
CONTROL FLOW MONITORING FOR A
TIME�TRIGGERED COMMUNICATION

CONTROLLER

Thomas M� Galla�� Michael Sprachmann��
Andreas Steininger� and Christopher Temple�

Abstract

A novel control �ow monitoring scheme is presented that has been tailored to the architecture

of the protocol control unit of a time�triggered communication system� Within the approach a

signature derived on�line for a sequence of instructions ��block�� is checked against an embedded

reference signature� The execution of the signature checks is enforced by a timeout mechanism

that is based on the instruction count between two successive checks�

The approach provides a derivable Hamming distance for the signatures and a bounded error

detection latency while being transparent for the protocol execution� The overhead in terms of

performance penalty� memory overhead and extra hardware is low�

�� Introduction

E�cient error detection is of fundamental importance in dependable computing systems� Among

the numerous approaches for error detection control �ow checking is a well established cost�

e�cient technique� Various types of control �ow monitors based on watchdog processors have

been devised to ensure the integrity of control �ow� ��� provides a survey of the basic approaches�

Within control �ow monitoring the instruction stream is partitioned into basic blocks� A basic

block consists of a sequence of consecutive instructions with an unique entry point and an

unique exit point� In most approaches each block is assigned an identi�er that is determined by

some of its properties	 like start address and block size as in �
�	 or a signature of the instruction

sequence within the block ���� A watchdog processor not only observes the correct signature �or

size	 respectively of the block	 but most importantly it checks the sequence in which di�erent

blocks are executed� For this purpose information describing allowed control �ow paths must

be provided� In most approaches this information is embedded in the instruction stream	 there

are	 however	 various strategies to minimize the resulting memory and performance overhead

��	 ���

�� System Model

In the course of the Esprit OMI Project �Time�Triggered Architecture TTA� ��� a single chip

communication controller has been developed for TTA� The time�triggered architecture is de�

�Institut f�ur Technische Informatik� Technische Universit�at Wien� Treitlstr� �������� A	�
�
 Wien� Austria
�Dependable Computer Systems KEG� Mariahilferstr� ��������� A	�

 Wien� Austria



signed to support a wide range of fault�tolerant distributed real�time systems for use in safety

critical dependable applications	 especially within the �elds of automotive	 aviation and railway

electronics� Thus the demand for e�cient error detection capabilities arises� Within the time�

triggered architecture each node of a distributed system is composed of a host computer that

executes the assigned share of a distributed application and of a communication controller that

is responsible for the autonomous exchange of messages among the di�erent nodes� In order

to accomplish this task the communication controller executes a round based communication

protocol�

The communication controller is a key component of the time�triggered architecture� It inter�

acts with the host computer via a shared memory holding messages and status�control infor�

mation� Apart from the shared memory the communication controller contains the protocol

control unit �PCU and a set of low�level functional units� The protocol control unit executes

the communication protocol while the functional units provide means for executing perfor�

mance critical protocol services	 like frame transmission and reception	 CRC calculation	 and

clock synchronization� The protocol control unit is implemented as a ���bit application�speci�c

instruction set processor�

For the proposed technique we assume a set of faults	 both transient and permanent	 consisting

of storage faults within the instruction memory	 faults in the address path from the decoder

to the instruction memory and faults in the data path from the instruction memory to the

decoder�

The fault model imposes two basic requirements on the control �ow monitoring� On the one

hand the integrity of the basic blocks must be established and on the other hand the integrity of

the execution �ow must be checked� Apart from these two basic requirements an additional set

of application speci�c requirements must be considered� The execution time penalty caused by

control �ow checking must be minimal and known at design time since the system is intended to

serve hard real�time applications� Due to the limited size of the instruction memory the code size

overhead must be kept low� To meet the requirements of fault�tolerance it is important to have a

low bound on the error detection latency	 in particular the case that a fault masks all embedded

check instructions must be covered� To meet the demands of safety critical applications the

code used to ensure the integrity of the blocks should have a derivable hamming distance�

�� Principle of Operation

The presented approach is based on integrating a signature calculation circuit into the processor

pipeline of the protocol control unit to test the integrity of the basic blocks and to monitor the

control �ow between basic blocks�



���� Integrity Checking and Control Flow Monitoring

The integrity of the basic blocks is checked by assigning signatures to each instruction� In

general the signature for an instruction is generated by feeding the instruction through the

signature calculation circuit where it is processed along with the signature value from the

previous instruction to obtain the new signature� In this way the signature of a block is an

signature i-1

signature i

signature j+2

exit signature j+1

j

j+1

:

instruction

branch

adjustment value

instruction

jump

adjustment value

instruction

j+2

k

k+1

k+2

:

i

signature j

signature k
signature k+1

signature m-1

signature k

signature j

instructionm

:

signature m

"if - path"

"else - path"

signature i

signature j-1

initial value

j

j+1

instruction

check

reference sig.

