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Abstract

In the field of safety-critical real-time systems the
development of distributed applications for fault toler-
ance reasons is a common practice. Hereby the whole
application is divided into several distinct sub-systems,
which are afterwards mapped onto a set of associated
processors called nodes.

Cluster simulation provides a cheap and useful tech-
nique to test single nodes of a distributed application
in isolation. Compared to alternative test approaches
where the whole distributed system has to be built up
the hardware requirements imposed by cluster simula-
tion are rather small.

We present an approach together with a prototype
implementation for cluster simulation in distributed
hard real-time systems using TDMA-based commumni-
cation. This cluster simulator has proven to be a valu-
able development support tool for single nodes within a
distributed application by providing a versatile platform
for validation of the nodes behavior against the rest of
the distributed system.

1. Introduction

Distributed hard real-time systems consist of a num-
ber of nodes that interact with each other by means
of communication. The correct operation of such sys-
tems depends not only on the correct execution of the
application tasks within the nodes, but significantly
on latencies and jitter imposed by the communication
sub-system. In case of safety-critical applications, the
correct operation of the system is of utmost impor-

tance and therefore the impacts of the communication
sub-system are crucial.

Due to the distributed architecture the development
of such systems is organized in a more and more de-
centralized manner. Different sub-system supplier de-
velop various components which are then assembled by
the system integrator. In the automotive industry, for
example, car manufacturer integrate a large number
of components developed by different supplier compa-
nies. The complexity of this integration and validation
process tremendously increases with the use of such
systems for safety-critical applications, such as brake-
by-wire or steer-by-wire applications [4]. An approach
to solve this problem has been introduced in [7]. If
nodes depend on the temporal properties of the data
exchanged among each other, a precise specification of
the interfaces in the value and in the time domain is
required to verify the behavior of a stand-alone devel-
oped component. A TDMA-based communication sys-
tem allows such a precise specification of the temporal
behavior of a node, since the points in time when in-
formation is exchanged are determined at design time.

In this paper we present a tool that supports the
stand-alone development and validation of nodes that
are interconnected by such a TDMA-based communi-
cation system. CANoe [2] is a similar tool for CAN-
based systems, which estimates the bus load and la-
tency times of the whole system by means of simula-
tion in order to test the correct behavior of a node. In
our approach, however, we want to exploit the TDMA-
based paradigm using the precise specification of the
points in time when a node transmits messages in or-
der to give guarantees of the correct behavior of the
stand-alone developed component.



The paper is structured as follows: Section 2 pro-
vides a list of objectives and requirements for a tool
set facilitating cluster simulation. Section 3 gives a
short overview over the the used system architecture
and describes the main parts it consists of. Section 4
focuses on the basic concepts of the proposed cluster
simulation architecture. Section 5 illustrates the im-
plementation details of the cluster simulator and de-
scribes the hardware and software setup. In Section 6
we describe our experiences with the presented cluster
simulation approach. Section 7 concludes the report
with some future visions regarding the field of cluster
simulation.

2. Objectives and Requirements

This sections gives an overview of the objectives and
requirements of the cluster simulator.

The objective of the cluster simulation is to pro-
vide extensive testing facilities of the behavior of sin-
gle nodes without the need to setup the whole system.
It should provide a cheap and efficient way for the dis-
tributed development of single components by different
sub-system suppliers. In case of safety-critical systems,
benefits for the system validation process are given if
the tested functionality of stand-alone developed nodes
is not influenced and therefore does not require to to
be re-tested upon system integration. To achieve such
a composable system [3] a precise specification of the
interfaces in the value and time domain is a prerequi-
site.

When designing a distributed system the implemen-
tation of a single node is often not yet determined or
should be interchangeable. In a distributed braking
system, for example, various implementations of the
node computing the brake force on the wheels (e.g., in-
cluding ABS or not) may be considered. Although the
concrete implementation of a node might be unknown,
the functional and temporal behavior of its interface
has to be specified. The weaker the specification the
less confidence can be achieved from the stand-alone
testing process and the more complex the system inte-
gration and the validation process is. One approach to
solve this problem is to perform an iterative refinement
of the specification during the development.

