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ABSTRACT

Time and frequency warping provide effective methods for fitting

signal representations to desired physical or psychoacoustic char-

acteristics. However, warping in one of the variables, e.g. fre-

quency, disrupts the organization of the representation with re-

spect to the conjugate variable, e.g. time. In recent papers we

have considered methods to eliminate or mitigate the dispersion

introduced by warping in time frequency representations and Ga-

bor frames. To this purpose, we introduced redressing methods

consisting in further warping with respect to the transformed vari-

ables. These methods proved not only useful for the visualization

of the transform but also to simplify the computation of the trans-

form in terms of shifted precomputed warped elements, without

the need for warping in the computation of the transform. In other

linear representations, such as time-scale, warping generally mod-

ifies the transform operators, making visualization less informative

and computation more difficult. Sound signal representations al-

most invariably need time as one of the coordinates in view of the

fact that we normally wish to follow the time evolution of fea-

tures and characteristics. In this paper we devise methods for the

redressing of dispersion introduced by warping in wavelet trans-

forms and in other expansions where time-shift plays a role.

1. INTRODUCTION

Linear representations play a central role in sound synthesis, dig-

ital audio effects, feature extraction, coding and music informa-

tion retrieval. In most of these representations, one of the co-

ordinates in the transformed domain is time-shift, as in the case

of time-frequency representations [1], e.g., based on the STFT

(Short-Time Fourier Transform, also known as phase VOCODER)

or as in the case of time-scale representations based on the WT

(Wavelet Transform) [2, 3]. Other examples, based on different

signal transformations such as the MDCT (Modified Discrete Co-

sine Transform) [4, 5], windowed Hankel (Fourier-Bessel) [6, 7],

to name a few, are available.

In this paper we are mostly concerned with audio signal rep-

resentations that are exact, i.e., for which an inverse or pseudo-

inverse exists such that perfect reconstruction of the original signal

is possible from the analysis data. Other analysis-only methods,

such as the constant Q transformation [8] may enjoy easier com-

putation but may introduce data loss or have inefficient reconstruc-

tion algorithms so they are not directly suitable for the synthesis

from analysis.

Generally speaking, mathematical transforms operate on a

one-dimentional audio signal and produce a multidimentional rep-

resentation. For example the STFT yields a 2D signal represen-

tation in which one coordinate can be interpreted as time (more

precisely time-shift) and another coordinate as frequency, so that

the variation of the frequency spectrum in time can be visualized

and used for feature detection such as instantaneous frequency or

amplitude envelopes of the partials.

Linear signal transformations are computed by taking the

scalar product of the signal with a transform nucleus function [9]

Kα1,...,αN
(t), where α1, ..., αN are the N transform domain co-

ordinates [2]. For example, in the STFT, the nucleus is a modu-

lated window where α1 is associated to time-shift and α2 to fre-

quency.

When time-shift is one of the transform coordinates, in a large

class of linear 2D representations the transform nucleus is com-

puted by operating on a test function g, e.g., the prototype analysis

window or the analysis mother wavelet. In order to formalize the

generation of the transform nucleus of this type, one can introduce

a time-shift operator Tτ , whose action on a time signal s is defined

as follows:

[Tτs] (t) = s(t− τ), (1)

and another parametric linear operator Oσ . The corresponding

transform nucleus can be then written as

Kτ,σ(t) = [TτOσg] (t) (2)

and the linear signal transformation computed as follows:

S(τ, σ) = 〈TτOσg, s〉, (3)

where 〈f, g〉 denotes the scalar product in the signal space1. We

call “time-something” the generic representation whose represen-

tative elements are obtained by cascading time-shift with another

operator O acting on a prototype function g.

In the STFT based representations the operator O corresponds

to modulation

[Mνs] (t) = ej2πνts(t), (4)

while in the WT based representations the operator O corresponds

to dilation

[Das] (t) =
1√
a
s

(
t

a

)
, (5)

which we wrote here as a unitary operator.

