Solving NP-Complete Problems in Real-Time System Design by

Multichromosome Genetic Algorithms

Roman Nossal Thomas M. Galla

Institut fiir Technische Informatik
Vienna University of Technology
Treitlstr. 3/182-1, A-1040 Vienna, Austria

email: {nossal,tom}@vmars.tuwien.ac.at

January 10, 1997

Abstract

Most problems in the design of real-time applications like task allocation or scheduling
belong to the class of NP-complete problems and can be solved efficiently only by heuristics.
Genetic Algorithms are a relatively new method to attack these problems. Conventional
Genetic Algorithms, however, have a number of drawbacks that reduce their applicability to
design problems of real-time systems.

The Genetic Algorithm presented in this paper implements enhancements to standard
Genetic Algorithms to eliminate these problems. It allows arbitrary gene values and supports
multiple chromosomes per individuum. The paper focuses on the advantages of the use of
Genetic Algorithms in real-time system design in comparison to other heuristic problem solving
techniques. The applicability of the enhanced algorithm is shown by solving a typical problem

of real-time system design, the determination of a bus access schedule for a real-time LAN.

1 Introduction

During the design process of a distributed real-time application a number of decisions must be

made. How many node computers should be used? How should the tasks be allocated to the

nodes? Which execution order meets the temporal demands of the application best? Most of
these problems are NP complete [Gar79]. Even if one of them can be solved in polynomial time
the overall problem is still in NP. Heuristics are an efficient means to handle these problems.
In the past two decades a number of heuristic techniques have been proposed. These include
heuristic branch-and-bound algorithms like IDA* [Kor85], stochastic hill climbing algorithms like
Simulated Annealing [Kir83] resembling the slow cooling of materials and Tabu Search [Glo93]
operating with lists of forbidden moves, and Genetic Algorithms (GA) [Hol75]. The latter work
like evolution in nature, they are based on Darwin’s “Survival of the Fittest” principle [Dar59].
What makes GAs so attracting to the real-time application designer is that they relieve him from
knowing how to construct a solution and just require to know how to assess a given solution. We
have applied a GA to various problems arising in the design process of real-time applications. On
the one hand this has taught us how to tackle problems with GAs, i.e., how to adapt the problem
representation and the GA to each other. On the other hand we have learned how a GA suited
for solving design problems must work.

This paper has two main goals. First it presents our implementation of an enhanced GA'
featuring extensions to conventional GAs that increase their suitability for real-time application
design. The most prominent enhancement is the introduction of the multichromosome feature.
Unlike conventional GAs which are capable of only one chromosome per individuum our algorithm
features the use of multiple chromosomes. Each of them expresses a certain characteristic of the
problem, which resembles the genotype in nature. The second aim of the paper is to line out the
application of the GA to one problem of real-time application design, namely the static assignment
of communication bandwidth to node computers depending on the amount of application data
each node has to transmit.

The rest of this paper is organized as follows. Section 2 gives an overview of GAs in general.
The main structure and the different stages of a GA are discussed. The improvements made
to standard GAs are stated in section 3. In section 4 the benefits of GAs compared to other
heuristic techniques are summarized. Section 5 deals with the application of a GA. It gives a

brief outline of the real-time system TTP and presents how a multichromosome GA is applied to

!We are planning to make the Genetic Algorithm described in this paper available via FTP. At the time being

we are checking the legal situation.

the message scheduling problem in the communication system of TTP. Section 6 concludes the

paper and presents a brief outlook on some future applications of multichromosome GAs.

2 Genetic Algorithms

Genetic Algorithms are a relatively new strategy for solving NP-complete problems. They were
first introduced by Holland in 1975 [Hol75], yet many applications of this strategy have emerged
only in the past few years. This section gives an introduction into the basic principles and
mechanisms of GAs. Good surveys of GAs including the latest developments can be found

in [Sri%4, Gol89].

2.1 Characteristics

GAs are a so-called “uninformed” search strategy, i.e., they do not incorporate any knowledge
on the special problem they solve. All problem specific knowledge is included in the fitness
function that assigns a fitness value to each solution produced by the GA. This value is used as
a feedback for the algorithm. The better a solution’s fitness is, the more likely is its survival and
reproduction.

As indicated the problem specific knowledge is not part of the GA itself. Rather, GAs use bit-
strings to encode the problem. The chosen encoding scheme is called the problem representation.
A certain number of bits, a gene forms one part of the problem.

A problem representation for GAs must satisfy two goals. On the one hand it should encode
the whole solution space, i.e., the problem representation must not exclude certain parts of the
possible solutions. On the other hand it should be easy to decode. A substantial part of a GA
execution is spent in the fitness function? because before evaluating the quality of a solution the
function must decode the problem to its original representation. This implies that easing the

decoding has a large impact on the overall execution time of the algorithm.

2Experiments with the GA based scheduler described in section 5 have shown that up to 95% of the execution

time are consumed by the fitness function.

2.2 Structure

The main actors in GAs are so called individuums that comprise one chromosome each. A
chromosome consists of a number of genes, i.e., bitstrings. One individuum represents one possible
solution to the problem that has to be solved by the GA. Each individuum is encoded in one
or more bitstrings. This representation is equivalent to the genotype in genetics, whereas the
actual “appearance” (i.e. the solution the individuum represents) corresponds to the phenotype.
Individuums are grouped together in populations (figure 1).

The GA starts with an initial population that is either selected randomly or specified by the
user. New individuums are created out of old ones by selecting and reproducing individuums
of the old population. Like in nature two main processes, crossover and mutation occur during
reproduction. Crossover splits up individuums into parts, exchanges and recombines them. Mu-
tation changes an individuum randomly thus offering the possibility to introduce new features
into a population. The new individuums form a new population, whereas the individuums of
the old population “die”. Each population is called a generation. The “evolution” stops, when a

solution of sufficient quality, i.e., an individuum with sufficient fitness, is found.

Population Individuum

N cene[01[1] [1]

—

Individuums

Figure 1: Structure of a Population

2.3 Stages

A GA performs several iterations producing a new generation in each iteration. One iteration
of a GA consists of four sequential stages, selection of individuums with a selection probability
proportional to the fitness, mutation of some of these individuums according to a mutation
rate, crossover between some of the selected individuums according to a crossover rate, and
evaluation of the fitness of each new individuum. Each of these steps will be discussed in more

detail in the following sections.

Selection

The selection process decides which individuums of the old population are used to form new
individuums for the new population, i.e., which individuums are allowed to create offspring.

In order to imitate Charles Darwin’s Survival of the Fittest, it is a common approach to base
this choice of individuums on their respective fitness (the ones with a high fitness are more likely
to be chosen). In addition a special selection strategy, the elitist strategy, is used. The elitist
strategy stipulates that the individuum with the best fitness always survives and makes its way

into the new population without being altered.

Mutation

The selected individuums are mutated according to a mutation rate. This mutation rate defines
the percentage of individuums that are to be mutated.

If a specific individuum is mutated, an arbitrary part of a gene (a random bit of the bitstring
representation of the gene) is changed. Figure 2 gives an example, where the second bit of the
third gene (this bit is colored in gray) is mutated by changing the value from 1 to 0.

Mutation Point

s l

2 £ | wnawiowmo |[o]o[o] [o]||[oTalo] [o]] [loTolo] o]
o
o
5

£Z | naviswumo [[o]o[o] [o]]|[eTolo] [o]| [oTolo] o]
o
o

Figure 2: Mutation

Crossover
Crossover splits the chromosomes of two individuums into several parts, swaps the parts and
recombines them. The number of parts a chromosome is split into is determined by the number
of crossover points. A two point crossover splits the chromosome into three parts by two crossover
points (figure 3). The middle part (indicated by gray background in figure 3) is swapped.

The percentage of individuums of the population that are to be combined by crossover is

defined by the crossover rate.

Crossover Points

inaividuum o |[o[o o] o]||[oeTolo] To]| Lo Tolo] To]|
Individuum 1 |||| ||
Individuum 0 || ofo]s] [1 |||| 1[1]o] o || |]§||
Individuum 1 || 1[1]o] Jo |||| ofo]s] |2 || ||

old population

new population

Figure 3: Two Point Crossover

Evaluation

Subsequent to selection, mutation and crossover the fitness of the newly created individuums is
evaluated using the fitness function.

