
Beyond AUTOSAR – Optimized AUTOSAR Compliant Basic
Software Modules

Thomas M. Galla
Elektrobit Austria GmbH

Stumpergasse 48 / 28, A-1060 Vienna, Austria
Email: thomas.galla@elektrobit.com

Abstract

The number of electronic systems in cars is continuously growing. Electronic systems, consisting of
so-called electronic control units (ECUs) interconnected by a communication network, account for up
to 30% of a modern car’s worth. Consequently, software plays an ever more important role, both for the
implementation of functions and the infrastructure.

In order to benefit from the reuse of software modules, the major automotive companies have stan-
dardized a large number of these modules in the context of the AUTOSAR consortium in form of a
layered architecture of software modules.

We investigate and discuss the optimization potentials in this layered software architecture, namely
making use of dedicated hardware units (e.g., DMA controller, co-processors) in the module imple-
mentation to reduce execution time and code size, providing means to tailor the modules of the layered
software architecture to the specific application to reduce the memory footprint, and combining adja-
cent modules to reduce memory footprint and execution time while still remaining conforming to the
AUTOSAR API at the “outer” interfaces.

We demonstrate the feasibility of this approach by focusing on an optimized version of FlexRay
specific modules implemented on two different hardware platforms. Finally we show the impact of
these optimizations in terms of execution time as well as the memory consumption of the optimized
modules by comparing these measures to the measures obtained from the corresponding non-optimized
AUTOSAR modules.

1 Introduction

In the last decade the percentage of electronic components in today’s cars has been ever increasing. Accord-
ing to [6] the S-Class Mercedes for example utilizes seven communication buses and 72 micro controllers.

Since 1993 major automotive companies have been striving for the deployment of standard software
modules in their applications since the potential benefits of using standard software modules are huge [5].
This trend has been a key motivation for the formation of the AUTOSAR [3] consortium in 2003. Important
issues in this context are safety (increased test depth of standard software modules), software reuse, for the
possibility to combine software modules supplied by different vendors due to standardized interfaces, and
last but not least cost reasons in order to cope with ever reducing development cycles.

The software stack proposed by AUTOSAR is made up of a layered architecture of basic software
modules comprising communication modules, operating system, and modules providing access to the micro
controller’s integrated peripheral devices (e.g., A/D converters, digital I/O).

In this paper we will reason that strictly adhering to the layered architecture proposed by AUTOSAR
is inefficient as far a resource usage is concerned (especially memory consumption) due to limited or no



scalability to the needs of the application software. In order to overcome this drawback we will propose
possible refactorings and optimizations of the AUTOSAR stack of basic software modules. Hereby we
will focus on a well-defined part of the AUTOSAR software stack namely the software modules related to
the FlexRay communication system [4, 12]. Note that although this paper focuses on the FlexRay specific
communication modules, the concepts presented here are applicable to CAN and LIN as well.

Finally we will show by means of a sample application that the refactored version of these AUTOSAR
software modules provides better scalability and reduces the overall resource consumption of the software
stack for a specific application.

The paper is structured as follows: Section 2 illustrates the AUTOSAR hard- and software architecture.
Section 3 describes the optimization concepts that will be applied to the AUTOSAR FlexRay communication
modules. In Section 4 the refactored optimized AUTOSAR FlexRay communication modules are deployed
in a sample application. The resulting memory footprint and the execution time of the refactored stack is
analyzed and compared to an ordinary AUTOSAR stack applied to the very same application. Section 5
gives a short summary of the results and concludes the paper.

2 System Architecture

2.1 Hardware Architecture

The hardware architecture of automotive systems can be viewed at different levels of abstraction. On the
highest level of abstraction, thesystem level, an automotive system consists of a number of networks inter-
connected via gateways. In general these networks correspond to the different functional domains that can
be found in today’s cars (i.e., chassis domain, power train domain, body domain).

The networks themselves comprise a number of electronic control units (ECUs) which are intercon-
nected via a communication media. The physical topology used for the interconnection is basically arbi-
trary; however bus, star, and ring topologies are the most common topologies in today’s cars. – Thisnetwork
levelrepresents the medium level of abstraction.