Notice that in some definitions the time-shift and the O oper-

ators appear in reverse order with respect to that in (3). However,

with the introduction of a phase change or of a modification of the

transform coordinates, in most useful cases one can redefine the

transformation as in (3). For example, in the STFT, we have:

[TτMνg] (t) = ej2πν(t−τ)g(t− τ) = e−j2πντ [MνTτg] (t).
(6)

1Typically this is the space L2 (R) of square integrable functions (finite
energy signals) on the real line, however, the choice might depend on the
signal representation we are considering.
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The phase factor e−j2πντ is irrelevant, it cancels out when analysis

and synthesis is performed and does not need to be included in the

computation. For the wavelet transform, one can show that:

DaTτ/α = TτDa, (7)

with obvious reinterpretation of scaled time-shift τ/α.

Most of the mentioned representations can be studied in terms

of the time and frequency spreading of the transform nucleus

Kτ,σ(t) = [TτOσg] (t), (8)

as the parameters τ and σ, which are the coordinates of the trans-

formed domain, vary. Directly or indirectly (via the relationship

between the coordinate σ and the frequency), this leads to a tiling

of the time-frequency plane, in which the specific form of the time-

frequency tiles carries a loose meaning in terms of the signal com-

ponents that get detected or trapped in a certain time-frequency

zone.

However, the tiling is often dictated by mathematical simplifi-

cations for the definition of the operations used in generating the

transform nucleus. Thus, for example, in the STFT based time-

frequency representations time and frequency resolutions are both

uniform and in the time-scale WT based representations time-shift

is uniform in each scale. Also, in the WT, scale and time are in-

terrelated so that the uncertainty product of the representative el-

ements is constant throughout the tiling. In the applications often

one would like to achieve higher degree of flexibility in allocating

the time-frequency spread of the representative elements in order

to produce a tiling prescribed, e.g., by psychoacoustic or physical

characteristics.

In previous work, frequency warping has been considered

in conjunction with signal representations in order to increase

the flexibility and adaptivity of the analysis-synthesis scheme

[10, 11, 12, 13, 14]. Since frequency warping introduces disper-

sion in time-localization, methods for reducing or eliminating this

effect are desired. In recent work [15, 16, 17], we proposed tech-

niques, the so called redressing methods, that are directly suitable

for the STFT based time-frequency representation once the warp-

ing map is defined. These basically consist in the application of

suitable operators aimed at linearizing the phase of the dispersive

delays resulting from the application of warping to the time-shift

operator.

Since, over the continuum, a 2D representation of a 1D signal

is generally redundant, sampling can be introduced by selecting a

grid of points in the transform domain. Provided that certain con-

ditions on the grid and on the window or wavelet are satisfied, the

original signal can be reconstructed from the transform samples

evaluated at the grid points only. This leads to a signal expansion

in terms of a set of functions constituting a frame or otherwise to

a bi-orthogonal / orthogonal and complete set for the signal space.

Sampling introduces some complications in the application

of the redressing methods and may impose limitations on the

choice of the window in generalized Gabor frames considered in

[15, 16, 17]. There, discrete-time frequency warping operators

were applied in the sampled time STFT domain in order to par-

tially eliminate dispersion. The results show that for bandlimited

windows, the dispersion elimination procedure can be made exact

and leads to the same results as ad-hoc methods for the construc-

tion of non-stationary Gabor frames [18, 19, 20].

Transform domain discrete-time frequency warping also leads

to approximated algorithms for the computation of the generalized

warped Gabor frames [21, 22, 23]. On the other hand, computation

of discrete-time frequency warping as a digital audio effect can be

eased by the use of the STFT [24].

In this paper we extend our methods to other generic time-

something representations of which wavelet expansions are an ex-

ample.

The paper is organized as follows: in Section 2 we discuss

the concept of unitary equivalence, applying it to unitary warping

in Section 3. In Section 4 we discuss redressing methods for the

generic unsampled and sampled time-something representations,

with examples to the wavelet expansion. Finally, in Section 5 we

draw our conclusions.

Examples and experimental code will be made available at the

author’s web page:

http://members.chello.at/~evangelista/.

