

- 15 -

t

D ynam ic Segm ent
C ycle i

D ynam ic S egm ent
C ycle i+1

A verage O bserved
Period

t

D ynam ic Segm ent
C ycle i

D ynam ic S egm ent
C ycle i+1

D D

M axim um O bserved
P eriod

CBA

D D

Transm iss ion of fram e
Fram e reception event a t the rece iver s ide

Figure 5: Observed Period in Guaranteed Part of Dynamic Segment

The upper part of Figure 5 illustrates the case, where no other frames are sent in the minislots

prior to frame D (for which the period is observed) resulting in a period of a whole FlexRay

communication cycle. In the lower part of Figure 5 a scenario is depicted where the minislots

preceding the minislot for the transmission of frame D are occupied (and thus stretched)

causing the transmission of frame D to be shifted to the end of the communication cycle,

resulting in an observed period of one FlexRay communication cycle plus (in a worst case

scenario with long frames and short minislots) almost the length of the dynamic segment.

For the best effort part of the dynamic segment, no such upper bound on the possible

deviation can be given since indefinite postponement of the transmission of frames scheduled

in the best effort part of the dynamic segment might take place. For data entities different

from frames (which require the involvement of higher software layers) like PDUs, messages or

signals, the period is governed by the temporal schedule of the FlexRay Interface’s

communication operations as well. Figure 6 illustrates this impact of the temporal schedule of

the FlexRay Interface’s communication jobs on the actual latency between the send request

- 16 -

(issued by the layer on-top the FlexRay Interface) and the actual send event on the

communication media (and vice versa on the recipient side).

la tency fo r h igher S W layers

Transm ission o f fram e
Fram e transm iss ion event a t sender s ide
Fram e reception event a t the rece iver s ide

F lexR ay In terface
TX C om m Job

F lexR ay C C
B uffer F lexR ay C C B uffer

F lexR ay In terface
R X C om m Job

t
D

Figure 6: Impact of FlexRay Interface Communication Operations

For the mean latency requirement the values of the latencies observed by the receiver have to

be measured and the mean value has to be computed. Again for frames transmitted in the

static segment of FlexRay, the FlexRay protocol itself ensures a constant latency of one

TDMA slot due to the static schedule. In the guaranteed part of the static segment, the mean

latency will be in the granularity of the length of the dynamic segment (Figure 7), whereas in

the best effort part of the dynamic segment, the mean latency can even be unbounded in case

of high network load.

t
D DCBA

Transm ission o f fram e
Fram e copied in to C C buffe r a t sender s ide
Fram e ava ilab le in C C buffer a t rece iver s ide

t

la tdyn
m axla tdyn

m in

Figure 7: Latency and Latency Jitter in Dynamic Segment

 For data entities different from frames (which require the involvement of higher software

layers) like PDUs, messages or signals, similar to the observed period the mean latency is

governed by the temporal schedule of the FlexRay Interface’s communication jobs as well.

- 17 -

As far as the maximum latency jitter requirement is concerned, the FlexRay protocol causes

frames scheduled in the static part to show a maximum jitter in the granularity of a single

macrotick. Frames scheduled in the guaranteed part of the dynamic segment might exhibit a

latency jitter of up to the length of the dynamic segment (i.e., the difference between

and in

dynlatmax

dynlatmin Figure 7), whereas frames scheduled in the best effort part of the dynamic

segment may be postponed indefinitely causing an infinite jitter.

Again for data entities different from frames (which require the involvement of higher

software layers) like PDUs, messages or signals, the maximum latency jitter is governed by the

temporal schedule of the FlexRay Interface’s communication operations as well.

For testing the temporal redundancy degree requirement, the number of observed temporal

replicas of a information exchange has to be counted and compared against the required

temporal redundancy degree. Since neither the FlexRay protocol nor the AUTOSAR basic

software does provide any inherent support for temporal redundancy, the proper handling of

temporal redundancy is a matter of the application software.

Meeting the minimum temporal distance requirement between two consecutive replicas of

the information exchange is partly supported by the FlexRay protocol. By scheduling the

replicas in proper TDMA slots (with a sufficient temporal distance between the slots), the

temporal distance requirement is enforced by the FlexRay protocol when using the static

segment. For the dynamic segment a worst case calculation can be made (assuming that all

minislots between the minislots of the consecutive replicas are unoccupied) in order to have

the FlexRay protocol ensure this requirement. Since this approach however is based on a

rather pessimistic assumption, the observed temporal distance will mostly be way larger than

the minimum temporal distance.

- 18 -

2.1.2 Deviations in the Value Domain

Two main kinds of deviations in the value domain can be observed. First, the information

content is invalid, since a protecting checksum (in case of FlexRay frames for example a frame

CRC) indicates that the information has been mutilated.

Secondly, an information content that differs from a known content leads to the conclusion

that there is a deviation in the value domain. Nevertheless, in order to come to this

conclusion, knowledge about the correct information content is required. For information

entities of limited range (e.g., enumeration values), exact knowledge about the correct

information is often available (e.g., because the tester knows the exact position of ignition

key). For information entities of rather large range (e.g., for signal values of 32 bits), however,

in most cases only a validity interval is available. In that case, the observed information content

can only be validated against this validity interval.