On the lowest level of abstraction, theECU level, the major parts of an ECU are of interest. An ECU
comprises one or more micro controller units (MCUs) as well as one or more communication controllers
(CCs). In most cases, exactly one MCU and one CC are used to build up an ECU. In order to be able
to control physical processes in the car (e.g., control the injection pump of an engine) the ECU’s MCU
is connected to actuators via the MCU analogue or digital output ports. To provide means to obtain en-
vironmental information, sensors are connected to the MCUs analogue or digital input ports. We call this
interface the ECU’s environmental interface. The CC(s) facilitate(s) the physical connectivity of the ECU
to the respective network(s). We call this interface of an ECU the ECU’s network interface.

2.2 Software Architecture

The AUTOSAR software architecture makes a rather strict distinction between application software and
basic or system software. While thebasic (or system) softwareprovides functionality like communication
protocol stacks for automotive communication protocols (e.g., FlexRay [4, 12]), an operating system, and
diagnostic modules, theapplication softwarecomprises all application specific software items (i.e., control
loops, interaction with sensor and actuators etc.). This way, the basic or system software provides the
fundament, the application software is built upon.

The so-calledRuntime Environment (RTE)provides the interface between application software compo-
nents and the basic software modules as well as the infrastructure services that enables communication to
occur between application software components.

2.2.1 Application Software Architecture

Application software in AUTOSAR consists of application software components, which are ECU and lo-
cation independent and sensor-actuator components that are dependent on ECU hardware and therefore
location dependent. Whereas instances of application software components can easily be deployed to and



relocated among different ECUs, instances of sensor-actuator components must be deployed to a specific
ECU for performance/efficiency reasons.

Application software components as well as sensor-actuator components are interconnected via so-
called connectors. These connectors represent the exchange of signals or the remote method invocations
among the connected components.

2.2.2 System Software Architecture

In addition to the application software components, AUTOSAR also defines a layered architecture of sys-
tem software modules [1], which provide the basic platform for the execution of the application software
components. Figure 1 gives a coarse grained overview of the major categories of system software modules.

Application Layer

AUTOSAR Runtime Environment (RTE)

Communi-
cation
Services

Hardware

Input/
Output

Services

Memory
Services

System
Services

Application
Software

System
Software

Figure 1: AUTOSAR – System Software Stack Overview

The Input/Output Servicesare software modules that provide standardized access to sensors, actuators
and ECU on-board peripherals (e.g., D/A or A/D converters etc.). TheMemory Servicescomprise software
modules that facilitate the standardized access to internal and external non-volatile memory for means of
persistent storage. TheCommunication Servicescategory, which is of primary interest for the remainder of
this paper, contains software modules that provide standardized access to vehicle networks (i.e., the Local
Interconnect Network (LIN) [2], the Controller Area Network (CAN) [8,9], and FlexRay). Last but not least,
theSystem Servicesencompass all software modules that provide standardized (e.g., operating system, timer
support, error loggers) and ECU specific (ECU state management, watchdog management) system services
and library functions.

The structure of the Communication Services for the FlexRay communication system are depicted in
Figure 2.

FrNm

FrIf

Nm

FrTp

PduR

DcmCom

Fr

CC

Figure 2: AUTOSAR – FlexRay Communication Services

TheCOM module provides signal-based communication to the higher layers (RTE). The signal-based
communication service of COM can be used for intra-ECU communication as well as for inter-ECU commu-
nication. In the former case, COM mainly uses shared memory for this intra-ECU communication, whereas



for the latter case at the sender side COM packs multiple signals into a PDU and forwards this PDU to
the PDU router in order to issue the PDU’s transmission via the respective interface. – On the receiver
side, COM obtains a PDU from the PDU router, extracts the signals contained in the PDU and forwards the
extracted signals to the higher software layers.