2. UNITARY EQUIVALENCE

In order to generalize the linear signal representations and be able

to adapt the representing elements to important physical or percep-

tual characteristics, one can resort to further transformation using

invertible operators. This is shown in Figure 1 where the analysis

and synthesis blocks allow for perfect reconstruction. However, in

the scheme in the figure, the synthesis of the signal s is achieved

by further operating with an invertible operator U. In other words,

if in the original analysis-synthesis scheme the signal was synthe-

sized in terms of a continuous or discrete set of functions ψα(t), in

the new scheme the signal is synthesized in terms of the functions

[Uψα] (t), where α is either the variable or the index of superpo-

sition for the synthesis, e.g.,

s(t) =
∑

α

Cα [Uψα] (t), (9)

in which Cα denote the coefficients of the expansion. Here, in

order to simplify the notation, in the variable α we incorporate

all of the transform coordinates α1, ..., αN , such as time-shift and

frequency or time-shift and scale.

Clearly, in order to provide the correct analysis algorithm, in

the new scheme one needs to operate on the signal with the inverse

operator U−1 and obtain the analysis coefficients Cα in (9) from

the signal
[
U

−1s
]
(t). However, in general, perfect reconstruction

is not guaranteed and one needs to prove properties like the norm

convergence of the expansion on the right hand side of (9) to the

signal on the left hand side.

Perfect reconstruction is guaranteed, with no further proof, if

the operator U is unitary, i.e., if U is a bounded linear operator

satisfying

UU
† = U

†
U = I, (10)

where I is the identity operator and U
† represents the adjoint of

U, i.e., the operator satisfying

〈Uf, g〉 = 〈f,U†g〉 (11)

for any pair of functions f and g belonging to the signal space. In

this case, the operator U† is both the left and right inverse of U and

U realizes a surjective isometry in the function space. Therefore,

properties such as orthogonality, norm and norm convergence are

preserved, so one can simply invoke unitary equivalence to verify

perfect reconstruction [11].
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Analysis Synthesiss(t) s(t)UU
-1

Figure 1: Inserting invertible operators in the analysis-synthesis

path of a signal representation

The simple insertion of the invertible operator U and its in-

verse in the analysis-synthesis path could, however, lead to dra-

matic consequences in the interpretation of the transform coordi-

nates. In fact, suppose that the nucleus of the original transform is

given as in (8), then the new nucleus is:

Kτ,σ(t) = [UTτOσg] (t), (12)

By inserting neutral pairs U−1
U in (12), one obtains [11]:

Kτ,σ(t) =
[
UTτU

−1
UOσU

−1
Ug

]
(t), (13)

which shows that the new “time” and the new “O” operators

are obtained by similarity transformations, i.e., UTτU
−1 and

UOσU
−1, respectively, which obviously changes the meaning of

the corresponding variables.

3. ALTERNATIVE UNITARY EQUIVALENT

REPRESENTATIONS OBTAINED BY WARPING

Appealing signal transformations that can be cascaded to a given

analysis-synthesis scheme consist of time or frequency warping,

which provide new signal representations that are unitary equiv-

alent to well-known ones, as discussed in the previous section

[10, 11, 12, 13, 14].

In this section we illustrate the fundamental notions of warp-

ing in connection with time-something representations. As these

apply with same formalism to both continuous and discrete (sam-

pled) representations, we will review these concepts without spec-

ifying the nature of the representation.

In order to make the concepts more concrete, in Section 3.2 we

provide an example of warping map for changing the scale factor

in complete wavelet sets obtained by sampling in time-scale.

In Section 4 we provide a solution for the redressing of the

warped time-shift operator, in order to eliminate or reduce disper-

sion resulting from frequency warping. Redressing proves easy in

the case of continuous (with respect to time-shift) representations.

It requires a bit more ingenuity when sampling is introduced in the

transformed space.

By duality arguments, the principles illustrated in this paper

also apply to the time dispersion of frequency localization when

time warping is employed.

3.1. Warping Operators

Warping operators perform function composition in order to remap

the abscissa. Thus, a time warping operator Wγ remaps the time

axis by means of the following action:

stw = Wγs = Cγs = s ◦ γ, (14)

where stw is the time-warped version of the signal s, γ is the time

warping map, Cγ is the composition by γ operator and ◦ denotes

function composition.

