
AUTOSAR - Challenges and Solutions from a
Software Vendor’s Perspective

Thomas M. Galla and Roman Pallierer
Elektrobit Austria GmbH

Kaiserstrasse 45/2
A-1070 Vienna, Austria

E-mail: {thomas.galla, roman.pallierer}@elektrobit.com

Abstract— The automotive standard AUTOSAR provides a
broad standardized basis for ECU software development con-
sisting of over 80 software modules and libraries accompanied
by an associated development methodology. The potential benefits
of (re-)using these standardized software modules are undisputed
and make the use of AUTOSAR very attractive. When deploying
AUTOSAR, however, both the OEMs and the Tier1 are con-
fronted with significant challenges.

This paper highlights some of these major challenges from a
software vendor’s perspective, namely the dealing with multiple
AUTOSAR versions, the handling of the complexity, the need
for optimizations to cope with limited hardware resources, the
integration with legacy modules, and the support of the migration
between different different OEM projects as well as between
different AUTOSAR versions. Possible approaches approaches
and solutions to these challenges are illustrated using Elektrobit’s
products EB tresos Studio and EB tresos AutoCore as examples.

Index Terms— Automotive embedded software, AUTOSAR

I. INTRODUCTION

The AUTomotive Open System ARchitecture (AUTOSAR)
has been founded in 2003 as development partnership includ-
ing automotive manufacturer, suppliers and tool developers
with the goal to create an open and standardized automotive ar-
chitecture that paves the way for innovative electronic systems
that further improve performance, safety and environmental
friendlinesss (Hansen, 2004). In 2008, the first series projects
exploiting the AUTOSAR technology have been introduced by
BMW, followed by Daimler, Audi, VW, PSA and others.

The AUTOSAR technology provides both a software archi-
tecture and a configuration methodology. The software archi-
tecture (AUTOSAR Consortium, 2009b) clearly distinguishes
between application software and basic software. The applica-
tion software components encapsulate all application specific
software items (i.e., control loops, interaction with sensor
and actuators etc.), while the basic software modules provide
functionality like protocol stacks for automotive communica-
tion protocols, a real-time operating system, and diagnostic
modules. The Runtime Environment (Rte) acts as standardized
interface between the application software components and the
basic software modules, in order to achieve the technical goals
of AUTOSAR such as modularity, scalability, transferability
and re-usability of application functions developed by differ-
ent manufacturers and suppliers. The AUTOSAR configura-
tion methodology (AUTOSAR Consortium, 2009a) provides

system-wide and ECU-specific configuration parameters and
standardized XML based exchange formats. The system de-
scription includes all system-wide parameters, i.e., parameters
that are relevant for all ECUs (e.g., the communication matrix
and the topology). The ECU extract of the system description
contains only those parts of the system description that are
relevant for one specific ECU (e.g., the signals the ECU sends
and receives). The ECU configuration includes parameters
required to configure the basic software modules for one
specific ECU. This ECU configuration can be partly derived
from the ECU extract of the system description and has to
be partly configured locally for ECU-specifica (e.g., number
of receive buffers). This configuration methodology allows to
clearly separate the configuration tasks between OEM (system
configuration) and Tier1 (ECU configuration) and enable both
system-wide and ECU-specific optimizations.

Automotive Tier1s are now confronted with this AUTOSAR
technology in almost every new project replacing legacy basic
software drivers with this standardized architecture. The main
questions therefore are how to use this new technology, what
are the main challenges, how can these be managed, and what
solutions are available? Elektrobit (EB) is one of the main
software vendors that implement the AUTOSAR technology:
The product EB tresos AutoCore contains all AUTOSAR
basic software modules and the Rte. EB tresos Studio is
an universal configuration tool for all these basic software
modules and the Rte. This tool can import an AUTOSAR
system description or ECU extract of the system description
and convert it into the corresponding ECU configuration
parameters in order to configure all AUTOSAR basic software
modules and the Rte for a specific ECU.

Based on the experiences of the last years, this article tries
to give some answers to the main challenges when exploiting
the AUTOSAR technology by using the EB tresos products.