This function provides the actual “intelligence” of the algorithm. It transforms the bitstring
representation (the genotype) of the individuum back into the actual solution (the phenotype).
This solution is evaluated by computing a fitness value that is used to decide which of two
individuums provides a better solution to the problem.

After the individuums have been assessed, the whole process is started anew. Usually it is
iterated until a defined fitness has been reached or a maximum number of iterations has been

exceeded.

3 Enhancements

The GA described so far is a conventional version. In the following we will present two enhance-
ments that increase the suitability of the GA for real-time application design problems. The

enhanced algorithm has been implemented in C.

3.1 Arbitrary Gene Values

Most GAs (e.g., Grefenstette’s GA package GENESIS [Gre90]) restrict the value of a gene to the
interval [0,2")% where n € N. Unfortunately for most problems an upper bound for the gene
values cannot be restricted to a power of 2. Therefore a more complex encoding scheme must be

used in order to facilitate gene values of the interval [0, Zy42) (Tmaez € N).

3[z,y) denotes a semi-open interval, i.e., all values iz < i < y.

An elegant solution to this problem is to choose [0, Z;nq,) as interval for all valid gene values
(i.e. to allow the upper bound for the valid genes to be any positive integer). This approach
provides more flexibility and simplifies the encoding scheme. One drawback of this solution is the
fact that there are bitstrings that represent invalid genes (i.e. genes with values greater than or
equal to Tpe; and smaller than 2" where 2"~ < £, < 2" n € N). Any mutation or crossover
process can result in an invalid gene. Thus the existing operators have been modified in order to
produce only valid genes.

The GA described in this paper only restricts the gene value to the interval [0, Z;,q,) Where

Tmar € N and is therefore well suited for design problems.

Mutation. Mutation is basically applied at bit level. This, however, may result in invalid genes.
Figure 4 shows an example, where the value of a gene is restricted to the interval [0,9). In this
example the mutation of the gene (that has an initial value of 8) results in an invalid gene.

Mutation Point invalid

| —
8 |[1]0]0[0]| g |[1]0]0[1]l 9

Figure 4: Invalid Genes After Mutation

If mutation produces an invalid gene, the gene is mutated a second time, now at the dec-
imal level. A random number out of the interval of valid gene values [0, Z;qz) is chosen thus

guaranteeing a valid gene after this second mutation.

Crossover. Like mutation, crossover is performed at the bit level. Therefore crossover can
create invalid genes as well. In this case the genes again must be mapped into the valid interval.
To do so we apply the Stochastic Mapping operator to each invalid gene. This operator partitions
the invalid values proportionally to the number of allowed gene values. More than one valid value
is assigned to each invalid one as the number of invalid values is always smaller than the number of
allowed values?. A valid gene is calculated out of the invalid value by a random function. Figure 5

illustrates in a simplified manner how the mapping of old values to new ones is performed.

“otherwise it would be sufficient to use one bit less for the representation of the gene

) 1)
Valid val ues I nvalid val ues
1

o|1|2|3|4]|5]|ieil?

Figure 5: Stochastic Mapping of Invalid Genes

3.2 Multiple Chromosomes

Structure. FEach individuum has its own specific features which are defined by its genotype. It
is a common approach in existing GAs to encode these features within a single chromosome.

An obvious drawback of this technique is that no strict separation of independent features
exists. Thus whole features might be exchanged during the crossover process, which leads to
unwanted, significant changes in an individuum. Consider the crossover example given in figure 6
where feature 1 would be completely exchanged between the two individuums.

Crossover Point 1 Crossover Point 2

feature 0 l feature 1 l feature 2

Figure 6: Mixture of Features in Single Chromosome GAs

A more sophisticated approach, the multichromosome GA, tries to overcome this problem.
As suggested by the name an individuum of a multichromosome GA consists of more than one
chromosome (see figure 7). Each of the independent features can be assigned to a different
chromosome. Thus it is impossible to exchange whole independent features during crossover.
This approach is the more natural way to handle things (the human species has 23 pairs of
chromosomes — each carrying different features). On the other hand multichromosome GAs still
facilitate the assignment of more than one feature to one chromosome. It is the user’s task to
decide whether an exchange of whole features should be possible or not, i.e, whether features
should be assigned to one or to different chromosomes.