One can show that the composition operator Cγ is bounded on

L2(R) if the map is a monotonic function and 1/γ′ is essentially

bounded, where γ′ is the first derivative of the map, i.e., γ′ must be

essentially bounded from below. This, together with more general

and necessary and sufficient conditions for the continuity of the

composition operator, which require the absolute continuity of the

measure introduced by the map and the essential boundedness of

the Radon-Nikodym derivative, can be found in [25, 26].

Similarly, a frequency warping operator Wθ̃ is completely

characterized by a function composition operator Wθ in the fre-

quency domain:

ŝfw = Ŵθ̃s = Ŵθ̃ ŝ = Cθ ŝ = ŝ ◦ θ, (15)

where θ is the frequency warping map, which transforms the

Fourier transform ŝ = Fs of a signal s into the Fourier transform

ŝfw = Fsfw of another signal sfw, the frequency warped version

of the signal s, where F is the Fourier transform operator and the

hat over a symbol denotes the Fourier transformed quantity (signal

or operator). We affix the˜symbol over the map θ as a reminder

that the map operates in the frequency domain. Accordingly, we

have Wθ̃ = F−1
Ŵθ̃F = F−1

CθF .

For the case of frequency warping, in order to transform real

signals to real signals, one has to constrain the map θ to have the

odd parity

θ(−ν) = −θ(ν). (16)

This way, positive (negative) frequencies are mapped to positive

(negative) frequencies. In general, this is not a big constraint as

the frequency band allocation of the representation is usually sym-

metric (same bandwidth in positive and negative frequencies).

In this paper, we consider warping operators that are invertible.

One can show [27] that the composition operator (14) is invertible

if and only if the map γ is invertible and the composition oper-

ator Cγ−1 based on the inverse map γ−1 is bounded on L2(R).

If the map γ is a monotonic function then also its inverse γ−1 is

monotonic. Then, a sufficient condition for the invertibility of the

composition operator is that also the first derivative of γ−1 is es-

sentially bounded from below. Theorem 3 in [27] also shows that

in the monotonic case the operator Cγ is invertible if and only if

γ′ is essentially bounded and is absolutely continuous on the finite

intervals in R.

If the warping map is almost everywhere strictly increasing,

one-to-one and differentiable then a unitary form of the warp-

ing operator can be defined by amplitude scaling, as given by the

square root of the magnitude derivative of the map (dilation func-

tion). For example, a unitary frequency warping operator Uθ̃ has

frequency domain action

ŝfw(ν) =
[
Ûθ̃s

]
(ν) =

√∣∣∣∣
dθ

dν

∣∣∣∣ŝ(θ(ν)), (17)

where ν denotes frequency. We assume henceforth that all warping

maps are almost everywhere increasing so that the magnitude sign

can be dropped from the derivative under the square root.

The unitary warping operator (17) is a special case of weighted

composition operator [28]. It turns out that the weight func-

tion – the derivative of the map in our case – helps releasing

some constraints on the maps that guarantee the continuity of the

weighted composition operator. A classical example [28] is the

map γ(x) = x2 in the space L
2([0, 1]). The map does not define

a bounded composition operator (γ′ is not bounded from below).
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However, with the weight
√
γ′(x) =

√
2x one obtains a bounded

(unitary) weighted composition operator. More general conditions

for the definition of unitary weighted composition operators can

be found in [29].

Incidentally, note that the dilation operator introduced in (5) is

a particular case of unitary time warping operator Uγ where the

warping map γ(t) = t/a is linear. By the Fourier scaling theorem,

this is also equivalent to a frequency warping unitary operator Uθ̃

with map θ(ν) = aν.

When a unitary frequency warping operator Uθ̃ acts as mod-

ifier of a time-shift based signal representation, the time-shift op-

erator is affected by a similarity transformation as in (13). By a

calculation similar to the one conducted in the Appendix one can

conclude that

[
Uθ̃TτU

−1

θ̃
s
]
(t) =

∫ +∞

−∞

dνej2πνte−j2πθ(ν)τ ŝ(ν), (18)

which shows how, by the effect of warping, the delay τ converts

into a dispersive delay represented, in the frequency domain, by

the factor e−j2πθ(ν)τ .