The Diagnostic Communication Managermodule (Dcm) provides services which allow a tester de-
vice to control diagnostic functions in an ECU via the communication network (i.e., CAN, LIN, FlexRay).
Hereby the Dcm supports the Keyword Protocol 2000 (KWP2000) [7] standardized in ISO/DIS 14230-3
and the Unified Diagnostic Services (UDS) protocol [11] standardized in ISO/DIS 14229-1.

Network management modules provide means for the coordinated transition of the ECUs in a network
into and out of a low-power (or even power down) sleep mode. AUTOSAR NM is hereby divided into two
modules: a communication protocol independent module namedGeneric NM(Nm) and a communication
protocol dependent module namedFlexRay NM(FrNm).

The PDU Routermodule (PduR) provides two major services. On the one hand it dispatches PDUs
received via the underlying interfaces (e.g., FlexRay Interface) to the different higher layers (COM, Di-
agnostic Communication Manager). On the other hand the PDU router performs gateway functionalities
between different communication networks by forwarding PDUs from one interface to another of either the
same (e.g., FlexRay to FlexRay) or of different type (e.g., CAN to FlexRay).

TheFlexRay Transport Protocolmodule (FrTp) is used to perform segmentation and reassembly of large
protocol data units (PDUs) – also termed “messages” – transmitted and received by the Diagnostic Com-
munication Manager. This protocol is rather similar or even compatible (in certain configuration settings) to
the ISO TP for CAN [10] specified in ISO/DIS 15765-2.2.

Using the frame-based services provided by the FlexRay Driver (see below) theFlexRay Interfacemod-
ule (FrIf) facilitates the sending and the reception of PDUs. Hereby multiple PDUs can be packed into a
single frame at the sending ECU and have to be extracted again at the receiving ECU. The point in time
when this packing and extracting of PDUs takes place is governed by the temporal scheduling of so-called
communication jobs of the FlexRay Interface. The instant when the frames containing the packed PDUs are
handed over to the FlexRay Driver for transmission or retrieved from the FlexRay Driver upon reception is
triggered by communication jobs of the FlexRay Interface as well. The schedule of these communication
jobs is aligned with the communication schedule on FlexRay. Hereby each communication job can consist
of one or more communication operations, each of these communication operations handling exactly one
communication frame (including the PDUs contained in this frame). The FlexRay Interface is designed to
be able to deal with multiple different FlexRay Drivers for different types of FlexRay CCs (e.g., freescale
MFR4300 or FlexRay CCs based on the BOSCH E-Ray core).

The FlexRay Drivermodule (Fr) provides the basis for the FlexRay Interface module, by facilitating
the transmission and the reception of frames via the respective CC. Hereby the FlexRay Driver is designed
to handle multiple FlexRay CCs of the same type. Thus if an ECU contains FlexRay CCs of two different
types, two different FlexRay Driver modules are required.

3 Optimization Concepts

In this section optimization concepts for the AUTOSAR layered architecture of system software modules are
proposed. These optimization concepts proposed can be divided into four different classes, namelytailoring
to the respective ECU hardware, combination of adjacent modules, tailoring to the respective application
software, anduse of special hardware support.

3.1 Tailoring to the ECU Hardware

When looking at the AUTOSAR FlexRay stack for example, the corresponding AUTOSAR basic software
modules are designed to handle multiple different FlexRay CCs using different FlexRay Drivers in a single
ECU. This flexibility, however, is only required if a given ECU really contains of multiple FlexRay CCs (of
possibly different types).



The common case, however, is an ECU which contains exactly a single FlexRay CC and thus only
requires a single FlexRay Driver module.

The goal when providing ways to tailor AUTOSAR basic software modules to a specific ECU hardware
is to make the complex rare case (e.g., multiple FlexRay CCs of different types) possible and to make
the simple common case fast in terms of execution time and small in terms of memory footprint. Such
a tailoring can be made by providing appropriate pre-compile-time configuration switches in a module’s
implementation.