2.1.3 Deviations in the Code Domain

When looking at deviations in the code domain, the following deviations have to be

considered.

The bit encoding on the physical layer differs from the specification. This deviation are mostly

caused by faulty transceivers and/or encoding units in the FlexRay controller.

The observed frame format on the data link layer differs from the frame format defined in the

FlexRay specification. Such a deviation can be caused by a faulty transmitter unit of the

FlexRay communication controller or a faulty star coupler.

A last deviation is observed when the observed signal packing (i.e., the ways signals are packed

into frames) differs from the specified signal layout in the frame. Such deviations are most

probably caused by incorrect configurations of the AUTOSAR COM layer.

- 19 -

2.1.4 Other Deviations

For testing the spatial redundancy degree requirement, the number of observed spatial replicas

of an information exchange have to be counted an compared against the required spatial

redundancy degree. To achieve this, the available channels of the communication system have

to be monitored for occurrences of replicas of the information exchange.

2.2 Operational Scenarios for Testing and Monitoring

As far as operational scenarios are concerned FlexRay-based systems (like any other systems)

have to be tested in the fault-free case to ensure the system’s proper operation when executed

in the absence of faults.

As already mentioned in Section 1.1, however, FlexRay has been developed for the

deployment in safety-related application areas. Since systems intended for safety-related

purposes need to remain functional even in the presence of faults1, the system inherently has

to be able to tolerate these faults. Therefore testing of safety-related systems has to take place

under faulty conditions as well, since the previously addressed fault tolerance requirements on

the system mandate that faulty conditions are part of the system’s “normal” operational

scenario.

In order to be able to test the fault tolerance properties of the system, the faulty conditions

have to be induced intentionally as part of the respective test case. The induction of these

faulty conditions is termed fault injection. – Depending on whether the faults are injected by

means of hardware (e.g., by electromagnetic interference bursts) or by software (e.g., by

intentionally flipping single bits in memory) we speak of hardware- or software-implemented

fault injection (see Section 3.1.2) respectively.

1 as long as the number, the frequency of occurrence, the duration, and the nature of these faults is covered
by the system’s fault hypothesis

- 20 -

3 Monitoring and Testing Approaches

In order to achieve the test objectives introduced in the previous section, different monitoring

and test approaches are possible. In the following, a basic distinction between software-based

and hardware-based approaches is made. Software-based validation uses a simulation model of

the system to analyze the behavior of the application. Hardware-based validation includes a

hardware setup of the system for the investigation. Both approaches can be used either for the

analysis of the total system or for the analysis of parts of the system, i.e. one or a number of

ECUs. In this chapter the focus is always laid on the effects of the software running on the

MCU, and therefore on the application layer and the basic software layers.

3.1 Software Based Validation

Software-based validation provides powerful means to analyze the application behavior at an

early stage of the development.

3.1.1 FlexRay Abstraction Levels

Computation effort is a big issue for each simulation. Modeling a complete FlexRay network

might become quite complex: distributed ECUs each including FlexRay controllers and

MCUs with basic software layers and the application layers. Furthermore, these networks can

be connected with others via gateways (see Figure 1).

To minimize the complexity of such simulations, we propose to model the application only in

full detail, whereas the model of the FlexRay controller and network is significantly simplified

utilizing the deterministic timing behavior of the FlexRay protocol. Therefore, we introduce

so-called abstraction levels on the architecture and timing level.

- 21 -

3.1.1.1 Architecture Level

As described in Section 1.1.1, the architecture of a FlexRay network consists of ECUs

interconnected by a shared communication media. Each ECU includes one or more FlexRay

controllers and microcontroller units (MCUs). On the MCU, the application layer and the

basic software layers are running. The application layer contains a number of software

components which implement the actual application functionality (e.g. ABS calculation

routines). The basic software layers provide means and services to transmit and receive data via

the FlexRay controllers. The application software components use the services of the basic

software layers to communicate with software components running on other ECUs.

Figure 8 illustrates this ECU architecture whereas two interfaces are introduced. First, there is

a so-called application interface between the application layer and the basic software layers,

and second, there is a controller-host interface between the basic software layers on the MCU

and the FlexRay Communication Controller. These interfaces can be used to reduce the

simulation effort.

Application Layer

FlexRay Controller Hardware

Basic Software Layers (e.g.,
AUTOSAR BSW)

Controller Host Interface (CHI)

Application Interface (AI)

Application Layer

FlexRay Controller Hardware

Basic Software Layers (e.g.,
AUTOSAR BSW)

Controller Host Interface (CHI)

Application Interface (AI)

Physical Layer Interface (PLI) Physical Layer Interface (PLI)

Figure 8: Abstraction Level on Architecture

- 22 -

Application Interface (AI)

At this level, the simulation model contains the full functionality of the software components

of the application. The functionality of the basic software layers and the FlexRay Controller

Hardware is emulated providing an application interface.

The application interface is a signal-based interface that delivers updates of the signals

according to the timing of the basic software layers and FlexRay controllers. Emulating this

interface in simulation allows considerable simplifications of the simulation model. Only the

timing aspects of the signal updates have to be considered. Issues like signal-to-frame packing

and the details of the FlexRay timing do not need to be modeled.