To be able to handle this new structure of individuums and feature encoding, the mutation

and the crossover operator have to be adapted.

Individuum

4 N

Population - ’:.:_
1 CITC T T T
chromosomes 111 1T 1 []

- 7

Figure 7: Structure of a Multichromosome GA

Adaptation of the Mutation Operator. The modifications to the mutation operator, in
order to be able to deal with multiple chromosomes per individuum, are straight forward. A
random chromosome of the individuum is chosen. For this chromosome the standard operator

described in section 2.3 with the enhancements of section 3.1 is used to mutate a single bit.

Adaptation of the Crossover Operator. For the new crossover operator two different ap-

proaches are possible. Either

e only a single chromosome is used for crossover, or

e all chromosomes of an individuum undergo the crossover process.

In the first case a single chromosome of each individuum is randomly chosen, and the enhanced
operator (section 3.1) is applied. In the second case the standard operator is applied to each
chromosome of the two individuums separately. Thus more genetic information is exchanged in the
second version making it more likely to create completely new solutions. For our implementation

we have used the second modification of the crossover operator.

4 Benefits of Genetic Algorithms

So far we have explained the general function of GAs and the extensions we have applied to
increase their suitability for real-time application design. This section summarizes the benefits of

using GAs instead of other heuristic problem solving techniques.

Solution Evaluation Instead Of Construction. The most obvious benefit is that GAs

relieve the user of knowing how to construct a solution. In order to implement a “standard”

problem solving technique the user is required to know how to construct a solution to a problem.
There has to be an algorithm that yields a valid solution to the given problem. For example,
consider a branch-and-bound algorithm like IDA* [Kor85]. Each branch in such an algorithm is a
step towards a solution. If the algorithm finishes successfully the way from the root of the search
tree to the leaf node represents the solution.

The situation is completely different when using GAs. GAs use the problem in an encoded
form, they operate on bitstrings. Thus a GA constructs a solution by rearranging bitstrings.
These construction steps are not defined by the user, they are inherent to the GA. It is the task
of the evaluation function to decode the solution to its original representation and then to assess
the solution. This means the user has to provide knowledge on the quality of a solution, i.e., how
to evaluate a given solution.

In most cases assessing a solution is much easier than constructing it. For example it is
easy to determine if a given number is the square root of 7 by simply multiplying it with itself.
Calculating the square root of 7 on the other hand is a tedious task if performed without a

calculator or computer.

Problem Structuring. Besides defining a fitness function finding an appropriate representa-
tion of the problem is one of the main tasks of the user of a GA. A prerequisite for deriving a
representation is a deep understanding of the problem. To gain this understanding it is inevitable
to structure the problem. The determinants of the problem, the entities involved, the optimization
goal and the variables that can be changed during the search process must be identified.

For many problems the problem structure is obvious. On the other hand, there are problems
for which the user has various possibilities to choose the variables and the optimization goal. A
problem belonging to the first class is the task allocation problem. The starting point is a set of
tasks, a set of nodes on which these tasks should be executed and the communication cost between
any two nodes. The aim is to allocate the tasks to nodes such that the accumulated communication
cost between the tasks is minimized. In this case it is apparent to represent the numbers of the
nodes the tasks should be allocated to as bitstrings and to choose the communication cost as
optimization goal.

An example for a problem where the structure is not as obvious as in the task allocation

10

problem is the task scheduling problem. The problem aims at scheduling tasks on a CPU such
that the overall time span to complete the tasks is minimized and the timing constraints are met.
In this problem one can either use the sequence of tasks as variable or let the GA select the ready

times of the tasks.

Integration of Various Problems. GAs offer a simple way to integrate different search proce-
dures into one optimization process. Thus different problems can be solved in one step, providing
a global optimum instead of local optima for each search.

Each of the involved problems is encoded into a number of chromosomes and has its own
fitness function. The problems can be solved in one step by (1) constructing an individuum that
consists of the chromosomes of all involved problems and (2) by deriving an appropriate algebraic
conjunction of the fitness functions. In many cases it will be sufficient to simply sum up the
individual fitnesses.