The cluster simulator we present in this paper re-
quires the following interface specification: the points
in time when messages are sent, the semantics and the
value range of the messages. If the node under test,
using the example above, computes the actual brake
force on the wheels, the update period and the value
range need to be given for all input data (desired brake
force derived from brake pedal, yaw rate information,

vehicle status information etc.) and all output data
(actual brake force of the wheels) of the node. The
used static transmission scheme must be chosen in a
way that the specified update period is achieved. The
value range might be given by upper and lower bounds
or by simplified functions computing the value. Dur-
ing the stand-alone development of a node, the cluster
simulator has to support recording of the value range
in order to refine the specification in the value domain
(The time domain is already sufficiently specified by
the static transmission scheme). In an iteration step
this new specification is fed back to all cluster simula-
tors in order to perform a stand-alone test of the nodes
developed in a distributed manner. Due to this itera-
tion mechanism, a more and more accurate specifica-
tion can be gained during the development to achieve
high confidence in the testing process performed with
the cluster simulator.

3. System Overview

This section introduces the system architecture of
the hard real-time systems for which our approach has
been designed.

The hard real-time system consists of a number of
nodes which are interconnected by a communication
medium. A node itself consists of the host sub-system
executing the application tasks and the communica-
tion sub-system. The Communication Network Inter-
face (CNI) is the node-internal interface between these
two sub-systems. It has memory interface semantics
and could be, for example, implemented as DPRAM.
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Figure 1. Structure of a TTP/C Cluster

Access to the communication medium is controlled
by a cyclic time-division multiple access (TDMA)
scheme derived from a global notion of time. This
scheme divides the whole capacity of the communica-
tion medium into so-called TDMA slots, where each



TDMA slot is uniquely assigned to one specific node.
This assignment is generated at design time and stored
as static control data within every communication sub-
system. The sequence of TDMA slots in which each
node sends at most one message forms a TDMA round.
All TDMA rounds exhibit the same temporal access
pattern, but different messages may be sent in differ-
ent TDMA rounds. The number of different TDMA
rounds determines the length of the cluster cycle.

4. Concepts

This section focuses on the main concepts of the
presented cluster simulator giving a description of its
different parts and the interfaces between these parts.

As already mentioned in Section 2 the cluster sim-
ulator facilitates the development and the testing of
single nodes of a distributed real-time application. Fig-
ure 2 illustrates the setup for this kind of testing.
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Figure 2. Cluster Simulation Setup

As indicated by Figure 2 the cluster simulator is
connected to the node under test using a common com-
munication medium. Thus the interaction between the
cluster simulator and the node under test takes places
via the logical line interface (LLI). In order to provide a
simulation that is transparent for the node under test,
the cluster simulator’s behavior at the LLI must match
the behavior of the simulated nodes.

In conformance with the generic system architecture
presented in Section 3, the cluster simulator itself can
be divided into two distinct sub-systems — a host sub-
system and a communication sub-system — as well. The
interaction of these two sub-systems takes place via the
CNIL

For the internal hardware setup of the cluster sim-
ulator basically two contrary approaches are possible.
On the one hand the cluster simulator can be built out

of a multitude of nodes (one physical node for each sim-
ulated one). On the other hand an approach where the
cluster simulator consists of only one node is possible
as well. For reasons of simplicity of the hardware setup,
easy maintenance and last but not least cost reasons,
the second alternative is proposed in this paper.

This second alternative however causes a scheduling
problem that in general cannot be solved. Tasks that
were executed in parallel on multiple nodes must now
be allocated to a single node, which might yield that
the task set is no longer schedulable. A solution to this
problem is to abstract from the actual functionality of
the simulated nodes by making proper simplifications.
Section 4.2 describes how this is done in the presented
cluster simulator.

4.1. Communication Sub-System

The communication sub-system part of the cluster
simulator is responsible of the timely transmission of
the simulated messages.

In TDMA-based communication systems it is not
required to encode the sender and the type of a mes-
sage in the message itself. The TDMA slot in which
the message is sent uniquely identifies both the mes-
sage type and the sender. In order to enable all non-
simulated nodes to derive the correct message type and
the correct simulated sender of the messages sent by the
cluster simulator Obligations 1 and 2 must be fulfilled.

Obligation 1 The cluster simulator must transmit
messages in every simulated TDMA slot.

Obligation 2 The cluster simulator must not trans-
mit any messages in other TDMA slots than the sim-
ulated ones.

In order to ensure that other non-simulated nodes
are able to decode the cluster simulators transmission,
the following obligation must hold as well.

Obligation 3 The used bus speed must be agreed by
all nodes in the cluster including the cluster simulator
itself (i.e., the cluster simulator must use the same bus
speed as the simulated nodes).