II. MULTIPLE AUTOSAR VERSIONS

A. Challenges
A new technology – as big as AUTOSAR – requires

a development process over several years. The AUTOSAR
partnership has subdivided the specification development into
three main periods as shown in Figure 1.

1) Basic development of the standard resulting in the re-
leases 2.1 and 3.x, the first releases to be used in mass
production projects

2

2) Selective enhancement of the standard based on a stable
architecture and methodology, resulting in the releases
4.0 and the upcoming 4.1

3) Maintenance of the different releases used for series
production

Fig. 1: AUTOSAR – Release Overview (Stefan Bunzel, 2010)

Furthermore, AUTOSAR uses a release and revision num-
bering scheme that supports incremental extensions. Within
a release a complete set of the specifications is available for
all AUTOSAR domains: the basic software modules and the
Rte, the design and configuration methodology (including
the corresponding templates), and the application interfaces.
Within a revision, smaller updates and extensions of some or
all parts of a release are provided.

As long as the specification work is ongoing, OEMs in-
troducing AUTOSAR into mass production projects have the
challenging task to determine which AUTOSAR release and
revision to be used by the ECUs within one series project. Fur-
thermore, if some OEM requirements are not (yet) covered by
the chosen AUTOSAR version, OEMs have to add additional
requirement specifications and/or implementations of certain
basic software modules, e.g. diagnostic modules, to cover all
required features. Tier1s have then the task to use a basic
software stack that corresponds to the specified AUTOSAR
release and revision and that fulfills all of these additional
OEM-specific requirements for a certain series project.

B. Solutions
Based on the AUTOSAR principle “cooperate on specifi-

cations and compete on implementations”, software vendors
are providing implementations of the AUTOSAR standard.
However, it is not sufficient for a Tier1 to buy an AUTOSAR
stack just according to a certain release and revision, but
also to consider all OEM-specific extensions of the targeted
mass production project. EB works closely together with all
major OEMs introducing AUTOSAR to provide solutions of
basic software stacks that fulfill all requirements of a certain
mass production project. Tier1s can simply choose between
such pre-integrated basic software stacks to immediately start
developing their application software on top of the AUTOSAR
stack.

III. HANDLING OF COMPLEXITY

A. Challenges
An AUTOSAR ECU configuration consists of a vast amount

of configuration parameters that have to be set properly in

order to obtain a working basic software stack consisting
of over 80 basic software modules (AUTOSAR Consortium,
2009c) that make up the AUTOSAR software architecture. For
example, the AUTOSAR Com module, which provides signal-
based communication, alone supports over 180 configuration
parameters (AUTOSAR Consortium, 2009d). This huge con-
figuration space can only be partly filled by importing the ECU
extract of a system description provided by the OEM.

Many of those parameters depend on other parameters, e.g.,
the range of allowed values of parameter A is limited in case
parameter B is set to a certain value. These parameter depen-
dencies have to be considered when crafting a configuration.

Additionally AUTOSAR has the notion of (typed) refer-
ences to other parameters. Having these references in mind,
the sequence of configuration steps is worth looking at in order
to prevent permanent switching between modules to configure
to resolve dangling references and finally getting lost in the
huge AUTOSAR configuration space, ending up with many
partly configured modules not knowing which modules are
completely configured and which ones are not.

Last but not least the Tier1 has to cope with continuous
updates of the ECU extract provided by the OEM during the
various integration phases of the project.

B. Solutions

In order to fill a large amount of the AUTOSAR ECU
configuration, an AUTOSAR ECU configuration tool must
be capable to import the relevant information from various
file formats containing configuration information of the whole
system (i.e., the whole car), e.g., proprietary formats like
DBC files (for the communication on CAN), or standardized
formats as LDF (for the communication on LIN), FIBEX (for
the communication on CAN, LIN, FlexRay, and MOST), and
last but not least AUTOSAR’s ECU extract of the system
description (for the communication on CAN, LIN, FlexRay,
and Ethernet). EB tresos Studio provides powerful importers
for each of these formats.