Controller Host Interface (CHI)

The full functionality of the software components of the application and the basic software

layers is simulated at this level while the functionality of the FlexRay Communication

Controller is emulated providing, therefore, a controller host interface abstraction.

The controller host interface can be modeled as a buffer-based interface that delivers updates

of the FlexRay frames according to the FlexRay timing. Emulating this interface in simulation

also allows considerable simplifications of the simulation model. Only the timing aspects of

the frame updates have to be considered. The FlexRay controller functionality like clock

synchronization and startup etc. do not need to be modeled in detail.

Physical Layer Interface (PLI)

A last interface can be exhibited: the Physical Layer interface between the functionality of

FlexRay Communication Controllers and the network physical layer. Simulation at this level

basically does not make much sense, since the computational effort required to simulate the

correct bit timing (which is required at this level of abstraction) is rather huge. Note that, for

hardware-based validation however (see Section 3.2) the physical layer interface is an

- 23 -

important interface which is subject to faults and thus has to be considered in the validation

process.

3.1.1.2 Timing Level

Simulation effort can also be significantly reduced by choosing an adequate time resolution.

Due to the time-driven nature of the FlexRay protocol, the transmission of data is triggered

by pre-defined points in time. This timing hierarchy (Section 1.2) can be used to introduce

abstraction levels on the timing level.

Timing Level 1: Communication Cycle

On this timing level, the updates of frames and the contained signals are performed in the

granularity of communication cycles. As shown in Figure 9, at the beginning and end of each

communication cycle the contents of all signals and frames are updated. The data to be

transmitted is written at the beginning of each communication cycle, the data to be received is

read at the end of each communication cycle.

Communication Cycle Communication Cycle

ith emmission of data C
(i-1)th reception of data C

(i+1)th emmission of data C
ith reception of data C

(i+2)th emmission of data C
(i+1)th reception of data C

C is the whole data exchanged in
each communication cycle

Figure 9: Timing Level 1 – Communication Cycle

This timing level can be optimally combined with the application interface level to provide a

fast and quite abstract view of the communication timing of signals. It is assumed that

transmission latencies introduced by the basic software layers is small enough so that an update

of the signal is available at the end of each communication cycle. In combination with the

controller-host interface, however, this timing level does not provide the necessary accuracy

- 24 -

to analyze the detailed effects of the transmission latency introduced by the basic software

layers.

Timing Level 2: Static Slots and Simple Dynamic Segment Arbitration

This is a more accurate level where the updates of frames and the contained signals are

performed in a more detailed manner. In the static segment, the timing of the static slots is

emulated. The data to be transmitted is read at the beginning of each slot, the data received

within the slot is provided at the end of the static slot. Figure 10 shows the update times for

slot 1 of the static segment. The other slots of the static segment are updated in the same way.

Communication Cycle

Static Segment Dynamic
Segment

Communication Cycle

Static Segment Dynamic
Segment

ith emmission
 of data S1

(i+1)th emmission
 of data S1

ith reception
 of data S1

(i+1)th reception
 of data S1

(i+2)th emmission
 of data S1

Slot 1Slot 1

S1 is the data exchanged in
slot 1 of each communication

cycle

Figure 10 Timing Level 2 –Static Slot Arbitration

For the dynamic segment, only the beginning and the end of the segment are emulated. Data

to be transmitted is read at the beginning, data that has been received is provided at the end of

the dynamic segment.

Communication Cycle

Static Segment Dynamic
Segment

Communication Cycle

Static Segment Dynamic
Segment

(i-1)th reception
 of data D

ith reception
 of data D

(i+1)th reception
 of data D

ith emmission
 of data D

(i+1)th emmission
 of data D

D is the data exchanged
in the whole dynamic segment

of each communication cycle

Figure 11 Timing Level 2 - Dynamic Segment Arbitration

- 25 -

This timing level can be optimally combined with the controller-host interface level to

analyze the effects of the transmission latency introduced by the basic software layers. For

example, the AUTOSAR FlexRay Interface layer contains communication operations that

are scheduled synchronously to the FlexRay communication to read and write to the FlexRay

buffers. The configuration of the timing of these communication operations determines the

earliest and latest point in time an update of the transmitted data is available. These effects can

be analyzed in combination with the software components of the application layer.

In combination with the application interface level, this timing level provides a very accurate

update of the frames without any considerations of the latencies introduced by the basic

software layers. This may lead to erroneous assumptions about the earliest and latest point in

time a transmitted data is available.

Timing Level 3: Static Slots and Advanced Dynamic Segment Arbitration

This timing level is a refinement of the timing level 2. The sampling points are chosen in the

same way as in level 2, however, the behavior of the mini-slotting media access scheme is

emulated in more detail. This priority-based algorithm postpones the transmission of frames

scheduled in the best-effort part of the dynamic segment in case of peak-load (Section 1.2).

More Detailed Approaches

Further simulation approaches include the emulation of the timing of the dynamic segment in

a more detailed way.