3.1.1 Single Controller/Single Driver Optimizations for the FlexRay Driver/Interface Module

When looking at the API of a typical AUTOSAR FlexRay Interface function (Figure 3 shows the declaration
of the API functionFrIf_GetGlobalTime() as an example) we see that such a functions obtains an
index for the desired FlexRay CC1 as a parameter (FrIf_CtrlIdx ).

extern FUNC(Std_ReturnType,FRIF_CODE) FrIf_GetGlobalTime(
VAR(uint8,AUTOMATIC) FrIf_CtrlIdx,
P2VAR(uint8,AUTOMATIC,FRIF_APPL_DATA) FrIf_CyclePtr,
P2VAR(uint16,AUTOMATIC,FRIF_APPL_DATA) FrIf_MacroTickPtr
);

Figure 3: AUTOSAR FlexRay Interface Function – Without Optimization

Based on this parameter and its own configuration the FlexRay Interface has to perform the following
steps:

1. Decide which FlexRay Driver module is responsible for this FlexRay CC by using the controller index
in a table lookup to obtain a reference to the correct FlexRay Driver.

2. Translate the controller index of the FlexRay Interface into a controller index suitable for the respec-
tive FlexRay driver2.

3. Call the API function of the respective driver with the translated controller index and the additional
parameters (i.e., the parametersFrIf_CyclePtr andFrIf_MacroTickPtr in case of the func-
tion depicted in Figure 3).

In case the ECU contains only a single type of FlexRay CC, Step 1 can be omitted and the API function
of the one and only FlexRay Driver used in this ECU can be called directly. Furthermore the translation
of the controller index (Step 2) does not have to take place, since in that case FlexRay Driver and FlexRay
Interface use the same controller indices.

In case the ECU contains only a single CC, theFrIf_CtrlIdx is actually obsolete and can thus be
eliminated from the function’s API. This elimination reduces the function call overhead since the parameter
does not need to be handed over to the called function. In order to keep this optimization transparent to
the calling function, a compatibility macro can be introduces which takes care of discarding the eliminated
FrIf_CtrlIdx parameter prior to calling the modified function (see Figure 4).

3.2 Combination of Adjacent Modules

Further optimization in terms of code size and execution time reduction can be achieved, if adjacent modules
are combined into a single module in the optimization process. Since this combination leads to a consider-
able increase in the internal complexity of the resulting module, this step however shall be well considered.

1Note that all FlexRay CCs of an ECU (no matter whether they have the same type or different types) are assigned a unique
dense index starting with zero in the configuration data structures of the FlexRay interface.

2Similar to the FlexRay Interface’s configuration, in the configuration of the FlexRay Driver each FlexRay CC of an ECU that
is serviced by the respective FlexRay Driver is assigned a unique dense index starting with zero.



#if (FRIF_SINGLE_CONTROLLER_OPTIMIZATION == STD_ON)

extern FUNC(Std_ReturnType,FRIF_CODE) FrIf_GetGlobalTime_SC(
P2VAR(uint8,AUTOMATIC,FRIF_APPL_DATA) FrIf_CyclePtr,
P2VAR(uint16,AUTOMATIC,FRIF_APPL_DATA) FrIf_MacroTickPtr
);

#define FrIf_GetGlobalTime(ctrl, cyc, mt) \
FrIf_GetGlobalTime_SC(cyc, mt)

#else /* (FRIF_SINGLE_CONTROLLER_OPTIMIZATION == STD_ON) */

extern FUNC(Std_ReturnType,FRIF_CODE) FrIf_GetGlobalTime_SC(
VAR(uint8,AUTOMATIC) FrIf_CtrlIdx,
P2VAR(uint8,AUTOMATIC,FRIF_APPL_DATA) FrIf_CyclePtr,
P2VAR(uint16,AUTOMATIC,FRIF_APPL_DATA) FrIf_MacroTickPtr
);

#endif /* (FRIF_SINGLE_CONTROLLER_OPTIMIZATION == STD_ON) */

Figure 4: AUTOSAR FlexRay Interface Function – With Optimization

When again looking at the driver and the interface modules however, this step makes perfectly sense
for the single driver/single controller scenario. – In that case the driver API function to call is known
exactly upon compile time of the interface module. Eliminating the module barriers between driver and
interface module creates new possibilities for optimizations: Placing corresponding functions of the driver
and the interface module into the very same translation unit gives the compiler the possibility to eliminate
the function call overhead for the interface module’s call to the respective driver function completely by
inlining the respective driver function. – This is especially beneficial, for interface functions, which simply
convert their given parameters and call the respective driver functions (e.g.,FrIf_GetGlobalTime() ).