The remaining part of the configuration parameters (i.e.,
those that cannot be filled by an import) contains a subset
of parameters whose value can be derived via some formula
from the values of other (already configured) parameters.
In order to automate this process the parameter’s attributes
must be augmented by an attribute containing the calculation
formula to enable a configuration tool to calculate the derived
parameter upon user request.

<v:var name="CanIfNumberOfCanRxPduIds" type="INTEGER">
<a:da name="DEFAULT" type="XPath"
expr="num:i(count(../CanIfRxPduConfig/*))"/>

Fig. 2: Calculation Formula for Derived Parameter

Figure 2 illustrates this approach by showing a snip-
pet of the EB tresos AutoCore CanIf module’s config-
uration scheme where the default value for the parameter
CanIfNumberOfCanRxPduIds is computed based on the
number of CanIfRxPduConfig elements.

Based on this information the calculation of the default
value for the parameter CanIfNumberOfCanRxPduIds

3

can either be triggered manually for this single derived pa-
rameter alone or for all derived parameters via EB tresos
Studio’s AutoCalc Wizard .

Another part of the parameters that cannot be filled via
an import can however be set to OEM specific default
values (e.g., a German OEM mandates that the parame-
ter CanNmWaitBusSleepTime is set to a value of 0.75
seconds). For this purpose EB tresos Studio provides the
possibility to define pre- and recommended configurations
(i.e., pre-selections of configuration sets). By means of these
pre- and recommended configurations certain configuration
parameters can be fixed to OEM specific values thus allowing
to perform OEM specific customizations to further reduce the
configuration space to be filled by the Tier1 (and thus further
reducing the Tier1’s configuration effort).

The still remaining parameters have to be filled manually
by the Tier1. In order to aid the Tier1 in this endeavor, EB
tresos Studio on the one hand provides so-called assistants that
help the user to chose correct values for these configuration
parameters in a domain specific GUI (see Figure 3 for an
example dealing with the configuration of the FrIf module’s
communication operations).

Fig. 3: Screenshot FlexRay Assistant

As far as the configuration order is concerned it is advisable
to configure the modules with referenced parameters first and
the modules with referencing parameters afterwards. When
following this sequence the configuration tool can assist the
user during configuration of the referencing parameter by
providing a list (e.g., via a drop down box in the GUI) of the
syntactically valid choices of possible referenced parameters.
This way dangling or even wrong references can be avoided.
To ensure that the user configures the various modules in the
optimal sequence EB tresos Studio guides the user through the
configuration process via workflows (see Figure 4). Since there
is no single “optimal AUTOSAR workflow”, these workflows
can be extended, re-arranged and cascaded via XML files for
optimal customizations in customer specific environments.

IV. OPTIMIZATIONS

A. Challenges

Due to the strict requirements on cost efficiency, automotive
micro-controller devices provide limited hardware resources.

Fig. 4: Screenshot Workflow

The main challenge is to optimize the whole AUTOSAR
basic software stack in such a way that the target application
can be implemented even on hardware devices with restricted
resources. Therefore, the optimal trade-off in the usage of the
resources has to be found in the context of the application.
Fundamental conflicts of optimization goals, for reducing
memory consumption vs. increasing CPU performance, have
to be considered.

B. Solutions

Generally, we see three different types of optimization
strategies in an AUTOSAR basic software stack:

1) Functionality optimizations include methods that deacti-
vate small or large parts of module source code in order
to reduce the target code size and to increase the per-
formance. The functional deactivation can be applied on
three levels, the deactivation of global functionality (e.g.,
Det reporting), the deactivation of module functionality
(e.g., deactivate PduR gateway functionality), or the
deactivation of module sub-functionality (e.g., disable
DLC check of CAN messages in the CanIf module).

2) Resource restrictions include methods to reduce the
number of required resources to fit but not exceed
required conditions of an application (Thomas M. Galla,
2008). The main impact of this method is a reduced
generated configuration size. This method can be applied
on two levels, the limitations of available resources
(e.g., reduce the number of CAN controllers to one,
thus rendering it unnecessary to explicitly identify the
controller in APIs and data structures), or the optimized
usage of data types (e.g., using an 8 bit integral data type
for an index variables which do not need to address more
than 256 objects).