3.1.2 Fault injection

Fault injection in the simulation model enables the designer to analyze the dependability

characteristics of the system at an early stage of development. The main objectives are fault

removal – testing the correct behavior of fault tolerance mechanisms – and fault forecasting –

investigating the robustness of the application in fault scenarios.

- 26 -

A simulation model provides good means to fully control the location and point in time a fault

shall be injected. In our simplified model of the FlexRay controller and FlexRay network we

focus on the effects of failures that can be seen on the previously described architectural and

timing abstraction levels.

On the architectural level, in the simulation model, the application interface as well as the

controller host interface, are emulated as shared memories. So, in accordance to the chosen

timing abstraction level the contents of the shared memories can be accessed for fault

injection.

3.1.2.1 Application Interface

Fault injection on the application interface supports directly influencing and investigating the

behavior of the application model. The application interface provides access to the services of

the basic software layers. In the simulation model, these services are modeled in a very

simplified manner providing signal updates and status information of services such as network

management.

Signal updates can be easily influenced in the time and value domain. The time domain

depends on the chosen timing abstraction level that corresponds to the update periods of the

FlexRay protocol. In contrast to CAN, where the periods of low priority data may

significantly jitter even in the fault-free case, FlexRay provides deterministic transmission

periods for the static segment and the guaranteed part of the dynamic segment as specified

during design time. Even in case of a failure of the application (assuming the basic software

layers and the FlexRay controller are working correctly), the update periods of the signals stay

constant, however, the signal values may be incorrect or obsolete. This protocol property

significantly eases the simulation of application faults in the time domain: either a correct

signal is available or is not available at the application interface within the specified

transmission period. Within the best-effort part of the dynamic segment, signal updates may

- 27 -

also be lost or postponed in case of peak-load scenarios, i.e., without any specific failures. This

behavior can also be easily emulated by mutilating the value of the signal at the application

interface.

Deviations in the value domain can also be achieved by mutilating the contents of the correct

signals provided by the application interface. This kind of fault simulation allows analyzing

how the application model reacts in case of wrong input data. Focusing on communication

network failures, this method enables investigating the robustness of the total system in case of

inconsistent data transmissions. Due to failures, it might occur that only a subset of ECUs

receives correctly signals, whereas others receive no signal updates.

Other services of the basic software layer such as network management can also be influenced

by fault injection. The status of the service can be changed at one or a subset of ECUs to

achieve erroneous states and analyze how the application model reacts in those cases.

Timing level 1 is the adequate granularity for all this kind of fault simulation scenarios at the

application interface. Investigations at finer granularity level (i.e., using a higher timing level)

provide only realistic data, when the latency introduced by the basic software layer is also

considered. Therefore, the below described controller-host interface level is necessary.

3.1.2.2 Controller Host Interface

Fault injection on the controller host interface is aimed at analyzing the effects of the basic

software layer and the application model. The controller host interface provides access to the

controller status and buffer contents of the FlexRay communication controller. In the

simulation model, the data transmission is emulated by updating the controller host interfaces

of all controllers within the specified timing abstraction level. The basic software layers and

the application model make uses of these values after the update.

- 28 -

At this interface, all failures that might occur in the FlexRay controller or on the

communication network can be simulated. These failures include invalid frame receptions,

CRC errors, incoming or outgoing link failures, communication channel failures and more.

The FlexRay specification does not specify the register and buffer layout of the controller host

interface of a FlexRay controller. Rather, the services and the contents of the information

provided are described. The most important services for the fault simulation are:

Clock Synchronization

The FlexRay protocol requires that all controllers share a common time-base with each other

in order to execute receive and transmit operations in a time-driven manner. To establish this

common time-base, a distributed fault tolerant clock synchronization algorithm [11] is used.

Upon power-up, each controller performs a specific startup procedure to establish the

common time-base. During operation, each controller performs a synchronization algorithm

to maintain the synchronization with the other controllers. If a controller is not synchronized,

it may not fully participate in the data transmission.

Reasons why a controller is not synchronized can be manifold. Examples include that no

other controllers have powered-up, the FlexRay communication channels are broken, the

frequency of the FlexRay controller clock is out of specification, etc.

To analyze the behavior of a FlexRay-based application, we propose to model only a very

abstract view of the clock synchronization algorithm. This abstract view includes two modes:

a synchronized and a not synchronized mode of the FlexRay controller. In the synchronized

mode, the controller may correctly receive and transmit frames, in the not synchronized

mode, the controller does not receive correct frames. Furthermore, it is assumed the

controller does not transmit any frames when residing in the not synchronized mode.

- 29 -

Frame Reception

For each frame that is received, a “receive” status is provided in the controller host interface.

This “receive” status indicates whether the frame has been received correctly or whether any

problems have occurred during reception. In our simplified model of the FlexRay controller

the status of the frame reception is mutilated on the controller-host interface so that various

failure cases can be emulated. These cases include invalid cyclic redundancy check (CRC) or

check sums, coding violations, clock synchronization problems etc. These cases can affect one

or a certain subset of frames, for example:

• All frames received from a specific node,

• All frames received on a specific channel,

• All frames received within a specific time period,

• And other subsets of frames.