Additionally to the previous obligations the follow-
ing must be fulfilled to prevent messages from get-
ting discarded upon reception due to incorrect message
length.

Obligation 4 Fach message transmitted by the cluster
simulator must have exactly the same length as the cor-
responding message transmitted by the simulated node.



The re-integration of failed nodes and the integra-
tion upon cluster startup of a single node is restricted
to its own TDMA slot. — The node is only allowed to
(re-)join a running cluster by transmitting its initial
frame in its own sending slot.

In order to accomplish a behavior of the cluster
simulator that matches the behavior of the simulated
nodes Obligation 5 must hold.

Obligation 5 The cluster simulator must be allowed
to integrate in every simulated TDMA slot.

Obligation 6 must be fulfilled to prevent the clus-
ter simulator from disturbing ongoing transmissions of
already integrated nodes upon its own (re-)integration.

Obligation 6 It must be prohibited that the cluster
simulator integrates in any other TDMA slots than the
simulated ones.

4.2. Host Sub-System

The responsibility of the host sub-system lies in
the provision of simulated message data at the CNI
prior to the actual transmission by the communication
sub-system. Ideally (i.e., in a perfect simulation) this
data should match the data provided by the simulated
nodes. This however is not possible for the following
reasons:

e As indicated earlier the cluster simulator consists
of only one physical node and may therefore be
equipped with less processing power than the the
sum of the simulated nodes. Due to this limited
processing power it is in general not possible for
the cluster simulator to perform all application
tasks of the simulated nodes.

e During the development phase the exact func-
tional specification of the simulated nodes is not
available. In the most cases only the types of mes-
sages and the semantics of their contents are de-
fined.

Thus it is inevitable to introduce a level of abstrac-
tion to simplify the tasks that have to be performed by
the cluster simulator. The presented cluster simulator
uses a table-driven approach for this simplification.

The host-subsystem operates synchronously to the
TDMA scheme of the communication sub-system. A
statically defined dispatching table which contains an
entry for each TDMA slot is used to control the be-
havior of the host part of the cluster simulator. TDMA
slots where no messages have to be sent and where no

actions by the host part of the cluster simulator have
to be performed are left empty.

Each entry of the dispatching table entries can itself
consist of multiple entries of the following two different
entry types:

Pre-Defined Messages This entry type consists of
up to 16 bytes of user-defined data and the corre-
sponding CNI address where this data has to be
copied to in the specific TDMA slot.

The user-defined data is generated off-line (either
by hand or by an appropriate design tool) based on
the functional specification of the tasks performed
by the simulated nodes.

User-Defined Functions These functions allow the
user to specify arbitrary tasks that are dispatched
within the specific TDMA slot by the cluster sim-
ulator. These task can on the one hand be used to
generate message data in the CNIL. On the other
hand these tasks can be used for the communica-
tion with peripheral device (e.g., sensors and ac-
tuators) connected to the host sub-system.

While pre-defined messages provide a very con-
trolled and well-define way to specify the behavior of
the cluster simulator, the user-defined functions intro-
duce a great flexibility as far as the cluster simulator’s
behavior is concerned.

In order to guarantee the timely provision of simu-
lated message data at the CNI, the execution time of
the operations generating this data (i.e., user-defined
functions and copying of pre-defined message data)
must be bounded and known.

Since the duration of the copy operation solely de-
pends on the number of bytes to be copied and on
the duration of the copy operation for one byte (Tpyzc),
the exact execution time for a given pre-defined mes-
sage entry (m) can be calculated. Assuming that the
worst case execution times (WCETs) [11, 12, 10] of
the cluster simulator core (i.e., the part of the clus-
ter simulator that is responsible for the interpretation
of the dispatching table and for the invocation of the
user-defined functions and the copy operation) itself
(r42PT) and of the user-defined functions (7/V“"T)
are know, an upper bound on the execution time of all
actions that have to be performed by the cluster simu-
lator (7CET) can be given (Equation 1).

csim

TcngT = Toyte - Z bytes(m) + (1)
meM;
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+ 7-f +Tcore
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Hereby M denotes the set of pre-defined messages
and F; the set of user-defined functions for slot i. The
operator bytes(m) is used to determine the number of
bytes the data of message m consists of.