3) Implementation variants include methods to use mod-
ules in an efficient way. The main impact of this method
may differ but often leads to an increase of performance.
These methods include zero-cost implementations, i.e.,
to bypass a module in case the application does not
need services from this module (e.g., PduR zero cost),

4

or macro implementations, i.e., to provide pre-processor
macros instead of functions (e.g., SchM API calls).

The AUTOSAR stack EB tresos AutoCore implements all
three types of optimizations. In order to apply the opti-
mizations, the configuration tool EB tresos Studio provides
support via following functions: Dedicated assistants (e.g.,
to deactivate global functionality like Det reporting), pre-
/recommended configurations for modules, and detailed mod-
ule configuration editors. The on-line documentation contains
for each AUTOSAR configuration parameter a field describing
the optimization effect.

C. Examples

To demonstrate the effectiveness of these optimizations, we
have conducted measurements regarding the RAM and ROM
consumptions with the configurations depicted in Table I.

Configuration Name # PDUs and Signals Settings
1sig 1 RX signal (1 bit) Det off

1 TX signal (1 bit)
2 PDUs

1sigOpt 1 RX signal (1 bit) Det off
1 TX signal (1 bit) Com optimized

2 PDUs PduR zero cost
100sig 50 RX signals (1 bit) Det off

50 TX signals (1 bit)
10 PDUs

100sigOpt 50 RX signals (1 bit) Det off
50 TX signals (1 bit) Com optimized

10 PDUs PduR zero cost
1000sig 500 RX signals (1 bit) Det off

500 TX signals (1 bit)
100 PDUs

1000sigOpt 500 RX signals (1 bit) Det off
500 TX signals (1 bit) Com optimized

100 PDUs PduR zero cost

TABLE I: Sample Configurations

Hereby in the optimized configurations (suffix “Opt” in the
name) the zero cost optimization has been activated for the
PduR (strategy 3 in the above list), and the above mentioned
optimizations to reduce functionality (strategy 1) and to apply
resource restrictions (strategy 2) have been applied to Com.

Figure 5 illustrates the resulting memory consumption of
the Com module, while Figure 6 depicts the resulting memory
consumption of the PduR module, showing a complete reduc-
tion of the code size in all three optimized examples due to
the zero cost optimization.

Fig. 5: Memory Consumption Com

Fig. 6: Memory Consumption PduR

V. INTEGRATION WITH LEGACY MODULES

A. Challenges

In addition to the over 80 software modules and libraries
specified by AUTOSAR, each OEM has a certain number
of legacy modules that need to be integrated into the AU-
TOSAR basic software stack. For a convenient and efficient
configuration process a seamless integration with respect to
the configuration process, the look and feel in the GUI, and
the generation of configuration data structures based on the
AUTOSAR ECU configuration XML files is needed.

B. Solutions

To provide such a seamless integration EB tresos Studio
supports a plugin concept where each basic software module
is a plugin from EB tresos Studio’s perspective. This plugin
concept is easily extensible to the OEM’s legacy modules,
giving them the same look-and-feel as the standard modules.

Based on XML configuration schema files that are derived
from the AUTOSAR ECU configuration XML files and aug-
mented by GUI annotations EB tresos Studio renders the GUI
on-the-fly when displaying the configuration. Hereby the GUI
annotations are used to control the rendering process, e.g.,
by instructing the renderer to display multiple parameters as
columns in a list view (see Figure 7a for a sample XML
snippet that instructs the GUI renderer to display various
configuration parameters like ComBitPosition as columns
of a table GUI element and Figure 7b for a screenshot of the
resulting GUI layout).

By means of a template-based generator the XML config-
uration files are transformed into configuration data structures
in the C programming language. Since this transformation is
not encoded in the binary executable of EB tresos Studio but
described by means of code generator templates, this transfor-
mation is under full control of the user and can easily be mod-
ified by simply altering the code generator templates. Figure 8
depicts a snippet of a code generator template that produces
a #define named CANIF_DEV_ERROR_DETECT based on
the configuration parameter CanIfDevErrorDetect in the
CanIf module’s ECU configuration.