This method of selecting certain subsets of affected frames enables to inject efficiently different

kinds of faults. In the simulation model the behavior of the basic software layers and the

application can then be analyzed, e.g. whether the failure of one node or communication

channel has been correctly detected.

Frame Transmission

The success or the failure of a frame transmission results in the value of the “receive” status in

the controller-host interface of all receiving controllers. Thus, mutilating the controller host

interface of all receiving controllers enables to emulate various frame transmission problems in

the simulation model. Furthermore, the controller host interface of the transmitting

controller must be mutilating indicating a failed transmit confirmation for the sender.

- 30 -

Choice of Timing Abstraction Levels

Fault injection at the controller host interface enables to analyze the behavior of the basic

software layers and the application model. Whereas the reaction of the application model can

be investigated at the application interface, the behavior of the basic software layer is of

specific interest for this type of fault injection. Timing level 1 is not sufficient for these

investigations since it does not provide the earliest point in time frames are available on the

controller host interface. Timing levels 2 and 3 and more detailed approaches are adequate for

these fault simulations at the controller host interface.

3.2 Hardware-Based Validation

In hardware-based validation the device under test is not simulated in software. In this case,

the whole ECU (or even a combination of multiple ECUs) and thus a compound of hardware

and its embedded software is exercised in the course of the validation. In order to be able to

conduct such a hardware-based validation, the test-bed itself must be hardware-based and the

interface between the test-bed and the device under test is a hardware interface. In networked

systems this interface is, on the one hand, the communication media and on the other hand,

the input/output interface to the environment (i.e., sensors and actuators).

Based on whether the response of the device under test is or is not fed back into the test vector

generation, we distinguish between open loop and closed loop approaches.

3.2.1 Open Loop Approach

In open loop approaches the responses of the device under test to test stimuli are not fed back

into the test stimuli generation in order to produce new test stimuli. Therefore the test bed

itself is divided into three main parts, namely a test stimuli generation part, a monitoring part,

and a controlling part. While the former is responsible for providing test stimuli to the device

under test, the responsibility of the latter lies in the monitoring of the responses to these test

- 31 -

stimuli. For the coordination of the provision of test stimuli and the recording of test

responses, the test-bed comprises a controlling part as well which contains a database for

retrieving test stimuli and storing test responses for later evaluation.

Hereby the provided test input as well as the recorded output is generated/obtained at the

network interface (network stimulus provider and network monitoring device) and the

environmental interface (environmental stimulus provider and environmental monitoring

device) of the device under test (DUT). Figure 12 illustrates this test setup.

D U T

F lexR ay

N etw ork
M onitoring
D evice

E nvironm enta l
M onitoring
D evice

N etw ork
S tim ulus
 P rovider

Environm enta l
S tim ulus
 P rovider

Test C ontroller

E thernet

C ontro lling P art

M onito ring PartS tim uli G enera tion
P art

Figure 12: Test Setup for Open Loop Approach

As far as the environmental interface is concerned, FlexRay-based system are not different

from non FlexRay-based systems. Thus we do not further address this interface in the

following sections.

3.2.1.1 Test and Monitoring Levels

Testing and monitoring in FlexRay-based systems takes place at the interfaces introduced in

Section 3.1.1.1

Physical Layer Interface

Testing in fault free scenarios at the physical layer interface is basically testing the correct

operation of the FlexRay communication controller and the proper setup of the

- 32 -

communication media (e.g., proper termination in case of a bus topology). Given a correctly

operating FlexRay communication controller (including line driver) properly setup

communication media and the absence of faults on the communication media (e.g., no EMI

burst, etc.), no other causes for faults are possible.

With these units of failure in mind the following faults have to be considered during testing

(from the monitoring device’s perspective):

Faults in the value domain: At the physical layer interface, faults in the value domain

mean a deviation of the observed voltage level from the level specified in the FlexRay

physical layer specification. This deviation can be caused by improper termination of

the communication media, by short circuiting one or both lines of a FlexRay channel

to ground or to supply voltage, or by faults in the star coupler device in case of star

topologies.

Faults in the time domain: Faults in the time domain can be a deviation of the

observed bit timing from the specified bit timing, meaning that, for example, the

duration of a bit cell is too short or too long. They can also come from a deviation of

the bit timing in the first derivative; in this case, it means that the edge steepness is

either to high or too low. Possible causes for these kinds of faults are a faulty oscillator

in the FlexRay communication controller, a faulty encoder unit or an improper

configuration of the FlexRay communication controller.

Faults in the code domain: Deviations from the specified coding are termed coding

failures. On the bit level FlexRay uses not return to zero (NRZ) coding. In order to

facilitate bit level synchronization between transmitter with the receiver(s), each byte

is additionally framed with a dedicated start and stop bit (each exhibiting a different

logical level), thus enforcing at least one edge per byte. Causes for coding faults are

- 33 -

faulty transceivers and/or faulty encoder units in the FlexRay communication

controller.

Controller Host Interface

Faults in the value domain: Faults in the value domain at the controller host interface

mean a deviation of frame content from the specified frame content. Hereby a

distinction has to be established between a frame with incorrect CRC, on the one

hand, and a frame with correct CRC and invalid payload, on the other hand. The

former case can be caused by a faulty transmitter or a faulty CRC unit of the sending

FlexRay communication controller, or by a faulty MCU, a defect in the application

program, or by an improper configuration of the FlexRay communication controller.