3.2. Example: Warping Map for Change of Scale in Sets of

Wavelet

Sets of wavelets for signal expansions are obtained by choosing a

grid of points for sampling the WT in time-scale space of the type

(anm, an), where m and n are integers and a is a constant scale

factor. It is well known that the dyadic scheme, which fixes a = 2
and octave band resolution, is the easiest way to generate orthogo-

nal and complete sets of wavelets. For sound and music processing

scopes, it is highly interesting to improve the frequency resolution,

for example to half-tones. One can achieve this by means of a

warping map θ that allows for a change of the scale factor from a
to b < a. In other words, we are requiring the map to satisfy:

aθ(ν) = θ(bν), (19)

so that, by repeated applications of (19) one can show that

√
dθ

dν

√
anψ̂ (anθ(ν)) =

√
bn

√
dθ

dν
ψ̂ (θ(bnν)) (20)

where ψ̂ is the Fourier transform of a scale-amother wavelet. This

shows that the frequency warped wavelet ψ̃, whose Fourier trans-

form is

ˆ̃
ψ(ν) =

√
dθ

dν
ψ̂ (θ(ν)) (21)

properly scales through powers of b to the warped versions of the

a-scaled versions of the original mother wavelet ψ:

√
bn

ˆ̃
ψ(bnν) =

√
dθ

dν

√
anψ̂ (anθ(ν)) . (22)

A particular map that satisfies the generalized homogeneity condi-

tion (19) is given by the exp-log function:

θ(ν) = C sgn (ν)alogb |ν|, (23)

where sgn (ν) is the signum function andC is an arbitrary constant

that can be set, for example, by constraining the warping map to

fix a specific frequency. This capability is important in sampled
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Figure 2: Frequency warping map to convert octave-band to

halftone-band wavelets. The circles in the plot denote the halftone

mapping points.

systems in order to preserve the sampling rate, in which case we

set:

C = νNa
− logb νN , (24)

where νN is the Nyquist frequency, so that θ(νN ) = νN and the

overall bandwidth is preserved.

Notice that for the map in (23) we have:

dθ

dν
= C logb(a)

alogb |ν|

|ν| , (25)

so that, for the case of interest where a > b > 1, which corre-

sponds to higher frequency resolution warped wavelets, we have

limν→0 θ
′(ν) = 0, so that θ′ is not essentially bounded from be-

low and therefore the corresponding composition operator may not

be bounded. However, in representations for sound and music sig-

nals, we are not interested in extreme accuracy around zero fre-

quency. In order to obtain a bounded composition operator, one

can therefore replace the warping map (23) with one that is identi-

cal to it except that, on a small interval around zero frequency, the

original map is replaced by a linear segment continuously going

from 0 to the value of the original map at the extremes of the inter-

val. Warping with this map will still yield an exact representation,

with the desired frequency band allocation.

A map suitable for the conversion of octave-band wavelets into

halftone-band wavelets is shown in Figure 2. On a log-log scale

the map would appear as linear. The Fourier transforms of the cor-

responding frequency warped wavelets based on an octave-band

pruned tree-structured FIR Daubechies filter bank [3] of order 31

are shown in Figure 3.

The dispersion pattern of 1/3-octave resolution frequency

warped wavelets is shown in Figure 4, where each area delim-

ited by the band edge limits (horizontal lines) and two adjacent

group delay curves roughly represents the time-frequency resolu-

tion or, more precisely, the uncertainty zone of the corresponding
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Figure 3: Magnitude Fourier transform of frequency warped

wavelets with halftone frequency resolution.

wavelet. The fact that the time boundaries are curved is not good

news for the time localization of signal components or features.

Fortunately, redressing methods, which we will illustrate in the re-

mainder of the paper, are available for the elimination or reduction

of dispersion.

4. REDRESSING

As shown in Section 3.1, frequency warping results in a similar-

ity transformation of the time-shift operator, which introduces fre-

quency dependency, i.e., the dispersive time-shift in (18). Once

established, the result proven in the Appendix that

U
(τ)

θ̃
Uθ̃Tτ = TτWθ̃, (26)

provides a simple way to counteract dispersion.