Finally EB tresos Studio provides generic assistants for the
automatic calculation of dedicated configuration parameters.
When properly parameterized, these generic assistants can be
registered and used for the legacy modules as well (e.g., for
automatic numbering off all protocol data units (PDUs) of the

5

<v:lst name="ComGwDestination" type="MAP">
<a:a name="COLUMNS">
<a:v>ComGwDestinationDescription/Type</a:v>
<a:v>ComGwDestinationDescription/ComBitPosition</a:v>
<a:v>ComGwDestinationDescription/ComSignalEndianess</a:v>

</a:a>

(a) GUI Annotations in XML (b) GUI Annotations Screenshot

Fig. 7: GUI annotations

/** \brief Switch for DET usage */
[!IF "CanIfPublicConfiguration/CanIfDevErrorDetect"!]
#define CANIF_DEV_ERROR_DETECT STD_ON
[!ELSE!]
#define CANIF_DEV_ERROR_DETECT STD_OFF
[!ENDIF!]

Fig. 8: Code Generator Template Snippet

VW legacy module Ksb). This way legacy modules exhibit the
same configuration comfort as standard AUTOSAR modules.

VI. MIGRATION ISSUES

A. Challenges

Once a Tier1 has successfully configured the AUTOSAR
basic software for a specific OEM project, the Tier1 usually
wants to reuse this configuration (together with the corre-
sponding application code) in other OEM projects – at least
to a large degree. This re-use needs to be addressed in the
following three dimensions: the other OEM project

1) mandates a different pre-/recommended configuration
2) uses a different communication matrix
3) uses a different AUTOSAR version
For an optimal support of the Tier1 each of these dimensions

must be addressed properly by the configuration tool.

B. Solutions

EB tresos Studio addresses the first two dimensions with a
clever merge strategy. Hereby each configuration parameter
obtains an additional origin attribute which carries the in-
formation where the parameter obtained its value from (e.g.,
from a user input, from an import by a specific importer
profile (see below), or via a pre-/recommended configuration).
Configuration parameters are treated as identical if the path of
the parameter and the origin attribute are identical.

When merging a “new” configuration into an “old” one, the
merge algorithm behaves as follows: if a specific parameter is

• present in both configurations the value of the parameter
in the “old” configuration is replaced by the value in the
“new” configuration during the merge process.

• only present in the “old” configuration the parameter is
removed during the merge process.

• only present in the “new” configuration the parameter is
added during the merge process.

This way even incremental merging from different sources
is possible if each source is given a unique origin attribute.

When replacing an existing pre-/recommended configura-
tion by a new one, this merge process takes place. – Since
the existing parameters that have been initially added by
means of a pre-/recommended configuration carry the origin
attribute of this configuration, these parameters can be replaced
or changed, if the parameters of the new pre-/recommended
configuration use the same origin attribute. Other parameters in
the existing configuration that do not carry the origin attribute
of the new configuration are not affected by this process.

In order to illustrate this process we use the parameter
CanNmWaitBusSleepTime as an example: In case the
Tier1 starts with a project for our German OEM for example,
this parameter will be set to a value of 0.75 seconds by
means of German OEM’s pre-configuration. The fact that
this parameter obtained its value from a pre-configuration
is recorded in the parameter’s origin attribute. If the Tier1
afterwards wants to re-use this configuration in a project
for an American OEM that mandates that the parameter
CanNmWaitBusSleepTime is set to a value of 1 second,
the Tier1 simply has to use the American OEM’s pre-config.
This will cause all parameters of the existing configuration
that obtained their values from German OEM’s pre-config (i.e.,
the ones that have their origin attribute set accordingly) to be
overwritten with the values of the new pre-configuration. This
way the parameter CanNmWaitBusSleepTime will be set
to a value of 1 in the new configuration.