An application for the integration is the task allocation and scheduling problem. It consists of
two basically separate problems, allocation of tasks to nodes and scheduling of the allocated tasks
(see above). Goal of the scheduling is to minimize the time span required to complete all tasks.
Solving both problems in two separate search processes yields a local optimum for each step, the
combination of which will be different from the global optimum in most cases. If allocation and
scheduling are integrated the GA minimizes the communication cost between the nodes and at

the same time the overall time required to finish all tasks.

5 An Application of GAs

In this section we will show how to apply the multichromosome GA that we have developed to
a real-world problem of system design. During application design for the real-time system TTP
built by our group the problem to allocate application messages to bus messages and to schedule
those bus messages on the communication medium arises. This task is similar to the famous
bin-packing problem [Gar79] which is known to be NP-complete. In the following we will provide
a brief introduction to the real-time system TTP and then elaborate on the message scheduling

process.

11

Local Host
Subsystem

Host CPU
Host Host Host Host l
; P Pl I DPRAM_ _ _ _ _ _ |
MBl===sdeessseeemdeemes====|\|B] ___1‘ MBI N
I CC I CcC I CcC I CC
T 1T 1T I[- | :
I I I I \‘\ 2
— Comm. Controller ©
Communication System . o £
=]
CC: Communication Controller g g
MBI: Message Base Interface)
€ o
o >
owm

Figure 8: TTP System Structure
5.1 The Real-Time System TTP

Real-Time System. A real-time system is a computer system that closely interacts with an
controlled object in its environment. For a real-time system providing timely results is as impor-
tant as providing correct results since the controlled object must not and often can not be slowed
down by the computer system. The timing requirements of the system are determined by the

application.

System Structure. A TTP system consists of a set of self-contained computers, the nodes,
which are interconnected via a broadcast bus. One broadcast domain, i.e., one bus together with
the nodes attached to it, is called a cluster. A cluster and each node consist of two subsystems,
the communication and the host subsystem (see figure 8). The latter performs the real-time
application. Our application model comprises tasks and messages exchanged between them, the
so-called data elements. The communication subsystem transports bus messages between the
nodes of a cluster using the communication protocol TTP/C®. Each bus message contains a
number of data elements. The two subsystems interact with each other via the Message Base

Interface (MBI) [Krii95] that is located in a dual-ported memory between the two CPUs.

The Time Triggered Protocol. TTP/C [Kop94] is a round based protocol. Medium access
is controlled by a synchronous time division multiple access (TDMA) scheme derived from a

global time base. The global time base is established by a protocol inherent clock synchronization

®The “C” refers to the classification of vehicle multiplexing systems as introduced by the Society of Automotive

Engineers [SAE93].

12

mechanism. The points in time when to send a message are determined by the message scheduling
algorithm described below.

In one round of communication, a TDMA cycle, each node is assigned exactly one sending slot.
One or more TDMA cycles together form a cluster cycle. The messages sent in a cluster cycle
may vary for each TDMA cycle, which facilitates the transmission of data elements with update
periods longer than one TDMA cycle. Message transmission in TTP/C is strictly periodical, the

shortest possible message period being one TDMA cycle.

5.2 Message Scheduling

Message scheduling comprises the allocation of data elements to bus messages, taking into account
the requirements originating from the real-time application as well as those dictated by the
communication protocol. The most important of these requirements is the Update Frequency. A
data element is updated whenever the task producing it finishes. Thus the update frequency is
equal to the period of the sending task. In order not to lose any value the update frequency is
the lower bound for the transmission frequency of the data element on the bus. This is the most
important requirement for the scheduling algorithm since it reflects the temporal constraints of
the application. The reciprocal value of the minimum update frequency is called mazimum period,
Prmaz-

There are a number of further demands dictated by the protocol or certain protocol mech-
anisms like a restriction of the maximum size of a bus message. Listing all these constraints
and the appropriate scheduling algorithm is beyond the scope of this paper. Our intention is to
give an impression of the basic principles of scheduling based on GAs. The reader interested in
all details of the message scheduling process is referred to [Nos96]. In this paper the message
scheduler which is a major part of the Cluster Compiler [Kop95], the design tool for TTP, is
described in a comprehensive manner.