Here the operator U
(τ)

θ̃
is a genuine warping operator as dis-

cussed in Section 3.1, however, it operates in the transform do-

main, i.e., with respect to the time-shift coordinate instead of the

signal’s time. Basically, by performing a supplementary frequency

warping operation, denoted by U
(τ)

θ̃
, with respect to the time-shift

coordinate in the transform domain, one obtains a commutation

rule of the time-shift operator with the frequency warping opera-

tor. The latter occurs in both its unitary Uθ̃ and non-unitary Wθ̃

versions in the commutation rule (26).

Equation (26) shows that the pure time-shifting of the warped

nucleus of the transform leads to a perfect reconstruction scheme,

which is equivalent to operating in both signal and transform do-

main with unitary operators. The insertion of signal frequency

warping operators Uθ̃ and U
†

θ̃
for frequency remapping and fre-

quency warping operators U
(τ)

θ̃
and U

(τ)

θ̃

†
in the transform do-

main for the computation of a time-something representation is

shown in Figure 5.

We remark that the scheme illustrated in the picture is a con-

ceptual one, as redressing may provide a great simplification,

which makes the online computation of the warping operators un-

necessary. In fact, once we apply the redressing operator U
(τ)

θ̃
,
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Figure 4: Uncertainty zones delimited by the group delay disper-

sion profiles of 1/3-octave warped wavelets without redressing.
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Figure 5: Inserting frequency warping operators for both fre-

quency remapping and redressing in the analysis-synthesis path

of a signal representation

the frequency warped nucleus of the transform may become shift-

invariant or approximately so. Thus, in the computation of the

transform, one can compute the scalar products of the signal with

time-shifted versions of the frequency warped modulated proto-

type window or dilated mother wavelet.

4.1. Redressing Sampled Time-Something Representations

In most time-something representations the time-shift, as well as

other variables, can be sampled, while preserving the capability

of perfectly reconstructing the signal. Sampling in time-frequency

the STFT leads to the concept of Gabor frames [30], while sam-

pling the WT leads to orthogonal / biorthogonal wavelets or to

wavelet frames [2, 3]. However, since frequency warping does

not commute with the time sampling operator, the redressing pro-

cedure does not carry over to the sampled transforms in an exact

way.

Once time sampling is performed in the transform domain, the

time-shift operator Tτ becomes TnT . Thus, we cannot apply the

operator U
(τ)

θ̃
with respect to the variable τ in order to eliminate

the dispersive delays as we did in (26). Instead, we can try to

apply a discrete version of frequency warping operator acting on

sampled time, i.e. on the index n.

A discrete-time frequency warping operator can be built from

an almost everywhere differentiable warping map ϑ that is one-to-

one and onto [− 1
2
,+ 1

2
[. In this case, one can form an orthonormal
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basis of ℓ2(Z) as follows:

µm(n) =

∫ +
1
2

−
1
2

√
dϑ
dν
ej2π(nϑ(ν)−mν)dν, (27)

where n,m ∈ Z (see [31, 32, 14, 12, 13]).

The map ϑ can be extended over the entire real axis as con-

gruent modulo 1 to a 1-periodic function. One can always write

the map in terms of a 1-periodic function plus an integer staircase

function, so that

ϑ(ν + k) = ϑ(ν) + k (28)

for any k ∈ Z.

Similarly to the continuous counterpart, one can define the ac-

tion of the discrete-time unitary warping operator Vϑ̃ on any se-

quence {x(n)} in ℓ2(Z) as follows:

[Vϑ̃x] (m) = 〈µm, x〉ℓ2(Z) . (29)

Given x̃(m) = [Vϑ̃x] (m), in the frequency domain one obtains

ˆ̃x(ν) =
√

dϑ
dν
x̂(ϑ(ν)), (30)

where here theˆsymbol denotes discrete-time Fourier transform.

The sequences ηm(n), where the overbar symbol x denotes com-

plex conugation, define the nucleus of the inverse unitary fre-

quency warping ℓ2(Z) operator V
ϑ̃−1 = V

†

ϑ̃
. where ηm(n) =

µn(m).
Discrete-time frequency warping operators were applied in the

sampled time STFT domain in order to partially eliminate dis-

persion in [15, 16, 17]. We showed that complete elimination of

dispersion, i.e., full linearization of the non-linear phase resulting

form the application of frequency warping to the time-shift opera-

tor is possible in the case of bandlimited analysis window. In the

more general case of non-bandlimited window we showed that one

can resort to high-performance approximations [23, 21].