Combining the import capability of EB tresos Studio with
the merge strategy described above changes in the communica-
tion matrix can be addressed as well. EB tresos Studio supports
the definition of so-called importer profiles consisting of the
type of the used importer (e.g., FIBEX importer, AUTOSAR
system description importer) and the chosen settings for this
importer. By using the same importer profile and only chang-
ing the imported source file an existing communication matrix
can be replaced in the configuration by a new communication
matrix trough the merge process without affecting the other
parameters of the configuration (e.g., parameters that have
been added or changed manually or by some assistant).

Consider the following scenario to illustrate this update
process of the communication matrix: The Tier1 initially
obtains an ECU extract of a system description from the OEM
that contains the signals A, B, and C, where signal A has a
length of 8 bits, signal B a length of 16 bits, and signal C
a length of 12 bits. In order to import this ECU extract of
a system description the Tier1 creates a new importer profile
(profile X) containing the type of the importer (i.e., AUTOSAR
system description importer in this example) together with the

6

corresponding importer settings. After an initial import of the
ECU extract of the system description these three signal are
added to the ECU configuration of the Tier1. Hereby the origin
attribute of each of these signals is set to the profile (profile X)
used for the import. Afterwards the Tier1 manually adds two
additional signals named R and T for debugging purposes. –
The origin attribute of these two signals is set to “user input”.
Later on in the project the Tier1 obtains an update of the ECU
extract of a system description from the OEM that contains
the signals A, B, and D, where signal A still has a length of
8 bits, signal B’s length has changed to 32 bits, and signal D
has a length of 4 bits. An import of this ECU extract of the
system description using the same importer profile causes the
signal C to be removed from the Tier1’s ECU configuration
(since its origin attribute matches the importer profile used
for the current import, and signal C is no longer part of the
imported system description). Signal D is added to the ECU
configuration and the length of signal B is changed to 32 bits.
Signal A is not modified (since its length has not changed).
Signals R and T remain untouched as well, since they have
not been created by the importer profile X (i.e., their origin
attribute contains a value that is different from the importer
profile X).

The third dimension is addressed by providing dedicated
configuration transformers for each basic software module.
This configuration transformer is implicitly invoked when
loading an old ECU configuration. The transformer transforms
a configuration which conforms to a previous AUTOSAR ver-
sions (or a previous version of the module) into a configuration
that conforms to the current AUTOSAR version (or the current
version of the module). By applying such a transformer to
each module’s ECU configuration the Tier1 is able to upgrade
a whole configuration project from a previous AUTOSAR
version to the most recent supported one.

VII. CONCLUSION

The AUTOSAR standard is ready to be used in mass pro-
duction projects. OEMs and Tier1s introducing this powerful
technology however have to master some main challenges,
such as considering all OEM specific requirements, handling
the configuration complexity, optimal usage of restricted hard-
ware resources, and the integration of existing legacy modules.
Software vendors such as EB working closely together with
OEMs, can provide Tier1s with powerful configuration tools
and AUTOSAR basic software stack implementations that ful-
fill all these requirements. Such product solutions considerably
help Tier1s to start with new AUTOSAR projects.

REFERENCES

AUTOSAR Consortium (2009a). AUTOSAR Methodology, Technical Report
Version 1.4.0, Release 4.0, Rev 0001, AUTOSAR Consortium.

AUTOSAR Consortium (2009b). Layered Software Architecture, Technical
Report Version 3.0.0, Release 4.0, Rev 0001, AUTOSAR Consortium.

AUTOSAR Consortium (2009c). List of Basic Software Modules, Technical
Report Version 1.4.0, Release 4.0, Rev 0001, AUTOSAR Consortium.

AUTOSAR Consortium (2009d). Specification of Communication, Technical
Report Version 4.0.0, Release 4.0, Rev 0001, AUTOSAR Consortium.

Hansen, P. (2004). AUTOSAR Standard Software Architecture Partnership
Takes Shape, The Hansen Report on Automotive Electronics 17(8): 1–3.

Stefan Bunzel (2010). Overview on AUTOSAR Cooperation, 2nd AUTOSAR
Open Conference, Tokyo, Japan.

Thomas M. Galla (2008). Beyond AUTOSAR - Optimized AUTOSAR
Compliant Basic Software Modules, FlexRay Product Day, Stuttgart,
Germany.