:

i

signature j

instructionj-1

initial value

instruction

(a) (b)

Figure �� Signature Checking and Adjustment

incrementally generated value that protects all instructions within the block� The signatures

are calculated by the assembler at compile time and selected signatures are then stored within

the code� At run�time the the signatures are recalculated as the instructions are fed through

the protocol control unit� A special check�instruction triggers checking the signature� The

code word subsequent to the check�instruction contains the reference signature calculated by

the assembler for the preceding block �Figure �a� The check�instruction resets the value of the

signature to its initial value�

In order to handle branches it is necessary to modify the signature according to the branch

destination� This modi�cation is performed based on an additional adjustment�value included

in the program code immediately after the branch instruction� This value is used to modify the

signature so that it matches the entry signature at the destination instruction� The adjustment

value is only considered if the branch is taken	 if the branch is not taken the adjustment value

is skipped� Figure �b depicts the signature adjustment for an if�then�else construct� The

adjustment value at address j�� is set to adjust the signature to equal signature k� This

procedure is repeated for the adjustment value at address k��� In this case the signature is

adjusted to equal signature m���

For subroutines the signature of the �rst instruction is set to a speci�c entry signature of the

subroutine and at the end of a subroutine the signature is adjusted to a speci�c exit signature�

Each subroutine is assigned an unique entry signature in order to establish whether the program

�ow has continued with the correct subroutine� Similar to the assignment of entry signatures it

makes sense to chose a unique exit signature for each subroutine in order to verify the correct

return from the subroutine to the calling code� Figure 
 illustrates the use of the entry and



instruction

jump subroutine

instruction

instruction

instruction

instruction

jump return

adjustment value

adjustment value

instruction

m
entry signature m

signature m

signature m+1

signature n-1

signature n

:

exit signature n+1

m+1

n

signature i-1

signature i

exit signature i+1

n-1

i

i-1

i+1

i+2

i+3
signature i+2

signature i+3

:

entry signature i+2

n+1

Subroutine

:

Figure �� Subroutine Call with Entry and Exit Signatures

exit signatures for subroutines� As in the previous example the adjustment value at address

i�� causes the exit signature i�� to equal the entry signature m of the subroutine� The same

procedure is used at the end of the subroutine to match the exit signature n�� to the entry

signature i�
�

���� Protocol Control Unit

The protocol control unit is a pipelined instruction set processor with an accumulator based

arithmetic logic unit� Instructions are �� bit wide and are executed in a ��stage pipeline� The

protocol software is located in the instruction memory from where the instructions are fetched

by the �Instruction Fetch��stage� The �Decode�Move�Branch and Check��stage decodes the

A
D

D

In
st

ru
ct

io
n

 R
eg

is
te

r

P
ro

g
ra

m
C

o
u

n
te

r

16

M
U

X

16

jump_offset

jump

+1

C
R

CCRC
CIRCUIT

ZERO?

E
X

A
L

U

opcode

alu_status

16address data

INSTRUCTION
MEMORY

test

re
gi

st
er

_b
us

w
rit

e_
se

le
ct

or

re
ad

_s
el

ec
to

r

DECODE

ha
lt

WATCHDOG
COUNTER

watchdog_error

16

16

16

16

crc_error

Instruction Fetch Stage Decode/Move/Branch Stage Execute Stage

16

Signature Monitor

ch
ec

k

Figure �� Protocol Control Unit with Signature Monitor

instructions	 issues register transfers on the internal register bus	 and resolves branches� Accord�

ing to the opcode the �Execute��stage then executes ALU instructions� Due to the architecture

of the pipeline	 no data hazards can occur� The PCU is master of the synchronous register bus	

which interconnects the PCU with the low�level functional units� The processor supports three



types of instructions� ALU instructions issue ALU operations either on registers or immediate

values	 move instructions issue register transfers on the register bus	 and branch and jump

instructions control the program �ow� To provide subroutine calls	 the program counter can be

stored and reloaded by issuing appropriate move instructions�

������ Signature Calculation

Control �ow monitoring is facilitated by adding a signature calculation circuit to the PCU

�Figure �� In contrast to MISR based approaches a CRC polynomial is used here to perform

signature calculation	 which enables easier determination of the code properties ���� The size

of each block is limited by the hamming distance of the CRC polynomial and the desired error

detection latency�

The hardware implementation supports both	 signature adjustment and signature check �im�

plying signature reset� The block signature detects errors in the instruction memory and the

related address and data paths from and to the instruction register� Using signature adjust�

ment for branch and jump instructions extends the e�ectiveness of the signatures beyond the

block borders and thus allows to detect errors in the address calculation logic �MUX and ADD

in Figure � as well� To support transparent and continuous operation of the pipeline the