3.3 Tailoring to the Application

In order to make it possible to tailor a given AUTOSAR basic software module to a specific application,
the module itself is vertically divided into module slices. We hereby assume that each module comprises a
number of rather independent functional units. The process of slicing must be governed by the following
premises:

• Related functional units shall be located in the same module slice.

• The number of interactions between the functional units of different module slices must be minimized.

• The functional units within a single module slice shall exhibit a large amount of inter functional unit
interaction.

This way, we arrive at a defined set of module slices, each slice consisting of one or more functional
units, where the module slices exhibit a low number of inter functional unit interaction but a high number
of intra functional unit interactions.

The key idea behind this slicing is that each of the resulting module slice will then be put into a dedicated
translation unit (i.e., a separate source file) which is compiled separately into a respective object file. All
the object files of a given AUTOSAR module are then placed in a library for this AUTOSAR module. This
way, when linking the application against the libraries of the different AUTOSAR modules, the linker can
select only those object files of the library (and thus only those slices of a given AUTOSAR module) that
are needed by the respective application, omitting those slices that are not required.

When applying the slicing step to the AUTOSAR FlexRay Driver, we identified the following module
slices: A base slicecontaining all the functional units that provide some kind of basic functionality to



the module (e.g., module initialization etc.). – This slice is always required when using any of the other
slices of the module. All functional units dealing with FlexRay’s global time (e.g., alarm timer services
based on this global time etc.) have been allocated into atime services slice. Functional units dealing with
FlexRay’s wakeup service have been grouped into awakeup slice, all functional units related to the handling
of FlexRay’s media test symbols have been combined in amedia test symbol slice, and functional units for
querying the operational status of the FlexRay CC (e.g., checking whether the CC is synchronous with the
other CCs in the FlexRay network) have been combined in astatus slice. The functional units dealing with
the transmission of PDUs (in the FlexRay Interface) or frames (in the FlexRay Driver) have been combined
in a transmission slicewhereas the functional units dealing with reception have been allocated in areception
slice.

3.4 Use of Special Hardware Support

Further optimization mostly in terms of execution time can be achieved when special hardware support is
used for the implementation of the specific modules.

Most of the MCUs used in todays automotive applications are equipped with special hardware like DMA
controllers or co-processors (e.g., freescale’s XGATE co-processor for the S12X family) which can perform
data transfers between memory mapped I/O devices and the MCU’s internal memory independently of
the main CPU. Making use of this special hardware in the implementation of the AUTOSAR basic software
modules reduces the processing load of the main CPU, thus saving more CPU bandwidth for the application.

Especially the lower AUTOSAR communication service modules (i.e, driver, interface and PDU router
modules) are well suited for making use of this kind of special hardware. When looking at the driver
modules for example the data transfer between the CC’s hardware buffers and the MCU’s main memory can
easily be accomplished by a DMA controller.

When looking at a situation where driver and interface module are combined as described in Section 3.2,
the benefit of the use of special hardware can be increased even more. In this scenario, the packing and
unpacking of PDUs into and out of frames can be accomplished by a sufficiently smart DMA controller
as well. The main CPUs job in that case is reduced to programming the DMA controller to perform the
desired transfers (including the packing and unpacking much like thescatter-gather I/Oin UNIX systems)
and initiating the transfers at the correct point in time (according to the interface module’s configuration).