In addition to the previous causes, the latter case might be induced by a faulty

controller host interface. Both cases can be generated by a faulty communication

media as well.

Faults in the time domain: At the controller host interface the following faults in the

time domain are possible: early frames (i.e., frames are transmitted prior to the

specified point in time) and late frames (i.e., frames are transmitted after the specified

point in time). A special case of late frames are the cases where frames are not

transmitted at all (omission failure). Possible causes for timing failures are a faulty

oscillator in the FlexRay communication controller, an improper configuration of

the FlexRay communication controller, a faulty star coupler, a faulty communication

media, or, a faulty MCU or application program.

Faults in the code domain: As far as coding at the controller host interface is

concerned, FlexRay uses a defined frame format consisting of a frame start sequence,

a frame header, the frame payload and a frame trailer containing the frame’s CRC.

Each of these frame parts has a defined length. Any deviation from this frame format

- 34 -

is considered as a coding fault at the controller host interface. The cause for such a

fault is a faulty transmitter unit of the sending FlexRay communication controller or

a faulty star coupler (inducing an oversized truncation of the frame start sequence).

Application Interface

Faults in the value domain: Faults in the value domain at the application interface

mean a deviation of signal content from the specified signal content. Hereby a

distinction between a signal tagged as invalid and a signal that is tagged as valid but

exhibits an incorrect value can be made. Both cases might be caused by a value

domain fault on the data link layer, a faulty MCU or application program, or a faulty

configuration of the AUTOSAR COM layer.

Faults in the time domain: At the application interface, faults in the time domain are

either caused by faults in the time domain at the controller host interface or by late or

early activation of communication tasks which are responsible for packing signal to be

transmitted into the respective FlexRay frames. The effects of these faults are a

deviation for the signal’s temporal requirements (see Section 1.1.2.1).

Faults in the code domain: If we consider coding at the application interface, multiple

signals are packed into a single frame according to a specified signal layout for each

frame. Any deviation from this specified signal layout is interpreted as a coding fault

at the application interface. Causes for such a coding fault are mostly improper

configuration of the AUTOSAR COM layer or faults of the MCU.

3.2.1.2 Testing under Faulty Conditions

As stated before in order to perform test under faulty conditions, fault injection is usually

required. In open loop hardware test setups, the device under test in general cannot be

modified. Thus the DUT must be considered as a black box leaving only the network

- 35 -

interface and environmental interface as targets for fault injection. In the following we focus

on the network interface.

With proper hardware modifications, the network stimulus provider (under control of the test

controller) can inject all faults described in the previous section at the physical line interface, at

the controller host interface and on the application interface as well.

Coding faults at the physical line interface, for example, can be injected by implementing a

special encoding unit that provides controlled means to intentionally violate the bit encoding

scheme defined in the FlexRay specification. Faults in the value domain at the controller host

interface, for example, can be injected by deliberately producing an incorrect CRC at the

network stimulus provider. Value faults at the application interface, for example, can be

injected by intentionally sending incorrect signal values or by tagging signals intentionally as

invalid while leaving the frame’s CRC intact.

3.2.2 Closed loop approach

In contrast to open loop approaches, in closed loop ones, the responses of the device under

test are fed back into the stimuli generation in order to produce new test stimuli. Thus, the

environmental stimuli provider and environmental monitoring device as well as the network

stimuli provider and network monitoring device of Figure 12 are tightly connected with each

other or implemented as one component (see Figure 13).

- 36 -

D U T

FlexR ay

N etw ork
M onitoring

P art

Environm enta l
M onitoring

D evice

N etw ork
S tim ulus
 P rovider

E nvironm enta l
S tim ulus
 P rovider

Test C ontro ller

H IL D evice

I/O

Figure 13: Test Setup for Closed Loop Approach

This method is often also called residual bus simulation (in German language

“Restbussimulation”) or hardware in the loop (HIL) system. HIL systems include a complete

model of the other ECUs and a detailed model of the controlled environment, e.g., a braking

system including the behavior of brakes, the car and the road. Residual simulation usually

includes a simplified model of the other ECUs and no or only a basic model of the controlled

environment.

The test and monitoring levels for FlexRay based applications are the same as introduced for

open loop approaches.

- 37 -

4 Discussion of Approaches

Having identified several possible testing approaches in the previous section, the question

remains which of these techniques is the one best suited for the development of FlexRay-

based applications and systems. In this section we compare the presented approaches by

evaluating them in terms of cost, accuracy, and easiness of the testing process.

4.1 Software-Based Approaches

Purely software-based approaches, where no target hardware is involved, are flexible and

adaptive to the test purpose, and therefore it becomes easy to control the test execution, the

monitoring of the test responses, and the injection of faults. This results in better

reproducibility of tests and fault injections.

The possibility to conduct test before the target hardware has been built is a further benefit of

this approach. It makes tests possible very early in the development life cycle and supports the

detection of development faults in the first step of the development cycle. This is a strong

factor for dramatically reducing the cost induced by these faults [12].