The aim of message scheduling is to find a valid message schedule, i.e. an assignment of data
elements to bus messages that satisfies all constraints, in particular the temporal constraints of

the application.

13

5.3 A Scheduler Based on GAs

The following subsection presents the GA based message scheduler. It focuses on the two main
problems of applying a GA, finding an adequate problem representation and deriving a fitness

function that provides a good classification of individuums.

Problem Representation

The aim of the message scheduler is to produce a valid assignment of data elements to bus
messages. The assignment of one data element can be described by the “start cycle”, i.e., the
first TDMA cycle the data element is transmitted in and the period at which it is transmitted
(“period” gene). This period is given in TDMA cycles as well. In our implementation we have
restricted both the number of TDMA cycles per cluster cycle and the periods of data elements to
powers of 2. This guarantees that the number of TDMA cycles forming a cluster cycle is always a
multiple of any data element period avoiding large cluster cycles being the least common multiple
of all data element periods. Each data element is thus described by two genes, one encoding the
start cycle and the other denoting the period. The two genes are located in two chromosomes

making use of the multichromosome feature of the GA.

Fitness Function

The fitness function of the message scheduler uses the so-called period ratio to evaluate the
quality of a solution. The period ratio is the quotient of the actual period of the data element as
determined by the GA and the maximum period p,,q, specified in the temporal requirements of
the application. The fitness function, which is shown in figure 9, has a shape that is comparable
to an inverted “V”. It has a maximum at a period ratio of 1, i.e., a data element period equal
to the application’s demands. This point is optimal since neither bandwidth is wasted due to
scheduling the data element more often than necessary nor temporal constraints are violated.
For period ratios smaller than 1, i.e., an “overscheduling” of data elements, the function shows
a moderate descent. Period ratios larger than 1 denote a violation of temporal requirements and
are thus reflected by a steep descent.

The fitness of an individuum is calculated by summing up the fitness values of the individual

data elements and dividing the sum by the number of data elements.

14

DE Fitness Value
CO0000000
OFRLNWRAUUIONOOR

0O 02040608 1 1.2
Period Ratio

Figure 9: Message Scheduler Fitness Function (DE...Data Element)

Overall Evaluation

Above we have shown how the GA evaluates one individuum. The complete evaluation process
including the decoding procedure is described in the following.

The evaluation function takes one individuum created by the GA as input. It assigns the
data elements to the bus messages of the respective sending node according to the gene values.
Note that there is exactly one bus message per node per TDMA cycle. Thus each data element
is assigned to the bus message of its sending node. First a data element is assigned to the bus
message of its sending node in the TDMA cycle denoted by the start cycle. Subsequently the
period is added to the number of the start cycle and the data element is assigned to the message
in the resulting cycle. This process is iterated until the maximum number of TDMA cycles per
cluster cycle is reached.

Based on the assignment the evaluation function calculates the actual length of a TDMA and
cluster cycle and determines the fitness of one data element and the individuum as described in the
previous subsection. Finally it checks if all other protocol specific constraints like the maximum
message size are met. For each violated constraint a so-called penalty term is calculated which
reduces the fitness value. In our scheduler each violation yields a fitness reduction of 10% of the
original value. Applying the penalty term to the original fitness value results in the overall fitness

of the individuum under evaluation.

Stopping Criterion
As indicated the GA stops when a solution of sufficient quality is found. We have chosen an

overall fitness slightly smaller than 1 (e.g., 0.97) as stopping criterion for the GA. The resulting

15

solution does not guarantee that all data elements meet their temporal requirements. Yet a fitness
value smaller than 1 does not imply that at least one data element is not scheduled according to
its maximum period. The fitness of one data element decreases for period ratios smaller than the
period ratio 1 though these period ratios result in a temporally valid schedule. Hence each data
element has to be checked in order to determine whether the actual solution meets the maximum

period requirement.

6 Conclusion

In this paper we presented a GA with new features that simplify the use of the GA in real world
problems and provide more flexibility than the common approaches in GAs.