In case the time difference between invocation time
of cluster simulator tasks (£*°°?) and the transmission
time of the messages (t{""*) for a specific TDMA slot
1 is larger than the previously mentioned upper bound
on the sum of the execution times of the cluster simu-
lator tasks, it can be guaranteed that the message data
will be present in the CNI prior to the transmission
by the communication sub-system part of the cluster
simulator.

WCET
cstm

T < tfrans _ tﬁncovc (2)

5. Implementation

This section focuses on a concrete implementation
of the cluster simulator for architectures based on
TTP/C [5]. It describes how the obligations defined
in the previous sections are actually met by the imple-
mentation.

Just like the previous section this section will be
divided into a part covering the communication sub-
system and a part dealing with the host sub-system.

5.1. Communication Sub-System

We have implemented the communication part of
the cluster simulator using a prototype TTP/C con-
troller [6].

In conformance to Section 3 TTP/C is TDMA based
and operates in a time-triggered fashion. Messages are
sent according to a static control structure (i.e., the
so-called message descriptor list (MEDL)) which de-
fines which node is allowed to transmit in each specific
TDMA slot.

In order to fulfill Obligation 1 the MEDL of the
cluster simulator must define the cluster simulator as
the active sender in each of its simulated slots.

Obligation 2 requires that the MEDL prohibits any
transmission by the cluster simulator in any other slot
than the ones to simulate.

Since the transmission speed on the bus and the
length of each message are governed by the communi-
cations sub-systems static MEDL, Obligations 3 and 4
can be fulfilled by ensuring that both the transmission
speed and the message lengths specified by the cluster
simulator’s MEDL match the transmission speed and
the message lengths specified by MEDLs of all other
nodes in the cluster.

Similar to Obligations 1 and 2 the fulfillment of Obli-
gations 5 and 6 can simply be achieved by an appro-
priate MEDL configuration because the set of TDMA
slots where a single node is allowed to integrate upon
startup or after a node failure is statically defined in
the MEDL as well. Thus it is sufficient to ensure that
the MEDL of the cluster simulator allows integration
in every simulated slot and prohibits integration in all
other slots.

5.2. Host Sub-System

The host sub-system is implemented on an IP360
motherboard (an IP motherboard with a Motorola
MC68360 CPU) [9] which hosts the TTP/C controller
in one of its IP [1] slots.

From the software point of view the host sub-system
consists of a generic simulator core which is tailored to
the specific application using and appropriate dispatch-
ing table.

The host sub-system’s operation can be divided into
three distinct phases:

Download The host sub-system performs a download
of the dispatching table from a workstation via an
ethernet link.

Simulation This phase is the actual simulation phase
where message data is copied into the CNI accord-
ing to the dispatching table.

Upload After the simulation has finished, possible
monitoring information is uploaded to the work-
station.

Each of the three phases will be described in more
detail in the following sections.

5.2.1. Download

During the download phase the communication sub-
system is not yet activated. The only purpose of this
phase is to transfer the dispatching table from a work-
station (where the table is generated with an appro-
priate design tool) to the host sub-system of the clus-
ter simulator. Currently a light-weight ethernet proto-
col [8] is used to accomplish this task. The download
via standard protocols like FTP or HTTP however is
under development.

5.2.2. Simulation

Once the dispatching table is present at the host sub-
system (either because the transfer from the worksta-
tion has been completed or because the table has been



statically linked to the cluster simulator application)
the communication sub-system is activated and the
simulation phase is entered.

In the simulation phase the host sub-system works
synchronously to the communication sub-system (i.e.,
the actions for each TDMA slot entry of the dispatch-
ing table are triggered with the start of a TDMA slot).

The dispatching table itself is defined in using a so-
called slot description language which on the one hand
can be translated into native C code, to be compiled
and linked to the cluster simulation application, and on
the other hand can be used to generate a core image of
the table to be dynamically downloaded into the host
sub-system.

Figure 3 shows part of a dispatching table as small
example illustrating the use of the slot description lan-
guage.