In order to extend the redressing methods to other time-

something representations, we assume that also the other trans-

form domain coordinate(s) are being sampled. For example, in

the case of dyadic wavelets, the basis elements are obtained by

time-shifting a scaled version of the mother wavelet ψr(t) =√
2−rψ

(
t
2r

)
, in which the scale variable has been exponentially

sampled to powers of 2.

In order to simplify our notation, we assume that the redress-

ing method is to be applied to basis or frame elements denoted by

ψr , which are indexed just by one index r like in the wavelet exam-

ple. Moreover, we assume for sake of generality that the time-shift

factor Tr depends on the index r. Thus, redressing can be achieved

by means of a collection of discrete-time frequency warping op-

erators V
(m)

ϑ̃r

, each acting on the frequency warped time-shifted

representation element of index r:

ψ̃r,m = V
(m)

ϑ̃r

Uθ̃TmTr
ψr, (31)

where the superscript (m) in the discrete-time warping operator is

a reminder that it operates with respect to the time-shift index m.

Exploiting the odd parity (16) of the θ(ν) map and (28), one

can show that (31) becomes:

ψ̃r,m(t) =

∫ +∞

−∞

dνAr(ν)e
j2π(θ−1(ϕr(ν))t−mν)ψ̂r (ϕr(ν)) ,

(32)

where

ϕr(ν) =
ϑr(ν)

Tr

Ar(ν) =

√
dθ−1 (ϕr(ν))

Trdν
.

(33)

From the phase in (32) one can conclude that if, for some constant

T̃r > 0, we had

θ−1(ϕr(ν)) =
ν

T̃r

(34)

then, since by the invertibility of the map θ the last equation is

equivalent to

ϕr

(
νT̃r

)
= θ(ν), (35)

we would have

ψ̃r,m(t) =

√
T̃r

Tr

∫ +∞

−∞

dνej2πν(t−mT̃r)ψ̂r (θ(ν)) . (36)

This shows that, for each r, the redressed warped representation

elements could be obtained from the non-unitarily warped original

elements just by altered time-shift TmT̃r
. This would be the dis-

crete counterpart of the unsampled result described in the previous

section. However, as we previously remarked, since the maps ϑr

are constrained to be congruent modulo 1 to a 1-periodic function

with odd parity, their shape can only be arbitrarily assigned on a

band of width 1/2.

Collecting (33) and (35) together we have the following con-

dition on the discrete-time warping map ϑ:

ϑ
(
νT̃r

)
= Trθ(ν). (37)

Generally, condition (37) cannot be satisfied everywhere but only

in a small bandwidth of size 1/2T̃r . However, T̃r is a design pa-

rameter, which can be selected at will, with the trade-off that it

also affects the final sampling rate of the transform. If the warped

wavelet, whose Fourier transform is ψ̂r (θ(ν)), is strictly bandlim-

ited to a sufficiently small band, then it is only necessary to satisfy

(37) in its bandwidth. In the general case, one can satisfy (37)

within the essential bandwidth of the warped wavelet. We remark

that if the complete chain of warping operators defining the warped

transform and the redressing method is computed, the partially re-

dressed warped transform has perfect reconstruction.

As a design example, in the dyadic wavelet case choose Tr =
2rT , where 1/T is a reference frequency given by the upper cut-

off frequency of the mother wavelet. In designing warped wavelet

transforms one generally desires to improve the octave band fre-

quency resolution of the dyadic wavelets. Changing to smaller

bandwidths for the warped wavelets, and suitably choosing T̃r , re-

sults in a rescaling of the frequency interval of the ϑr map for the

linearization of the phase within the essential bandwidths of the

wavelets, i.e., where the wavelets have essentially non-zero mag-

nitude Fourier transform. This is shown in Figure 6 for a warping

map carrying dyadic octave-band wavelets to 1/3 octave resolu-

tion. In this example, with reference to the map in Section 3.2,

we chose a = 2 and b = 21/3, which provides warped wavelets

with bandwidths (b − 1)/2Tbr , with cutoff frequencies 1/2Tbr ,

r = 1, 2, ... . Thus, one can select T̃r = Tbr/(b − 1) in order to

define the branch of the map ϑr according to (37), shown, for the

case r = 2, in the highlighted (red) portion of the map in Figure 6.