A less restrictive interval for all possible gene values was chosen, which facilitates the encoding
and decoding task in the evaluation function by providing a more straight forward encoding
scheme. New operators for crossover and mutation were introduced to deal with the invalid genes
that might result form this less restrictive interval.

Furthermore we showed that multiple chromosomes facilitate a better encoding of independent
features of an individuum. Assigning independent features to different chromosomes avoids the
exchange of whole features during the crossover process.

The benefits of GAs in comparison to other heuristic techniques were pointed out, and the
use of the presented multichromosome GA in a real world application (as a message scheduler for
the real-time system TTP) were explained in detail.

The GA based message scheduler described in this paper is part of the Cluster Compiler,
the software development tool of the real-time system TTP. Besides the message scheduler the
Cluster Compiler comprises a task allocation module and a task scheduler.

At the moment we are testing the implementation of a task scheduler that is based on the same
GA as the message scheduler. The GA determines the arrival times of the tasks which are then
scheduled using a conventional least laxity scheduler. The resulting schedule is evaluated with
respect to the deadlines of the tasks. Though intended for the difficult problem of multiprocessor
scheduling with constraints among the tasks the results encountered up to now are encouraging.

We also plan to integrate both, task and message scheduling into one optimization process.

16

References

[Dar59]

[GarT79]

[G1093]

[Gol89]

[Gre90]

[Hol75]

[Kir83]

[Kop94]

[Kop95]

[Kor85]

[Krii95]

C. Darwin. On the Origin of Species by means of Natural Selection; or, The Preservation

of Favoured Races in the Struggle for Life, 1859.

M.R. Garey and D.S. Johnson. Computers and Intractability — A Guide to the Theory
of NP-completeness. W.H. Freeman Co., San Francisco, CA, 1979.

F. Glover, E. Taillard, and D. de Werra. User’s Guide to Tabu Search. Annals of
Operations Research, 41, 1993.

D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, 1989.

J.J. Grefenstette. A User’s Guide to GENESIS, Version 5.0. Technical report, Depart-

ment of Computer Science, Vanderbilt University, Nashville, 1990.

J.H. Holland. Adaptation in Natural and Artificial Systems. The University of Michigan
Press, Ann Arbor, 1975.

S. Kirkpatrick, C. Gelatt, and M. Veechi. Optimization by Simulated Annealing. Science,
220:671-680, May 1983.

H. Kopetz and G. Griinsteidl. TTP — A Protocol for Fault-Tolerant Real-Time Sys-
tems. IEEE Computer, pages 14-23, January 1994.

H. Kopetz and R. Nossal. The Cluster Compiler — A Tool for the Design of Time-
Triggered Real-Time Systems. In ACM SIGPLAN Workshop on Languages, Compilers,
and Tools for Real-Time Systems, La Jolla, California, USA, June 1995.

R. Korf. Depth-First Iterative-Deepening: An Optimal Admissable Tree Search. Arti-
ficial Intelligence, 27(3):97-109, 1985.

A. Kriiger and H. Kopetz. A Network Controller Interface for a Time-Triggered Protocol.
In SAE Symposium on Future Transportation Electronics: Multiplexing and In-Vehicle
Networking. Society of Automotive Engineers, August 1995. SAE Paper No. 952576.

17

[Nos96] R. Nossal. A Pre-Runtime Planning Algorithm for Real-Time Communication Systems.
Research Report 1/96, Institut fiir Technische Informatik, Technische Universitat Wien,
Vienna, Austria, March 1996. Submitted for publication at the 17th International Con-

ference on Distributed Computing Systems.

[SAE93] Class C Application Requirement Considerations. SAE Recommended Practice J2056/1,
SAE, June 1993.

[Sri94] M. Srinivas and L.M. Patnaik. Genetic Algorithms: A Survey. IEEE Computer, pages
17-26, June 1994.

Acknowledgments

This work was in part supported by the European Commission under Project No. BRPR-CT95-
0032 (DG12-RSMT) “Safety Related Fault Tolerant Systems in Vehicles (X-by-Wire)” and under
ESPRIT Long Term Research Project No. 20072 “Design for Validation (DeVa)” and by HP
Labs, Palo Alto, California.

18