3.5 Compliance to AUTOSAR

Note that all of these optimization approach are fully compliant with AUTOSAR, since AUTOSAR defines
differentimplementation conformance classes (ICCs), namelyICC3 treating each single AUTOSAR module
as a target for conformance tests,ICC2 treating a cluster of modules as a target for conformance tests, and
ICC1 treating all modules underneath the RTE as a whole as target for conformance tests [1].

In conformance classes ICC2 and ICC1 AUTOSAR only requires that the the interfaces of a module
cluster with other AUTOSAR modules (which are not a member of this cluster) have to adhere to the
AUTOSAR specification. Those interfaces which are only module cluster internal (intra module cluster
interfaces) donot have to adhere to the AUTOSAR specification.

Thus the optimizations presented in the previous sections result in a AUTOSAR FlexRay communication
stack that is fully AUTOSAR compliant at the ICC2 and ICC1 level.

4 Evaluation

In order to assess the benefits of the proposed optimizations, we investigated the memory consumption and
the execution time of the combined FlexRay Interface and FlexRay Driver with single controller and single
driver optimization enabled in comparison to the respective ordinary FlexRay Interface and the ordinary
FlexRay Driver.

As far as the memory consumption is concerned, both version (original and optimized) have been com-
piled with the same compiler using the same compiler settings. The memory (RAM and ROM) used has
been derived from the compilation output (i.e., from the map file produced in the compilation process).



For the runtime comparison the FlexRay CC’s timer (which ticks with a granularity of 1µs) has been
used to time stamp the invocation and the termination of the respective API functions of the transmission
and the reception slices.

4.1 Tailoring to the Application

The first evaluation has been targeted at showing the benefit of slicing the ordinary AUTOSAR modules into
distinct module slices and placing these slices in separate translation units in order to allow for tailoring of
the modules to the specific application. – For this purpose the slicing of the FlexRay Driver and the FlexRay
Interface modules has been performed as described in Section 3.3.

This first evaluation has been conducted on an ARM922T CPU running at 166 MHz and providing
16 bit access to an external ERAY 1.0 FlexRay communication controller. For the evaluation a rather bene-
ficial sample application consisting of two ECUs has been used, where ECU 1 only transmits PDUs/frames
whereas ECU 2 only receives frames/PDUs.

Figure 5(a) shows the memory consumption (sum of RAM and ROM consumption) of the used module
slices of the FlexRay Driver for ECU 1 and ECU 2 of the sample application compared to the memory
consumption of the ordinary FlexRay Driver module for both ECUs. Figure 5(b) shows the same data for
the FlexRay Interface. Hereby the following module slices of the FlexRay Driver and the FlexRay Interface
have been deployed to the respective ECUs: The base slice and the transmission slice have been deployed
to ECU 1, whereas the base slice and the reception slice have been deployed to ECU 2. The other slices of
the FlexRay Interface and the FlexRay Driver are not required for this particular application and have thus
not been deployed.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

ECU2 (sliced)ECU1 (sliced)ECU2 (orig)ECU1 (orig)

M
em

or
y 

C
on

su
m

pt
io

n
[B

yt
es

]

Comparison Fr - Memory Consumption

(a) FlexRay Driver

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

ECU2 (sliced)ECU1 (sliced)ECU2 (orig)ECU1 (orig)

M
em

or
y 

C
on

su
m

pt
io

n
[B

yt
es

]

Comparison FrIf - Memory Consumption

(b) FlexRay Interface

Figure 5: Memory Consumption Comparison

The benefit of this slicing is obvious when looking at Figure 5: For the FlexRay Driver (Figure 5(a)) as
well as for the FlexRay Interface (Figure 5(b)), the memory consumption of the sliced version is significantly
lower than the memory consumption of the ordinary modules (approximately by 30%).

4.2 Combining Adjacent Modules

The second evaluation has been targeted at showing the benefit of combining adjacent modules. – For
this purpose an integration of the FlexRay Interface with the FlexRay Driver (as described in Section 3.2)
has been performed and single controller/single driver optimization (as described in Sections 3.1) has been
enabled.

