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Abstract. In the present article we associate a primitive substitution with a family of non-

integer positional number systems with respect to the same base but with different sets of digits.

In this way we generalise the classical Dumont-Thomas numeration which corresponds to one

specific case. Therefore, our concept also covers beta-expansions induced by Parry numbers.

But we establish links to variants of beta-expansions such as symmetric beta-expansions, too.

In other words, we unify several well-known notions of non-integer representations within one

general framework. A focus in our research is set on finiteness and periodicity properties. It

turns out that these characteristics mainly depend on the substitution. As a consequence we

are able to relate known finiteness properties that are viewed independently yet.

1. Introduction

It is well known that a primitive substitution σ over an alphabet A gives rise to a non-integer
numeration system, the so-called Dumont-Thomas numeration, which was presented in 1989 by
Jean-Marie Dumont and Alain Thomas [16]. For each letter x ∈ A we can uniquely expand non-
negative real numbers that are contained in an half-opened interval. The base is determined by
the Perron-Frobenius eigenvalue induced by the substitution and the digit strings correspond to
walks on a graph that is frequently called prefix-suffix graph. In the survey articles [9, 11] one
finds detailed information concerning the Dumont-Thomas numeration and its position within the
theory of numeration systems in English.

As main result of the present article we generalise the concept of the Dumont-Thomas numer-
ation (Theorem 4.1). The main ingredient for achieving this are coding prescriptions. A coding
prescription is, loosely spoken, a residue system with respect to a substitution (cf. [40]). In [41]
coding prescriptions have already been used for numeration, namely, for representing integers.

At first we associate with a setting (σ, c) (that is a pair consisting of a primitive substitution σ

over an alphabet A and a coding prescription c with respect to σ) a finite family Cσ,c = {Iσ,c(x) ∶

x ∈ A ∪A} of compact real sets, where A is the set of inverse letters. The use of inverse letters is
an important tool in the entire article. This family Cσ,c is given by a graph directed construction
in the sense of [28]. The structure of the sets Iσ,c(x) is vital for the further proceeding since
these sets will serve as domain for our expansions. Not all settings have what it takes to induce
a numeration system. In fact, for two concrete classes of settings, the Continuous setting and the
Even setting, the set Iσ,c(x) is an interval for all x ∈ A ∪ A and we can uniquely represent each

element γ ∈ Ĩσ,c(x) (that is Iσ,c(x) with the right end point removed) as

γ = d1θ−1 + d2θ−2 + d3θ−3 +⋯

where the base θ is the Perron-Frobenius eigenvalue of the substitution σ. The digit string
d1, d2, d3 . . . is given by an infinite walk on a finite graph and consists of real numbers that also
can be negative (contrary to the classical Dumont-Thomas numeration). The exact shape of the
(finite) set of digits is determined by the coding prescription c.

For a special type of coding prescription that we will denote by c+ the numeration system
induced by (σ, c+) corresponds exactly to the Dumont-Thomas numeration induced by σ. This
makes the relation with the classical beta-expansion introduced by Rényi in [32] quite obvious.
Indeed, it is well known that for an algebraic integer β with sofic beta-shift there exists a special
beta-substitution σβ such that the associated Dumont-Thomas numeration corresponds to the
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beta-expansion induced by β (see [11, 17]). Therefore, we recover the beta-expansion with respect
to β by the setting (σβ , c+).

But our general approach also covers generalised notions of beta-expansions with respect to a
domain different from the unit interval [0, 1). In particular, let δ ∈ [0, 1) and β > 1. Then beta-
expansions can be defined with respect to the base β and the domain [−δ, 1−δ) in a straightforward
way (see [39]). We refer to these expansions as (β, δ)-expansions. The case δ = 0 yields the
classical beta-expansions while for δ = 1/2 we obtain the symmetric beta-expansions that have been
introduced in [6]. Now, for pairs (β, δ) that satisfy special conditions there exist a substitution
σβ,δ and a coding prescription cδ such that we can retrieve the respective (β, δ)-expansions by the
numeration system induced by (σβ,δ, cδ).

The above mentioned relations are the most obvious ones and we do absolutely not claim
completeness. Au contraire, we strongly suggest that there are further relations with known
notions of numeration. An exact characterisation of suitable settings involves several combinatorial
considerations that would go beyond the constraints of the present article. We rather formulate
this as open questions that hopefully will be treated in subsequent researches.

An interesting aspect concerning expansions of real numbers (with respect to algebraic bases)
are finiteness and periodicity properties. The research started with the beta-expansion. In [12, 33]
it was asked for which bases β the elements of Q(β) ∩ [0, 1) have an eventually periodic beta-
expansion. For Salem numbers this question is up to now unsolved. In [19] the finiteness property
was introduced for bases β that allow a finite expansion for the elements of Z[β−1] ∩ [0, 1). In
[6] and [39] the definition of finiteness has been adapted to generalised (β, δ)-expansions. An
appropriate finiteness property for the Dumont-Thomas numeration was stated in [11]. Usually
the verification of the finiteness property is a problem that only can be solved algorithmically (see,
for example, [6, 22, 24, 35, 39]). Therefore, it is a challenge to obtain more general characterisation
results.

We define appropriate finiteness and periodicity properties for our numeration systems that
are compatible with the existing ones. As main result in this context we show that finiteness
and periodicity do not depend on the choice of the coding prescription but only on the substitu-
tion (Theorem 4.7). As a consequence it turns out that several known notions of finiteness are
equivalent. This may have an impact on respective researches.