For any r, this choice defines ϑr on a width 1/2 frequency band
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Figure 6: Segment of the map ϑ2 for the redressing of 1/3-octave

warped wavelets obtained from dyadic ones.

with total variation 1/2. The remaining part of each map ϑr is then

extended by odd symmetry about 0 frequency and modulo 1 pe-

riodicity. Actually, in this specific example, in view of property

(19), the maps are the same for any r.

Of course, in general, the detailed approximation margins

depend on the particular time-something representation at hand.

However, the flexibility in the choice of the sampling of the time-

shift variable in the transform domain can lead to good results as

in the case of generalized Gabor frames [23, 21].

5. CONCLUSIONS

In this paper we have revisited recently introduced redressing

methods for mitigating dispersion in warped signal representa-

tions, with the objective of generalizing the procedure to generic

time-something representations like wavelet expansions.

We showed that redressing methods can be extended to gen-

eralized settings in both unsampled and sampled transform do-

mains, introducing notation to simplify their application to signal

analysis-synthesis scheme.

The phase linearization techniques lead to approximated

schemes for the computation of the warped and redressed signal

representations, where one can pre-warp the analysis window or

mother wavelet and compute the transform without the need for

further warping.
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7. APPENDIX: PROOF THAT U
(τ)

θ̃
Uθ̃Tτ = TτWθ̃

In this Appendix we prove an important result on which the re-

dressing methods for the warped time-shift operators are based.

We show that the application of the same warping operator Uθ̃ but

with respect to time-shift τ instead of time t, which we denote by

U
(τ)

θ̃
, results in the commutation of the warping operator Uθ̃ with

the time-shift operator Tτ in its non-unitary form.

We are going to prove our result under the assumption that the

map θ is almost everywhere increasing and has odd parity:

θ(−ν) = −θ(ν). (38)

In this case, the first derivative

θ′(ν) =
dθ

dν
(39)

is almost everywhere positive and has even parity:

θ′(−ν) = θ′(ν). (40)

From (17) we have:

[Uθ̃s] (t) =

∫ +∞

−∞

dαKθ(t, α)s(α) (41)

where

Kθ(t, α) =

∫ +∞

−∞

dν

√
dθ

dν
ej2π(νt−θ(ν)α)

=

∫ +∞

−∞

dν

√
dθ−1

dν
ej2π(θ−1(ν)t−να)

(42)

where we have used the fact that the map θ is invertible almost

everywhere, so that

θ−1(θ(ν)) = ν (43)

far almost all ν ∈ R, from which it follows that

1 =
d
[
θ−1(θ(f))

]

df
=

dθ−1

dα

∣∣∣∣
α=θ(f)

dθ

df
(44)

almost everywhere.

Thus, given any finite energy signal s(t), we have

[
U

(τ)

θ̃
Uθ̃Tτs

]
(t) =

=

∫ +∞

−∞

dαKθ(τ, α)

∫ +∞

−∞

dβKθ(t, β)s(β − α)

=

∫ +∞

−∞

dαKθ(τ, α)

∫ +∞

−∞

dηKθ(t, η + α)s(η)

(45)

Using (42), by direct calculation, it is easy to show that

∫ +∞

−∞

dαKθ(τ, α)Kθ(t, η + α) = Lθ(t− τ, η), (46)

where Lθ(t, α) is the nucleus of the non-unitary warping operator

Wθ̃ , i.e.,

Lθ(t, α) =

∫ +∞

−∞

dνej2π(νt−θ(ν)α)

=

∫ +∞

−∞

dν
dθ−1

dν
ej2π(θ−1(ν)t−να).

(47)

Thus, (45) becomes

[
U

(τ)

θ̃
Uθ̃Tτs

]
(t) =

∫ +∞

−∞

dηLθ(t− τ, η)s(η)

= [TτWθ̃s] (t),

(48)

which is what we needed to prove.
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