For this evaluation an NXP SJA2510 N1B MCU from NXP Semiconductors3 with integrated FlexRay
CC NXPFRDLC running at 80 MHz and providing 32 bit access to the FlexRay CC has been chosen. –
Program execution took place from the MCU’s internal flash.

Table 1 illustrates the key figures, namely the number of PDUs contained in the frame and the total
frame length in units of bytes, and the typical use cases in FlexRay networks for the frame layout used in

3formerly a division of Philips



this evaluation.

Type # PDUs Length Use Case

1 1 8 Transmission of a CAN-like frame (consisting of 8 bytes)
2 1 16 Transmission of frames with signals for a distributed control loop
3 1 32 Transmission of frames with signals for a distributed control loop
4 3 8 Transmission of multiple CAN-like frames packed into a single FlexRay

framea

5 1 254 Transmission of diagnostic frames for in-system flash programming of
ECUs

aThis is a use case for a FlexRay backbone tunneling several CAN frames.

Table 1: Frame Layout Overview

Figure 6 illustrates a comparison of the sum of the execution times for the plain FlexRay Driver (Fr)
and the plain FlexRay Interface (FrIf) to the execution times for the combined FlexRay Driver and FlexRay
Interface.

 0

 10

 20

 30

 40

 50

 60

RX (combined)TX (combined)RX (orig)TX (orig)

E
xe

cu
tio

n 
T

im
e

[m
ic

ro
se

co
nd

s]

Comparison FrIf and Fr - Minimum Execution Time

(a) Minimum

 0

 10

 20

 30

 40

 50

 60

RX (combined)TX (combined)RX (orig)TX (orig)

E
xe

cu
tio

n 
T

im
e

[m
ic

ro
se

co
nd

s]

Comparison FrIf and Fr - Maximum Execution Time

(b) Maximum

Figure 6: Comparison Execution Time Fr & FrIf

Hereby Figure 6(a) depicts the minimum executions times whereas Figure 6(b) shows the maximum
executions times of the transmission/reception paths of the ordinary FlexRay Interface and the ordinary
FlexRay Driver (TX/RX (orig)) as well as of the combined transmission/reception paths (RX/RX (com-
bined)). – It can be seen that as far as the minimum execution time is concerned, the combination has no
effect (neither positive nor negative) on the execution time. In the charts depicting the maximum execution
times however (Figure 6(b)) the benefit of combining the respective slices becomes obvious (approximately
10%).

The effects of this combination with respect to memory consumption can be seen in Figure 7. Looking
at the third and fourth bar we see that the memory consumption of the combined FlexRay Interface and
FlexRay Driver lies slightly below the sum of the stand-alone ordinary modules.

Note that this decrease in memory consumption gained by combining both modules is independent
from the decrease gained by the dividing of the two modules into module slices. – Thus combining both
approaches results in increased benefit.

5 Conclusion

In this paper we presented possible optimization strategies for the AUTOSAR system software stack. We
demonstrated the feasibility of these optimizations by implementing the optimizations for two sample AU-
TOSAR modules, namely FlexRay Driver and FlexRay Interface, and by deploying these optimized versions
in a simple application. We pointed out the benefits of these optimized versions by comparing the memory



 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

ROM (combined)ROM (Sum orig)ROM (Fr orig)ROM (FrIf orig)

M
em

or
y 

C
on

su
m

pt
io

n
[B

yt
es

]

Comparison FrIf and Fr - Memory Consumption

Figure 7: Comparison Memory Consumption Fr & FrIf

consumption and the required execution time of the optimized versions to the ordinary AUTOSAR versions.
This comparison yielded an approximately 10% reduction in execution time as well as an average 30%
reduction as far as the memory footprint is concerned.

The reduction in execution time is on the one hand due to the combination of the FlexRay Driver and
the FlexRay Interface module, resulting in a much tighter integration and thus in an elimination of the
function call overhead at the interface between these originally separated modules. On the other hand the
reduction in execution time is caused by the tailoring of the modules to the ECU hardware, i.e., by enabling
optimizations for a single FlexRay controller and a single FlexRay Driver and thus eliminating the need for
passing controller indices as parameters and using lookup-tables when calling FlexRay Driver API functions
in the FlexRay Interface.