On the other hand, the major drawback of the approach is the accuracy of the software model

and, in particular, the compliance between this model and the actual hardware platform in

terms of timing behavior. From the functional point of view, the purely software-based

approaches can perfectly mimic the behavior achieved in the actual system. As far as the

temporal aspects (e.g., the latencies, the achieved accuracy, a.s.o.) are concerned however, the

purely software based approaches reach their limits as soon as the desired accuracy of the tests

and of the corresponding monitoring reaches the lower (finer grained) timing levels (see

Section 3.1.1.2). Therefore, another important aspect is the cost of software-based testing

approaches in terms of complexity of the model and computational resources for its analysis.

In any case the accuracy of the software model has to be compliant with the granularity of the

timing requirements of the application software otherwise the results obtained by the

- 38 -

performed test might not provide a sufficiently strong guarantee. While testing and

monitoring on large scale timing levels (e.g., using a granularity of a single communication

cycle) the computational resources required for the simulation are rather moderate, when

moving to lower (finer grained) timing levels however, the computational resources may

increase dramatically in terms of memory and CPU usage. Therefore when applying purely

software-based approaches a trade-off has to be made between duration and the accuracy of a

test run.

Hardware-Based Approaches

In hardware based approaches, the cost factor related to the accuracy of a model and therefore

of its ability to fit to a given temporal granularity is no more a problem. In fact, there are no

additional computational costs for a fine grained level of timing requirement against a coarse

grained one.

However hardware-based approaches exhibit the disadvantages that they are less flexible and,

in particular, the means of control over the test execution, monitoring and fault injection is

rather limited or comes at great costs (e.g., expensive special purpose devices for reproducible

deterministic fault injection [13]).

A further drawback of hardware-based approaches is the fact that usually the availability of the

final target hardware is rather late in the development life cycle; this either requires test to be

conducted on early prototype samples (which exhibit flaws of their own) or to postpone the

test till the final hardware is available. Both choices cause increased cost, either due to testing

on immature hardware or due to late detection of development errors and thus increased cost

for correcting and fixing these errors).

As mentioned formerly, two methods can be used for hardware based tests: open-loop tests

and closed-loop tests. An example of functionality where a closed-loop based test is needed

are complex communication services like transport protocols, network management, and

- 39 -

diagnostic communication management. Each of these services implements a more or less

complex communication protocol, requiring state machines at sender and receiver, where the

state transitions are triggered by the messages received and/or transmitted. Without the

possibility to react to the test responses of the DUT, the implementation of this kind of

complex communication protocols in the test bed is not possible. Another example is the

testing of distributed control loops where the DUT is one of the ECUs participating in the

control loop. Similar to the complex protocols, distribute control loops necessitate that the

test bed is capable of responding to the test responses of the DUT, which renders an open-

loop approach inadequate in these situations.

In general closed-loop approaches are more expensive (due to need for more computational

resources and the fact that the tester itself has to be carefully designed and developed) than

open-loop ones. Therefore in practice a combination of both setups is used. Testing with

closed-loop testing setups only takes place when the previous tests conducted in cheaper (i.e.,

open-loop) setups have successfully been completed.

- 40 -

5 Conclusion

Testing FlexRay-based systems has to take place at the interfaces of the different levels of

abstraction of the hard- and software architecture, namely at the physical layer interface, at the

controller-host interface, and at the application interface. Due to the nature of the FlexRay

communication protocol, the responses of the DUT have to be monitored and examined not

only for deviations in the value domain, but also doe deviations in the time and the code

domain.

These tests have to be conducted in fault-free scenarios as well as under faulty conditions,

which must be cause by means of fault injection. The application of both pure software-based

tests and hardware-based tests in open- and closed loop test scenarios makes perfect sense,

since each of the approaches has its own merits and drawbacks. Each one has its own niche,

where it provides the most benefits.

We therefore recommend using a combination of all these approaches with respect to the

different development stages of the whole system. We propose starting with pure software-

based approaches as long as no hardware is available. In the pure software-based approach

general functional tests can be conducted at a rather large scale timing levels. Once these tests

have been completed successfully, additional tests at a smaller timing scale can be conducted.

Once hardware is available open-loop tests can be conducted to verify the correct timing and

functionality of the simple application parts of the DUT. Once these tests have been

successfully completed as well, closed-loop testing approaches can be used to verify the

complex protocols and the distributed control loop functionality.

- 41 -

References

[1] T. Scharnhost, H. Heinecke, K.-P. Schnelle, H Fennel, J. Bortolazzi, L. Lundh, P.