CRC calculation has to be performed within one instruction cycle which equals one clock cycle�

Traditionally CRC calculators are based on the linear feedback shift register �LFSR approach

which is well suited for sequential bit�stream processing� Within the PCU a parallel CRC

calculation technique is employed that is capable of processing �� bits per clock cycle �����

Apart from the CRC calculation circuit the signature monitor contains a register for storing

the intermediate signature values and a circuit for comparing the signature to the initial value	

which is chosen as zero in the current implementation�

Every code word that passes to the decoder is fed into the signature monitor	 i�e� the CRC

calculation circuit� If the decoder encounters a check instruction it raises a check signal to

the signature monitor� In addition the decoder ignores the next code word in the instruction

register	 which contains the reference signature	 and generates a stall cycle� The signature

monitor processes the reference signature and tests for zero� A similar procedure is followed for

jump and branch instructions� The decoder always generates a stall cycle following a branch

or jump instruction� Again this prevents processing of the adjustment value� For branches

taken and for jumps the stall cycle is necessary	 since the target address for these instructions is

computed in stage two of the pipeline� Thus no run�time overhead is incurred as the adjustment

value is fed to the signature monitor� If the branch is not taken then the stall cycle introduces

a delay of one cycle �to skip the adjustment value� In this case the signature monitor ignores

the code word�

Due to the nature of the time�triggered architecture the communication controller does not

process any interrupts� Thus saving the signature within the signature monitor is not necessary	

which simpli�es the design of the watchdog processor� Adding the signature calculation circuit



to the PCU increases the silicon area on the chip die by approximately ��� Signature calculation

is performed within �ns� Since the signature calculation circuit is not on the critical path	 the

self�checking hardware does not in�uence the processor cycle time�

������Watchdog Counter

The CRC signatures provide a means for checking the code integrity and for monitoring the

control �ow� However a failure could mask the opcode of the check�instructions and thus prevent

their execution� Hence a mechanism must ensure that the check�instructions are executed by

the protocol control unit at run�time� For this purpose a watchdog counter is added to the

protocol control unit� It is set to a prede�ned value� every time a check�instruction is executed

and decremented by one whenever an instruction other than the check�instruction is carried

out� When this counter reaches zero	 it is assumed that a failure has occurred	 and the processor

pipeline is halted� Through this mechanism a bounded error detection latency is achieved even

if the execution of the check�instructions is prevented�

�� Summary

The presented control �ow monitoring scheme provides several vital properties for our fault�

tolerant real�time application� The simple structure requires only low hardware overhead �only

�� of a small processor core and results in an e�cient implementation� An additional watchdog

counter guarantees bounded error detection latency even if no more check instructions are

executed� The use of a parallel CRC allows comparatively easy mathematical determination of

the hamming distance� Runtime penalty is minimized by the placement of adjustment values

into the idle slots after branch and jump instructions�

References

��� A� Mahmood and E� J� McCluskey� Concurrent Error Detection Using Watchdog Processors � A Survey�
IEEE Transactions on Computers� �������
����� Feb� �����

��� G� Miremadi� J� Ohlsson� M� Rimen� and J� Karlsson� Use of Time and Address Signatures for Control
Flow Checking� In Dependable Computing and Fault�Tolerant Systems� volume �
� Urbana Champaign�
Illinois� USA� Sep� �����

��� N� Saxena and E� J� McCluskey� Parallel Signature Analysis Design with Bounds on Aliasing� IEEE
Transactions on Computers� ������������� Apr� �����

��� C� Scheidler� G� Heiner� R� Sasse� E� Fuchs� H� Kopetz� and C� Temple� Time	Triggered Architecture
�TTA�� In J�	Y� Roger� B� Stanford Smith� and P� T� Kidd� editors� Proceedings of EMMSEC���� Advances
in Information Technologies� The Business Challenge� pages ������� IOS Press� Nov� �����

��� M� Schuette and J� P� Shen� Processor Control Flow Monitoring Using Signatured Instruction Streams�
IEEE Transactions on Computers� ����������� Mar� �����

�� M� Sprachmann� Automatic Generation of Parallel CRC Circuits� IEEE Design and Test� submitted �����

��� K� D� Wilken and T� Kong� Concurrent Detection of Software and Hardware Data	Access Faults� IEEE
Transactions on Computers� ������������� Apr� �����

��� K� D� Wilken and J� P� Shen� Concurrent Error Detection using Signature Monitoring and Encryption� In
Dependable Computing and Fault�Tolerant Systems� volume �� pages ������� �����

�Similar to the insertion of the check	instruction this value depends on the hamming distance of the used

CRC and on the desired error detection latency�


