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Abstract. The properties of the intersection of Rauzy fractals associated with substitutions
having the same incidence matrix have been studied by several authors. Different techniques
have been introduced and used for this purpose, one of them is the balanced pair algorithm.
In the present paper we explore the actual limitations of this algorithm. We show that the
balanced pair algorithm is defined and terminates only when the intersection of the Rauzy
fractals have non-empty interior and when this condition fails it cannot be used.

1. Introduction

Rauzy fractals play a fundamental role in the study of the long standing Pisot conjecture,
which states that the dynamical system associated with an irreducible Pisot substitution has a
pure point spectrum (cf. [17, 26]). Recently important progress in solving this conjecture has
been made (cf. [6]). The topological, geometrical and dynamical properties of Rauzy fractals
have been analysed extensively, for instance see the survey [10] and references therein.

The study of the common dynamics of two Pisot substitutions is related to the intersection
of their respective Rauzy fractals, especially when the substitutions have the same incidence
matrix. This problem was discussed the first time in [22] and has been subsequently studied
in [18, 19, 21]. In [18] the balanced pair algorithm for two substitutions was presented. This
algorithm is based on the classical balanced pair algorithm introduced by Livshits [14] in
relation to the Pisot conjecture (see also [23]). It allows to describe the intersection of two
Rauzy fractals by a new substitution. The conditions on the substitutions are quite strong.
In particular, one Rauzy fractal is required to have the geometric property (F), i.e., to contain
the origin as inner point. This immediately implies that the intersection of the Rauzy fractals
has non-empty interior. Furthermore, only irreducible substitutions are considered.

In the present article we generalise the results presented in [18] by removing the requirement
of the geometric property (F). Additionally, we will also allow reducible substitutions as long
as the Rauzy fractals induce a proper lattice tiling. We also obtain a necessary condition,
namely, that the balanced pair algorithm is defined and terminates if the intersection of the
corresponding Rauzy fractals has positive Lebesgue measure (Theorem 1).

Our results also have consequences on the characterisation of substitutions that have the
geometric property (F). We show that a substitution that possesses this property always
satisfies a certain combinatoric condition stated in terms of a periodic point. Furthermore,
we give necessary conditions, based only on the spectral properties of the incidence matrix of
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the substitution, that ensure that the substitution does not have the geometric property (F)
(Theorem 2).

The article is organised as follows: In Section 2 we introduce all necessary definitions and
formalism, present the balanced pair algorithm, recall the results from [18] and state our main
result, which will be proved in Section 3. In Section 4 we consider our results from the point
of view of the geometric property (F) and give some illustrative examples.

2. Preliminaries and main result

2.1. Words and substitutions. Let A be a finite set that we call an alphabet and its
elements letters. The set of finite words over A is given by A∗ =

⋃
n≥0An where A0 is the

set formed by the empty word ε.

For a word V ∈ A∗ and a letter a ∈ A we denote the length of V by |V | and the number
of occurrences of the letter a in V by |V |a, i.e., |V | =

∑
a∈A |V |a.

Assuming that A = {1, . . . ,m}, we set

(1) l(V ) := (|V |1, |V |2, . . . , |V |m) ∈ Nm,
some authors call this map the abelianasation map.

A substitution or morphism is a map from A to A∗, the substitution ζ is extended to A∗ by
concatenation, i.e., ζ(UV ) = ζ(U)ζ(V ) for U, V ∈ A∗. The incidence matrix of ζ is the matrix
Mζ = (|ζ(j)|i)i,j∈A. We say the substitution ζ is primitive if the matrix Mζ is primitive, i.e.

there exists a k such that all entries of Mk
ζ are positive. Observe that for all A ∈ A∗ we have

Mζ · l(A) = l(ζ(A)).

Let AN denote the set of one-sided infinite sequences on A. We define the shift map
σ : AN → AN by

σ(v0v1v2 . . .) := v1v2 . . . .

The substitution ζ can be extended in a straightforward way to AN. A periodic point of ζ
is a sequence u ∈ AN such that ζk(u) = u for some positive integer k. If k = 1 then we call
u a fixed point. According to [16] each substitution possesses at least one periodic point.

A primitive substitution ζ induces the substitution dynamical system (Ωζ , σ), where

Ωζ := {σm(u) : m ≥ 0},
with u a periodic point of ζ and the closure with respect to the product topology of the
discrete topology. Note that Ωζ does not depend on the actual choice of u since we require ζ
to be primitive. Furthermore, the primitivity implies that the dynamical system is minimal,
i.e. every orbit is dense.

2.2. Rauzy fractals. If ζ is a primitive substitution then the incidence matrix Mζ possesses
a dominant Perron-Frobenius eigenvalue that we denote by β. Throughout the entire article
we assume ζ to be a unimodular Pisot substitution (or unit Pisot substitution), meaning
that the dominant root β is a real algebraic unit greater than 1 and the Galois conjugates
different from β have modulus less than one. We say that ζ is irreducible if the characteristic
polynomial of the matrix Mζ is irreducible; in this case the algebraic degree of β is equal to
m, the size of the alphabet A.

Let d+1 denote the algebraic degree of β and α1, . . . , αd the Galois conjugates different from
β. Observe that α1, . . . , αd are located inside the complex unit circle. Denote by K ∼= Rd
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the contractive space spanned by the right eigenvectors of Mζ associated with α1, . . . , αd.
The (one-dimensional) subspace spanned by the right eigenvector of Mζ associated to β is
the expanding space and we will denote it by E. If ζ is irreducible then d = m − 1 and
Rm ∼= K⊕ E. Otherwise there is a complementary space X of dimension m− d− 1 spanned
by the eigenvectors associated with the remaining eigenvalues and we have Rm ∼= K⊕E⊕X.

We denote by π : Rm −→ K the projection onto K parallel to E and X. The linear function
f : K −→ K is the restriction of the action of Mζ onto the contractive space K, that is, for all
x ∈ Rm we have f ◦π(x) = π(Mζx). By construction we clearly have that f is a contraction.

The Rauzy fractal Rζ associated to ζ is defined by

(2) Rζ := {π(l(u0 · · ·un)) : n ∈ N} ⊂ K,

where u = u0u1u2 · · · is a periodic point of ζ. The Rauzy fractal naturally decomposes into
|A| subsets. In particular, for each a ∈ A define

(3) Rζ(a) := {π(l(u0 · · ·un−1)) : n ∈ N, un = a} ⊂ Rζ

and we obviously have

(4) Rζ =
⋃
a∈A

Rζ(a).

The collection {Rζ(a) | a ∈ A} is called the natural partition of the Rauzy fractal Rζ . Each
Rζ(a) and, hence, the Rauzy fractal Rζ itself, is the closure of its interior and has positive
Lebesgue measure (cf. [25]).

The collection {Rζ(a) : a ∈ A} is the unique non-empty solution of the graph directed
iterated function system (GIFS for short) in the sense of [15] that satisfies the system of set
equations

(5) Rζ(a) =
⋃

ζ(b)=PaS

(π(l(P )) + f(Rζ(b))) (a ∈ A).

This union is measure-theoretically disjoint (cf. [12, 25]). In contrast, the union (4) is measure-
theoretically disjoint provided that ζ satisfies the strong coincidence condition (cf. [5, 25])
which means that we either have

Positive coincidence: for all a1, a2 ∈ A there exist k ∈ N, b ∈ A, P1, S1, P2, S2 ∈ A∗
such that ζk(a1) = P1bS2, ζk(a2) = P2bS2 and l(P1) = l(P2) or

Negative coincidence: for all a1, a2 ∈ A there exist k ∈ N, b ∈ A, P1, S1, P2, S2 ∈ A∗
such that ζk(a1) = P1bS2, ζk(a2) = P2bS2 and l(S1) = l(S2).

It is conjectured that if ζ is irreducible then the coincidence condition is satisfied (coincidence
conjecture). Up to now this is only proved for the 2-letter case (see [7]).

A substitution ζ may have more than one periodic point, however, due to primitivity
the Rauzy fractal does not depend on the actual choice of u. We immediately see that a
higher power of ζ induces the same Rauzy fractal, i.e., for all a ∈ A and k ∈ N we have
Rζ(a) = Rζk(a). Therefore, without loss of generality, we may assume u to be a fixed point
of ζ. Note that if ζ has only one periodic point (which is necessarily a fixed point) then the
strong coincidence condition is automatically satisfied (cf. [25]).

Suppose that ζ satisfies the strong coincidence condition. Define the lattice Γ by

Γ := {π(x1, . . . , xm) : (x1, . . . , xm) ∈ Zm, x1 + · · ·+ xm = 0} ⊂ K.
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We say that the Rauzy fractal Rζ has the tiling property if it induces a proper lattice tiling
with respect to Γ, that is,

⋃
γ∈Γ(γ + Rζ) = K, and for distinct elements γ1, γ2 ∈ Γ we always

have int(γ1 + Rζ) ∩ int(γ2 + Rζ) = ∅. A priori, only substitutions that satisfy the so-called
quotient mapping condition come into question (see [20, Definition 3.13]). Observe that this
condition is fulfilled by any irreducible substitution. In this case the collection {γ+Rζ : γ ∈ Γ}
provides a multiple tiling of K. The step towards a proper tiling is tricky. It is conjectured
that each irreducible unit Pisot substitution induces a proper tiling (Pisot conjecture, see, for
example, [4]). Besides this there exist several tiling conditions; here we refer the interested
reader to [10, 20] and the references therein.

Throughout the entire article we suppose that all substitutions satisfy the strong coinci-
dence condition and have the tiling property without mentioning this any more. One sufficient
condition that implies that the multi-tiling is a proper tiling is that the origin is an inner
point of the Rauzy fractal Rζ . We follow the notation from [20] and call this characteristic
the geometric property (F). Usually it is quite tricky to decide whether ζ has this property.
More precisely, the verification runs algorithmically via graphs (see, for example, [20, The-
orem 4.6]). Following [9] (see also [3]) the geometric property (F) is equivalent to the fact
that the Dumont-Thomas numeration induced by ζ has the (algebraic) extended finiteness
property which is a generalization of the finiteness property for beta-expansions introduced
in [13].

2.3. The balanced pair algorithm. Let U and V be two finite words. We said that (U, V )
is a balanced pair if the occurrences of each letter of the alphabet in U and V are the same,
i.e., l(U) = l(V ). This clearly implies that U and V are of the same length. If for all proper
prefixes U ′ of U and V ′ of V the pair (U ′, V ′) is not balanced then we say that the balanced
pair (U, V ) is minimal.

Let ζ1 and ζ2 be two primitive substitutions having the same incidence matrix. Then for
each balanced pair (U, V ) the pair (ζ1(U), ζ2(V )) is again balanced.

We may assume that ζ1 and ζ2 possess the one-sided fixed points u1 and u2, possibly by
considering higher powers (which does not change the Rauzy fractals). An initial balanced
pair for (u1,u2) is a balanced pair (U, V ) such that U and V are proper prefixes of u1 and u2,
respectively. Clearly, if (U, V ) is an initial balanced pair then (ζ1(U), ζ2(V )) is also an initial
balanced pair.

If we successively apply ζ1 and ζ2 on an initial balanced pair and subsequently split the
result into minimal balanced pairs we obtain a representation of u1 and u2 as

u1 = U1U2U3 · · · , u2 = V1V2V3 · · ·

such that (Un, Vn) is a minimal balanced pair for all n ∈ N. Let

B := {(Un, Vn) : n ∈ N}

be the set of all occurring minimal balanced pairs.

Definition 1 (Balanced pair algorithm). Let ζ1 and ζ2 be two primitive substitutions over
the same alphabet and with the same incidence matrix. Suppose that u1 and u2 are fixed
points of ζ1 and ζ2, respectively.

• We say that the balanced pair algorithm is defined if there exists an initial balanced
pair for (u1,u2).
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• We say that the balanced pair algorithm terminates if the set B of minimal balanced
pairs is finite.

In [18] we find the following result:

Proposition 1 ([18, Lemma 4.3]). Let ζ1 and ζ2 be unimodular irreducible Pisot substitutions
with the same incidence matrix, whose Rauzy fractals are Rζ1, Rζ2, respectively. Suppose that
ζ1 has the geometric property (F). Then the balanced pair algorithm is defined and terminates.

We generalise this result by weakening the hypothesis from [18]. In particular, we also
consider reducible substitutions as long as they induce a proper lattice tiling (tiling property).
Furthermore, we do not require the geometric property (F). In this setting we also obtain as
necessary result that if the intersection of the Rauzy fractals Rζ1 and Rζ2 has empty interior
then the balanced pair algorithm is not defined or does not terminate.

Theorem 1. Let ζ1 and ζ2 be two primitive, unimodular Pisot substitutions with the same
incidence matrix satisfying the strong coincidence condition and having the tiling property.
The balanced pair algorithm of ζ1 and ζ2 is defined and terminates if and only if int(Rζ1 ∩
Rζ2) 6= ∅.

Concerning the general structure of R1 ∩ R2 we have two “good” cases, namely, when
R1 ∩R2 has non-empty interior and when R1 ∩R2 consists only of the origin. The first case
is covered by Theorem 1. In the second case it is quite easy to see that the balanced pair
algorithm is not defined. Theoretically the intersection may also have empty interior but
contain points different from the origin. Here we have no information whether the balanced
pair algorithm is defined or not.

3. Proof of Theorem 1

Throughout the section we let ζ1 and ζ2 be unimodular Pisot substitutions with the same
incidence matrix satisfying the strong coincidence condition and having the tiling property,
and Rζ1 , Rζ2 be their associated Rauzy fractals. Without loss of generality we may assume
that the substitutions have the one-sided fixed points u1 and u2, respectively.

Lemma 1. If Rζ1 ∩Rζ2 has non-empty interior, then the following items hold.

(a) The origin is not an isolated point of Rζ1 ∩Rζ2.
(b) If U ∈ A∗ is a proper prefix of u1 and π(l(U)) ∈ int(Rζ1 ∩ Rζ2), then (U, V ) is a

balanced pair where V is the (uniquely determined) proper prefix of u2 whose length
is equal to the length of U .

Proof. Let X := int(Rζ1 ∩Rζ2). To show (a) observe that f is a contraction with the origin
as a fixed point, and by the definition of the Rauzy fractals we have f(Rζ1) ⊂ Rζ1 and
f(Rζ2) ⊂ Rζ2 . Thus, for all n ≥ 1 we have fn(X) ⊂ X which implies that X contains a
sequence that converges to the origin.

In order to prove (b) we let U ∈ A∗ be a prefix of u1 such that π(l(U)) ∈ X. Let V ∈ A∗ be
the prefix of u2 of the same length, that is |U | = |V |. We show by contradiction that (U, V )
is a balanced pair. Hence, suppose that l(U) 6= l(V ). Set x := l(U)− l(V ) and observe that
γ := π(x) ∈ Γ. By definition, π(l(V )) ∈ Rζ2 , hence, γ + π(l(V )) is contained in the translate
γ + Rζ2 . On the other hand, by construction γ + π(l(V )) = π(l(U)) ∈ X ⊂ int(Rζ2). This
clearly contradicts the tiling property. �
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We obtain the first part of Theorem 1.

Lemma 2. If Rζ1 ∩Rζ2 has non empty interior then the balanced pair algorithm of ζ1 and
ζ2 is defined and terminates.

Proof. The balanced pair algorithm terminates if (and only if) the fixed words u1 and u2 can
be decomposed as

u1 = U1U2U3U4 · · · , u2 = V1V2V3V4 · · ·
such that the collection {(Uk, Vk) : k ∈ N} is a finite set of minimal balanced pairs.

We show that u1 and u2 can be decomposed into non-empty words

u1 = U ′1U
′
2U
′
3U
′
4 · · · , u2 = V ′1V

′
2V
′

3V
′

4 · · ·

of bounded length such that (U ′n, V
′
n) is a (not necessarily minimal) balanced pair for each

n ∈ N. Due to the boundedness of the words this is equivalent to the previous condition.
As Rζ1 ∩ Rζ2 has non-empty interior there exists an a ∈ A such that Rζ1(a) ∩ Rζ2 has

non-empty interior. Now consider the respective equation (5). We can iterate it k times and
obtain

Rζ1(a) =
⋃

ζk1 (b)=PaS

(
π(l(P )) + fk(Rζ1(b))

)
.

Since f is a contraction we can choose k sufficiently large such that one of the subsets of
this union is completely contained in the interior of Rζ1(a)∩Rζ2 . In other words, there exist

particular k ∈ N, b ∈ A, P, S ∈ A∗ such that ζk1 (b) = PaS and

π(l(P )) + fk(Rζ1(b)) ⊂ int(Rζ1 ∩Rζ2).

Now subdivide u1 according to the occurrences of b. In particular, for each n ∈ N let Xn ∈
A∗ such that |Xn|b = 0 and u1 = X1bX2bX3b · · · . Set U ′1 := ζk1 (X1)P and U ′n := aSζk1 (Xn)P
for n ≥ 2. Since b occurs in u1 with bounded gaps the collection {Xn : n ∈ N} is a finite set
and, hence, |U ′n| ≤ K for all n ∈ N with K = max{|ζk1 (Xnb)| : n ∈ N}.

Since u1 is a fixed point of ζ1 we have

u1 = ζk1 (X1)ζk1 (b)ζk1 (X2)ζk1 (b)ζk1 (X3)ζk1 (b) · · · = U ′1U
′
2U
′
3 · · · .

For each N ∈ N let V ′n be the word of length |U ′n| such that u2 = V ′1V
′

2V
′

3 · · · .
By (3) we have

Rζ1(b) = {π(l(X1bX2b · · · bXn)) : n ∈ N}.
This immediately shows that

fk(Rζ1(b)) + π(l(P )) ={π(l(ζk1 (X1bX2b · · · bXn)P )) : n ∈ N}

={π(l(U ′1U
′
2 · · ·U ′n)) : n ∈ N}.

Therefore, for each n ∈ N we have that π(l(U ′1U
′
2 · · ·U ′n)) is contained in the interior of

Rζ1 ∩Rζ2 . By Lemma 1 we conclude that (U ′1U
′
2 · · ·U ′n, V ′1V ′2 · · ·V ′n) is an initial balanced pair

and, hence, (U ′j , V
′
j ) is a balanced pair of length at most K for all j ≥ 1. �

Lemma 3. If the balanced pair algorithm of ζ1 and ζ2 is defined and terminates then Rζ1∩Rζ2

has non-empty interior.
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Proof. Suppose that the balanced pair algorithm terminates, that is there exists a sequence
of minimal balanced pairs (Un, Vn)n≥1 such that u1 = U1U2U3 · · · and u2 = V1V2V3 · · · .
Furthermore, for each n ≥ 1 we have

π(l(U1U2 · · ·Un)) = π(l(V1V2 · · ·Vn)) ∈ Rζ1 ∩Rζ2 .

Since Rauzy fractals are compact sets we have that

Rζ1 ∩Rζ2 ⊇ {π(l(U1U2 · · ·Un)) : n ≥ 1} = {π(l(V1V2 · · ·Vn)) : n ≥ 1}.
The set B of minimal balanced pairs is finite and we can associate with each B = (U, V ) ∈ B
the subset

R(B) := {π(l(U1U2 · · ·Un)) : n ≥ 1, Un+1 = U} = {π(l(V1V2 · · ·Vn)) : n ≥ 1, Vn+1 = V }
and, clearly,

Rζ1 ∩Rζ2 ⊇
⋃
B∈B

R(B).

For convenience for each B = (U, V ) ∈ B we let l(B) := l(U)(= l(V )). Define a substitution
ζ12 over B by

ζ12 : B −→ B∗, (U, V ) 7−→ (U ′1, V
′

1)(U ′2, V
′

2) · · · (U ′`, V ′` )

whenever ζ1(U) = U ′1U
′
2 · · ·U ′` and ζ2(V ) = V ′1V

′
2 · · ·V ′` . We see that the collection {R(B) :

B ∈ B} satisfies a GIFS since for each B ∈ B we have

(6) R(B) =
⋃

ζ12(B′)=B1···BkBB
′
1···B′

k′

(
π(l(B1 · · ·Bk)) + f(Rζ(B

′))
)

(cf. [18, Theorem 4.4]). Note that R(B) is a subset of Rζ1(u1) and Rζ2(v1), respectively,
where u1 is the first letter of U , v1 is the first letter of V , and B = (U, V ). Therefore, the
disjointness of the union (5) for ζ1 (and also ζ2) immediately implies the disjointness of (6).

By [18, Lemma 4.5] the corresponding subdivision matrix (which is the transpose of the
incidence matrix Mζ12) possesses a dominant root that coincides with that of Mζ1 and Mζ2 .
Observe that it is not clear whether the underlying graph is strongly connected. But it
must possess a strongly connected component whose incidence matrix has β as a dominant
root. Therefore, from [15, Theorem 4] it follows that the subsets R(B) that correspond to the
vertices of this strongly connected components have positive d-dimensional Lebesgue measure
and, hence, non-empty interior which implies that Rζ1 ∩Rζ2 has non-empty interior. �

Now, Theorem 1 follows directly from Lemma 2 and Lemma 3.

Observe that Rζ1 ∩Rζ2 is not necessarily the closure of its interior (even if this interior is
non-empty). Therefore, the substitution ζ12 only yields information about the closure of the
interior of Rζ1 ∩Rζ2 . Several examples in [18, 19] show that the substitution ζ12 is usually
not irreducible. In fact, it is not even clear whether it is always primitive. For this reason we
do not say that (the closure of the interior of) the intersection Rζ1 ∩Rζ2 is given by a Rauzy
fractal.

Problem 1. If the balanced pair algorithm terminates, what is the shape of ζ12? Is this
substitution always primitive? What can be said about the additional eigenvalues?

A second question concerns the intersection R1 ∩ R2. We already discussed the possible
structures of R1 ∩R2 in the introduction and we now see that there exist two “pathological”
cases. On one hand the intersection may contains points different from the origin but have
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empty interior. On the other hand the intersection may have non-empty interior without
being the closure of its interior. However, we do not know whether these cases really occur.

Problem 2. Characterise the structure of R1 ∩R2. Which cases can occur and what can be
said about the balanced pair algorithm for these cases?

Remark 1. One easily generalises the result of Theorem 1 in order to analyse the intersection
R1 ∩ · · · ∩Rn of Rauzy fractals induced by substitutions ζ1, . . . , ζn with n larger than 2. For
this purpose we have to define (minimal) balanced tuples and the balanced tuples algorithm
in a straightforward way. The respective proofs run analogously and are left to the interested
reader.

4. The geometric property (F)

In the present section we show that our results provide a necessary combinatorial condition
for a unimodular Pisot substitution ζ to have the geometric property (F). For a word V =
v0 . . . vn ∈ A∗ we denote its reversed word by V := vn . . . v0. The reversed substitution ζ of
ζ is defined by ζ(a) := ζ(a), for all a ∈ A. Clearly ζ and ζ have the same incidence matrix
and v = v1v2v3 · · · ∈ AN is a periodic point of ζ if and only if v = · · · v3v2v1 is a left periodic
point with respect to ζ, that is

ζ(v) = · · · ζ(v3)ζ(v2)ζ(v1) = · · · v3v2v1 = v.

Proposition 2. Let ζ be a unimodular Pisot substitution that has the geometric property (F).
Then int(Rζ ∩Rζ) 6= ∅.

Proof. In [19] is was shown that Rζ = −Rζ . Hence, if 0 ∈ int(Rζ) then 0 ∈ int(Rζ) and

therefore int(Rζ ∩Rζ) 6= ∅. �

This immediately yields the following condition.

Corollary 1. Let ζ be a unimodular Pisot substitution that has the geometric property (F).
Then for the pair (u,v) of infinite words such that u is a (right) periodic point of ζ and v is
a left periodic point of ζ the balanced pair algorithm is defined and terminates.

We conclude the article with a necessary condition on a unimodular Pisot substitution ζ
that ensures that Rζ ∩Rζ has empty interior, namely, in the case where at least one of the

contractive eigenvalues of the incidence matrix is real and positive. The interesting thing
about this criterion is that it only relies on the spectral properties of the matrix Mζ and not
on the balanced pair algorithm.

Theorem 2. Let ζ be a unimodular Pisot substitution over the alphabet A = {1, . . . ,m}.
Suppose that there exists a contractive eigenvalue α that is real and positive and the scalar
products vα · l(P ) of the proper prefixes P of ζ(j) for each j ∈ A are all non-negative or
non-positive, where vα is a left eigenvector of Mζ with respect to α. Then Rζ ∩Rζ has empty
interior.

Proof. We organise the d Galois conjugates different from β as follows: α1, α2, . . . , αd such
that α1, . . . , αt ∈ R. α1 = α, and αt+1, . . . , αt+2s ∈ C \R (hence, t+ 2s = d). Without loss of
generality we may suppose that αt+k = αt+s+k for each k ∈ {1, . . . , s} (where αt+s+k denotes
the complex conjugate of αt+k).
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For each k ∈ {1, . . . , d} denote by vαk
a left eigenvalue of Mζ with respect to αk (hence,

vα1 = vα). We define the matrix P to be the real d ×m matrix whose first t rows are the
vectors vαk

for k ∈ {1, . . . , t} while the (t+2k−1)st and (t+2k)th row are given by <(vαt+k
)

and =(vαt+k
), respectively, for each k ∈ {1, . . . , s}. Observe that the multiplication with P is

a suitable representation of the projection π in some basis. Now, the map f is given by the
diagonal block matrix

D := diag

(
α1, . . . , αt,

(
<(αt+1) −=(αt+1)
=(αt+1) <(αt+1)

)
, . . . ,

(
<(αt+s) −=(αt+s)
=(αt+s) <(αt+s)

))
.

In other words, for each x ∈ Rd we have

P ·Mζ · x = D ·P · x.

We have

Rζ := {P · l(u0 · · ·un) : n ∈ N}.
It is well known that each prefix u1 · · ·un of the fixed point u can be represented uniquely as

u1 · · ·un = ζk(Pk)ζk−1(Pk−1) · · · ζ(P1)P0

where, for each r ∈ {0, . . . k}, Pr is a proper prefix of ζ(j) for some j ∈ A; for details see, for
example, [9, 11]. Since Mζ · l(A) = l(ζ(A)), we thus have

(7) P · l(u1 · · ·un) =
k∑
r=0

P ·Mr
ζ · l(Pr) =

k∑
r=0

Dr ·P · l(Pr).

Now observe that by construction the first entry of P · l(Pr) is given by the scalar product
vα · l(Pr). By the assumption of the theorem all these products are non-negative or non-
positive where we may assume, without loss of generality, that vα · l(Pr) ≥ 0 for all r ∈
{0, . . . , k}. By the positivity of α and the structure of D we therefore have that the first
entry of P · l(u1 · · ·un) is non-negative for all n ∈ N and, hence,

Rζ ⊂ {(x1, . . . , xd) ∈ Rd : x1 ≥ 0}.
On the other hand,

Rζ = −Rζ ⊂ {(x1, . . . , xd) ∈ Rd : x1 ≤ 0}.
Therefore, Rζ ∩Rζ has empty interior. �

If the condition on the prefixes are strict inequalities then we even obtain a stronger result.

Corollary 2. Let ζ be a unimodular Pisot substitution over the alphabet A = {1, . . . ,m}.
Suppose that there exists a contractive eigenvalue α that is real and positive and the scalar
products vα · l(P ) of the proper prefixes P of ζ(j) for each j ∈ A are all strictly negative or
positive, where vα is a left eigenvector of Mζ with respect to α. Then Rζ ∩Rζ = {0}.

Proof. Without loss of generality we may assume that the scalar products are strictly positive.
We consider the proof of Theorem 2 under the modified conditions and see that several
inequalities become strict. In particular, if u = u1u2u3 · · · then

Y := {P · l(u1u2 · · ·un) : n ∈ N} ⊂ {(x1, . . . , xd) ∈ Rd : x1 ≥ 0}.
And from (7) we see that if the limit point of a convergent sequence of points in Y is not
contained in this half then it must be the origin. �
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We see that algebraic properties (a real eigenvalue and the condition on the prefixes) is
reflected in a combinatorial property on the language (there is either no initial balanced pair
or the balanced pair algorithm does not terminate). Note that this result somehow generalises
[1, Proposition 1] which says if an algebraic integer β has the algebraic finiteness property
(F) then β is the unique positive real Galois conjugate. Especially, if ζ is a beta-substitution
and the dominant root β possesses a real positive algebraic conjugate (different from β) then
we immediately obtain that int(Rζ ∩Rζ) = ∅ since beta-substitutions always satisfy the

condition on the prefixes.

Example 1. Consider the family of substitutions

ζa : 1→ 1a23, 2→ 1, 3→ 13.

with a ≥ 1. The characteristic polynomial of the incidence matrix is x3−(1+a)x2+(a−2)x+1.
Using the intermediate value theorem it can easily be proved that it always has three real
roots: a dominant one β > 1, a positive one α1 ∈ (0, 1) and a negative one α2 ∈ (−1, 0).
A left eigenvector with respect to α1 is given by vα1 = (1 − α1, (1 − α1)α−1

1 ,−1). The
substitution ζa induces two types of proper prefixes. On one hand P = 1k for 1 ≤ k ≤ a
which yields vα · l(P ) = k(1 − α1) > 0. On the other hand, we have P = 1a2 which yields
vα · l(P ) = (a+α−1)(1−α1) > 0. This shows that the conditions of Corollary 2 are satisfied
and, hence, the intersection of the Rauzy fractals Rζa and Rζa

consists of the origin only (see

Figure 1). This immediately implies that that the balanced pair algorithm is not defined for
the one-sided fixed points of ζa and the reversed substitution ζa. For the particular case ζ1

the absence of an initial balanced pair has been conjectured in [19, Example 5] and finally
proved in [24] using very different (combinatorial) techniques.