Heitkämper, J. Leflour, J.-L. Maté, and K. Nishikawa, AUTomotive Open System

ARchitecture - An Industry-Wide Initiative to Manage the Complexity of Emerging Automotive

E/E-Architectures, Convergence 2004, International Congress on Transportation

Electronics, Detroit, Michigan, USA, 2004

[2] Pop, T., Pop, P., Eles, P., Peng, Z., and Andrei, A., Timing Analysis of the FlexRay

Communication Protocol. In Proceedings of the 18th Euromicro Conference on Real-

Time Systems (ECRTS); pp. 203-216, IEEE Computer Society, Washington, DC,

July 5-7, 2006, DOI= http://dx.doi.org/10.1109/ECRTS.2006.31

[3] Gaujal, B. and Navet, N., Maximizing the Robustness of TDMA Networks with Applications

to TTP/C. Real-Time Systems, vol. 31, issue 1-3, pp 5-31, December 2005. DOI=

http://dx.doi.org/10.1007/s11241-005-2743-4

[4] ISO (International Organization for Standardization), Road vehicles – Unified Diagnostic

Services (UDS) – Part1: Specification and Requirements, ISO/DIS 14229-1, 1, rue de

Varembe, Case postale 56, CH-1211 Geneva 20, Switzerland, 2004

[5] ISO (International Organization for Standardization), Road Vehicles – Diagnostic Systems

– Keyword Protocol 2000 – Part 3: Application layer, ISO/DIS 14230-3, 1, rue de Varembe,

Case postale 56, CH-1211 Geneva 20, Switzerland, 1999

[6] ISO (International Organization for Standardization), Road Vehicles – Diagnostics on

Controller Area Networks (CAN) – Part 2: Network Layer Services, ISO/DIS 15765-2.2, 1,

rue de Varembe, Case postale 56, CH-1211 Geneva 20, Switzerland, June 2003

[7] J.-C. Laprie, B. Randell, A. Avizienis, and C. Landwehr, Basic Concepts and Taxonomy of

Dependable and Secure Computing, IEEE Transactions on Dependable and Secure

Computing, 1(1), pages 11-33, Los Alamitos, CA, USA, 2004

- 42 -

http://dx.doi.org/10.1109/ECRTS.2006.31
http://dx.doi.org/10.1007/s11241-005-2743-4

[8] R. Mores, G. Hay, R. Belschner, J. Berwanger , S. Fluhrer, E. Fuchs, B. Hedenitz, W.

Kuffner, A. Krüger, P. Lohrmann, D. Millinger, M. Peller, J. Ruh, A. Schedl, M.

Sprachmann, FlexRay - The Communication System for Advanced Automotive Control

Systems, Proc. SAE, Paper 2001-01-0676

[9] FlexRay Consortium Web Page, http://www.flexray.com

[10] J. Berwanger, A. Schedl, BMW Group, Ch. Temple, Freescale Semiconductor,

FlexRay Hits the Road, Automotive DesignLine, November 15, 2006, Available at

http://www.automotivedesignline.com

[11] J. L. Welch and N. A. Lynch, A New Fault-Tolerant Algorithm for Clock Synchronization,

Information and Computation, vol. 77, no. 1, pp. 1-36, April 1988.

[12] G. Tassey, The Economic Impacts of Inadequate Infrastructure for Software Testing, NIST

Report 02-3; National Institute of Standards and Technology, Acquisition and

Assistance Division, Building 101, Room A1000, Gaithersburg, MD 20899-0001,

USA; May 2002; Available at http://www.nist.gov/director/prog-ofc/report02-3.pdf

[13] J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs, G. H. Leber, Comparison of

Physical and Software-Implemented Fault Injection Techniques; IEEE Transactions on

Computers, Volume 52 , Issue 9, pp. 1115-1133, September 2003

- 43 -

http://www.flexray.com/
http://www.automotivedesignline.com/
http://www.nist.gov/director/prog-ofc/report02-3.pdf

	1 Introduction to FlexRay Based Applications
	1.1 System Architecture
	1.1.1 Hardware Architecture
	1.1.2 Software Architecture
	1.1.2.1 Application Software
	1.1.2.2 Basic or System Software
	Communication Services

	1.2 The FlexRay Protocol

	2 Objectives for Testing and Monitoring
	2.1 “Criteria” to Test and Monitor
	2.1.1 Deviations in the Time Domain
	2.1.2 Deviations in the Value Domain
	2.1.3 Deviations in the Code Domain
	2.1.4 Other Deviations

	2.2 Operational Scenarios for Testing and Monitoring

	3 Monitoring and Testing Approaches
	3.1 Software Based Validation
	3.1.1 FlexRay Abstraction Levels
	3.1.1.1 Architecture Level
	Application Interface (AI)
	Controller Host Interface (CHI)
	Physical Layer Interface (PLI)

	3.1.1.2 Timing Level
	Timing Level 1: Communication Cycle
	Timing Level 2: Static Slots and Simple Dynamic Segment Arbitration
	Timing Level 3: Static Slots and Advanced Dynamic Segment Arbitration
	More Detailed Approaches

	3.1.2 Fault injection
	3.1.2.1 Application Interface
	3.1.2.2 Controller Host Interface
	Clock Synchronization
	Frame Reception
	Frame Transmission
	Choice of Timing Abstraction Levels

	3.2 Hardware-Based Validation
	3.2.1 Open Loop Approach
	3.2.1.1 Test and Monitoring Levels
	Physical Layer Interface
	Controller Host Interface
	Application Interface

	3.2.1.2 Testing under Faulty Conditions

	3.2.2 Closed loop approach

	4 Discussion of Approaches
	4.1 Software-Based Approaches

	5 Conclusion