The decrease in the memory consumption is caused by vertical sub-structuring of the original modules
into finer-grained modules slices, by grouping these slices into separate translations units and by selecting
only those translation units required for a particular application during the link process.

References

[1] AUTOSAR Consortium. AUTOSAR – Layered Software Architecture. Technical Report Version
2.2.1, Release 3.0, Rev 0001, AUTOSAR Consortium, February 2008.

[2] LIN Consortium. LIN Specification Package. Technical Report Version 2.1, LIN Consortium, Novem-
ber 2006.

[3] H. Fennel, S. Bunzel, H. Heinecke, J. Bielefeld, S. Fürst, K.-P. Schnelle, W. Grote, N. Maldener, T. We-
ber, F. Wohlgemuth, J. Ruh, L. Lundh, T. Sandén, P. Heitk̈amper, R. Rimkus, J. Leflour, A. Gilberg,
U. Virnich, S. Voget, K. Nishikawa, K. Kajio, K. Lange, T. Scharnhorst, and B. Kunkel. Achievements
and Exploitation of the AUTOSAR Development Partnership. InProceedings of the Convergence
2006, Detroit, MI, USA, October 2006.

[4] T. Führer, F. Hartwich, R. Hugel, and H. Weiler. FlexRay – The Communication System for Future
Control Systems in Vehicles. InProceedings of the SAE 2003 World Congress & Exhibition, Detroit,
MI, USA, March 2003. Society of Automotive Engineers.

[5] P. Hansen. AUTOSAR Standard Software Architecture Partnership Takes Shape.The Hansen Report
on Automotive Electronics, 17(8):1–3, October 2004.

[6] P. Hansen. New S-Class Mercedes: Pioneering Electronics.The Hansen Report on Automotive Elec-
tronics, 18(8):1–2, October 2005.

[7] ISO. Road Vehicles – Diagnostic Systems – Keyword Protocol 2000 – Part 3: Application Layer.
Technical Report ISO/DIS 14230-3, ISO (International Organization for Standardization), 1, rue de
Varembe, Case postale 56, CH-1211 Geneva 20, Switzerland, 1999.



[8] ISO. Road Vehicles – Controller Area Network (CAN) – Part 1: Data Link Layer and Physical
Signalling. Technical Report ISO/DIS 11898-1, ISO (International Organization for Standardization),
1, rue de Varembe, Case postale 56, CH-1211 Geneva 20, Switzerland, 2003.

[9] ISO. Road Vehicles – Controller Area Network (CAN) – Part 2: High-Speed Medium Access Unit.
Technical Report ISO/DIS 11898-2, ISO (International Organization for Standardization), 1, rue de
Varembe, Case postale 56, CH-1211 Geneva 20, Switzerland, 2003.

[10] ISO. Road Vehicles – Diagnostics on Controller Area Networks (CAN) – Part 2: Network Layer
Services. Technical Report ISO/DIS 15765-2.2, ISO (International Organization for Standardization),
1, rue de Varembe, Case postale 56, CH-1211 Geneva 20, Switzerland, April 2003.

[11] ISO. Road Vehicles – Unified Diagnostic Services (UDS) – Part 1: Specification and Requirements.
Technical Report ISO/DIS 14229-1, ISO (International Organization for Standardization), 1, rue de
Varembe, Case postale 56, CH-1211 Geneva 20, Switzerland, 2004.

[12] R. Mores, G. Hay, R. Belschner, J. Berwanger, C. Ebner, S. Fluhrer, E. Fuchs, B. Hedenetz, W. Kuffner,
A. Krüger, P. Lohrmann, D. Millinger, M. Peller, J. Ruh, A. Schedl, and M. Sprachmann. FlexRay –
The Communication System for Advanced Automotive Control Systems. InProceedings of the SAE
2001 World Congress, Detroit, MI, USA, March 2001. Society of Automotive Engineers.