Observe that the condition on the prefixes is necessary and cannot be omitted. Indeed,
lets consider the substitution ζ ′a obtained from ζa by changing the order (“flipping”) of the
letters of the image of 3, that is

ζ ′a : 1→ 1a23, 2→ 1, 3→ 31.

The incidence matrix of ζ ′a coincides with that of ζa but the condition on the prefixes does
not hold anymore since for the prefix P = 3 we have vα · l(P ) = −1 < 0. The Rauzy fractal
for the case a = 1 is shown on the right hand side of Figure 1.

Example 2. Here we consider substitutions of the form

ζ : 1→ 1a−12, 2→ 1a−b−13, 3→ 1a−b3,

with a, b integers such that 2 ≤ b ≤ a − 1. The Perron-Frobenius eigenvalue β of Mζ is the
dominant root of x3−ax2 + bx−1. More precisely, the substitution ζ is the beta-substitution
associated with the beta-expansion with respect to (the non-simple Parry number) β (see
[2, 8]). For details on beta-substitutions we refer to the survey article [9].

Observe that for any choice of a and b the substitution ζ does not have the geometric
property (F) which is (for beta-substitutions) equivalent to the fact that the corresponding
beta-expansions do not satisfy the finiteness property (F) introduced in [13]. It depends on
a and b whether the incidence matrix possess (non-dominant) real roots or a pair of complex
conjugate roots. For example, in the case a = 3 and b = 2 we have a pair of complex roots.
Here the balanced pair algorithm between the one-sided fixed points of this substitution and
its reversed substitution is defined and it terminates. The Rauzy fractal intersects with the
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Figure 1. Example 1: on the left we see Rζ1 while the centre shows Rζ3 . Both
are contained in the upper half plain - the intersection with the Rauzy fractals
associated with the reversed substitution has always empty interior. On the
right the Rauzy fractal induced by the flipped substitution ζ ′1 is depicted. We
clearly see that here int(Rζ′1

∩R
ζ′1

) 6= ∅.

reversed one (with positive measure - see Figure 2). This shows that equivalence does not
hold in Proposition 2 (and hence, Corollary 1).
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-0.4
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0.0

0.2

0.4

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.0

-0.5

0.0

0.5

1.0

Figure 2. The Rauzy fractal Rζ of Example 2 for a = 3 and b = 2 (left). On
the right we see the intersection of Rζ with the Rauzy fractal Rζ induced by

the reversed substitution ζ.

If we choose a = 6 and b = 5 then the non-dominant roots are real1 and positive, hence
the conditions of Proposition 2 are satisfied. The intersection of the Rauzy fractals Rζ and
Rζ has empty interior (see the left hand side in Figure 3).

Observe that it does not depend on the conjugates of the dominant root β (real or complex)
whether the Rauzy fractal Rζ properly intersects with Rζ . Indeed, for a = 5 and b = 4 the

matrix Mζ has complex conjugate roots but the Rauzy fractals do not seem to intersect (see
the right hand side in Figure 3).

1This seems to be the real setting with the smallest coefficients; the next “real” one is given by a = 7 and
b = 6.
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Figure 3. The Rauzy fractals of Example 2 for a = 6, b = 5 (left) and a = 5,
b = 4 (right).

Problem 3. Give conditions on a and b such that for this class of substitutions the intersec-
tion of Rζ and Rζ has non-empty interior.

Example 3. We consider substitutions of the type

1→ 1a2, 2→ 1b−13, 3→ 1a−12;

for 1 ≤ b < a. These substitutions are beta-substitutions with respect to the dominant root
of x3 − ax2 − bx+ 1 (cf. [8, Theorem 2]). Again, they do not satisfy the geometric property
(F). Using the intermediate value theorem one can easily check that for any choice of a and
b the polynomial has exactly one positive and one negative (non-dominant) real root. The
substitutions satisfy the conditions of Theorem 2, therefore the intersections of the Rauzy
fractals has empty interior.
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