DEFINE_DATA_ENTRY (14, 0)
{
0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
0x88, 0x89, 0x8A, 0x8B, 0x8C, 0x8D, Ox8E, 0x8F
};

DEFINE_FUNCTION_ENTRY(14, 1, nSrcBytes, pSrcData,
nDstBytes, pDstData)

{
int i;
ASSERT (nSrcBytes == nDstBytes);
for (i = 0; i < nSrcBytes; i++)
{
pDstData[i] = pSrcDatalil + 1;
}
I
DEFINE_SLOT_ENTRY(14)
{
DATA_ENTRY(14, 0, 0x0120, 16),
FUNCTION_ENTRY(14, 1, 0x0132, 16, 0x0144, 16)
I

Figure 3. Example Usage of Slot Description
Language

The example given in Figure 3 defines a slot en-
try for TDMA slot 14 consisting of a pre-defined 16
byte message which is copied to CNI location 0x0120
and a user-defined function which reads 16 bytes from
CNI location 0x0132, increments the value of each byte
by one and stores the modified bytes in CNI location
0x0144.

In addition to the generation of messages the
host sub-system of the cluster simulator supports the
recording of monitoring information (e.g., responses
from the node under test) obtained from the CNI.

This monitoring information can be stored using user-
defined functions in order to facilitate an off-line anal-
ysis later on.

5.2.3. Upload

Once the simulation is finished an upload phase takes
place during which the recorded monitoring informa-
tion is transferred to the workstation (again using the
light-weight ethernet protocol).

This monitoring information can be analyzed by ap-
propriate tools in order to validate the correct behavior
of the node under test. Additionally the monitoring
information can be used by the system integrator to
derive accurate data for a dispatching table for a clus-
ter simulation including the the node under test. This
dispatching table can then be provided to one of the
other suppliers.

In this way an iterative refinement of the simulation
starting from a rather rough simulation based on the
functional specification of each node and ending in a
precise simulation based on recorded monitoring data
is supported (see Figure 4).
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Figure 4. Iterative Refinement of Cluster Sim-
ulation

This approach matches the development process
which successively refines the definition of the function-
ality of the different nodes from a pure interface def-
inition to a detailed specification of the node-internal
functions and tasks.

6. Evaluation

Within the Brite EuRam Project “X-By-Wire” [4] a
steer-by-wire (i.e., electronic steering without mechan-
ical backup) prototype application has been developed.



This application is distributed over three fault-tolerant
units (FTUs) and consists of eight nodes in total which
exchanged messages using the TTP/C protocol.

One FTU (consisting of three nodes for reasons of
fault tolerance) is responsible for handling the sensors
and actuators of the road wheels. An FTU consist-
ing of two nodes services the steering wheel and an-
other FTU (again made up of two nodes) is in charge
of the owerall control loop. In order to demonstrate
the fault tolerance properties of the application a ded-
icated monitoring node has been introduced. Figure 5
shows a schematic representation of the steer-by-wire
prototype.

Road Wheel FTUJ

-:- Control
[ege] FTV

Steering
Wheel
FTU

Dual Channel
TTP/C Bus

Figure 5. Steer-By-Wire Prototype (schematic)

Since the development of the different nodes has
been distributed among the projects partners, support
for the stand-alone test of a single node and simulation
of the behavior of all other nodes is required.

The presented implementation of the cluster simula-
tor has been successfully used for the development and
testing of the monitoring node for the steer-by-wire
prototype. In this scenario the cluster simulator had
to simulate all nodes but the monitoring node itself.

The simulation encompasses the transmission of
messages of the different simulated nodes to test
whether the monitoring node displays the correct activ-
ity status of all nodes and the provision of pre-defined
message data to check whether the monitoring node
reads the messages from the right locations within the
CNI and decodes the message data in the correct way.

Due to the use of the cluster simulator during the
development and test phase it has been possible to val-
idate the monitoring node’s functionality prior to the
actual integration of this node into the cluster of the
remaining seven nodes. Thus a large number of imple-

mentation errors (e.g., accesses to wrong address offsets
within the CNI) of the monitoring node has been de-
tected and corrected, and the final integration of the
monitoring node into the rest of the cluster has been
performed with a minimum of effort.

7. Conclusion and Future Work

In this paper we presented an architecture for cluster
simulation for TDMA-based time triggered real-time
systems. The design objectives, the requirements and
the problems of a such an architecture were discussed.
Special focus was put on the problems resulting from
the limited CPU power of the simulator. A detailed
description on how these problems can be solved and
how the requirements can be met was given. An ex-
ample implementation based on TTP/C was described
and the experiences with this implementation within
a major project funded by the European Commission
was given.

Currently an extension to a cluster design system to
support automatic generation of the cluster simulation
MEDLs is almost finished. Future work will focus on
the development of a set of tools facilitating the gener-
ation of dispatching tables and on the interaction of the
cluster simulator with off-the-shelf visualization tools.
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