The study of generalised notions of beta-expansions became increasingly popular in the last
years. The relation with substitutions is completely new and provides synergies that may push the
research forward. Apart from the finiteness property we want to explicitly mention the associated
(fractal) tiles and tilings. For the classical beta-expansion these objects are quite well studied (see,
e.g., [2, 31]), not least because they are, in fact, Rauzy fractals induced by substitutions (see, for
example, [11]). Tiles associated with variants of beta-expansions have been studied in [20, 23] and
show quite unexpected properties. The current results indicate that these tiles are also related
with Rauzy fractals.

If we compare substitutions induced (β, δ)-expansions with respect to the same base β but
for different choices of δ then we note that they coincide up to the order of the letters, so-called
flips. Especially, the substitutions have the same incidence matrix. The common dynamics of such
substitutions has been studied, for instance, in [34, 36, 37]. Our results suggest that this topic can
be studied from the point of view of (generalised) beta-expansions.

Observe that the Dumont-Thomas numeration has applications in the study of the topology of
fractals tiles (see [3, 4, 5, 26, 27, 29]). It is straightforward to ask whether the present research
can be applied here.

The article is organised in the following way. In Section 2 we introduce our formalism concerning
the set of inverse letters A and the words over A ∪A. In fact, we come in contact with the free
group generated by the alphabet A. We specify the notion of a primitive substitution σ over A
and associate to it a graph Gσ. The vertex set of this graph is A ∪A, hence it differs from the
well-known prefix-suffix graph (which we will denote by Fσ). Afterwards we define what we mean
by a coding prescription c with respect to σ and relate the setting (σ, c) with a subgraph Gσ,c of
Gσ. In Section 3 we introduce the collection Cσ,c as realisation of the subgraph Gσ,c. We show
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several general properties of the sets Iσ,c(x). For two types of settings (the Continuous setting
and the Even setting) Cσ,c will turn out to be a family of intervals. In the further process we will
concentrate on these settings. In Section 4 we state our main result, numeration systems induced
by a setting (σ, c), and define the periodicity and finiteness property. We will see that finiteness
and periodicity properties actually do not depend on the coding prescription. In Section 5 we
will discuss the exact relation with different notions of (generalised) beta-expansions. The article
is accompanied by an example that helps us to better understand the notations and visualises
several results. Further illustrative examples can be found in Section 6.

2. Definitions, preliminary notations and preparation

2.1. Free monoids and free groups. Throughout the article we let N denote the set of positive
integers while N0 is the set of non-negative integers. For an m ∈ N let A = {1, . . . , m} be an

alphabet and A∗ the set of finite words over A. We define the set of inverse letters A ∶= {x ∶ x ∈ A}.
Analogously, A

∗
and (A∪A)∗ denote the sets of finite words over A and A∪A, respectively. We

write ε for the empty word and A+ ∶= A∗ ∖ {ε} (A
+
∶= A

∗
∖ {ε}, respectively) for the set of

non-empty words over A (A, respectively).

Let ∼ be the equivalence relation on (A ∪ A)∗ induced by the cancellation law, i.e. ∼ is the

transitive hull of the relation xx̄ ∼ ε ∼ x̄x for all x ∈ A. Then (A∪A)∗/ ∼ is the free group generated

by A. For two words X, X ′ ∈ (A ∪A)∗ with X ∼ X ′ we write X = X ′ (modulo ∼). Observe that
for convenience we will skip the term “(modulo ∼)” in large parts of the article since there is no
danger of confusion.

An inverse modulo ∼ of a word X = x1⋯xn ∈ (A∪A)∗ is given by

X ∶= x̄n x̄n−1⋯x̄1,

where x̄ = x for all x ∈ A. For y ∈ A and X = x1, . . . , xn ∈ (A∪A)∗ we define

∣X ∣y ∶=#{j ∈ {1, . . . , n} ∶ xj = y} −#{j ∈ {1, . . . , n} ∶ xj = y},
that is the difference of the number of occurrences of y and the number of occurrences of ȳ in X.
Let

∣X ∣ ∶= ∑
y∈A
∣X ∣y,

l(X) ∶= (∣X ∣
1
, ∣X ∣

2
, . . . , ∣X ∣m)T ∈ Zm.

Observe that these definitions are compatible with ∼ and behave additively with respect to the
concatenation of words, i.e. for all X, X ′, Y ∈ (A ∪A)∗ with X = X ′ (modulo ∼), and y ∈ A we
have ∣XY ∣y = ∣X ∣y+ ∣Y ∣y and ∣X ∣y = ∣X ′∣y. This immediately implies that ∣XY ∣ = ∣X ∣+ ∣Y ∣, ∣X ∣ = ∣X ′∣
as well as l(XY ) = l(X) + l(Y ), l(X) = l(X ′) also hold.

We define the partial ordering ⪯ on (A∪A)∗ by

X ⪯ Y ⇐⇒XY ∈ A∗ (modulo ∼).
The corresponding strict partial ordering ≺ is given by

X ≺ Y ⇐⇒XY ∈ A+ (modulo ∼).
Note that ⪯ is a generalisation of the prefix and suffix property of words. Indeed, for X, Y ∈ A∗
we have X ⪯ Y if and only if X is a prefix of Y and Y ⪯ X if and only if X is a suffix of Y . The
strict version ≺ means that the prefix and suffix, respectively, is proper. One easily verifies that
for words X ′, Y ′ ∈ (A ∪ A)∗ with X = X ′ and Y = Y ′ (modulo ∼) we have X ⪯ Y if and only if

X ′ ⪯ Y ′, hence ⪯ can be transferred to a partial ordering on the free group (A∪A)∗/ ∼.
Observe that all the words over A∪A that appear in the present paper are contained in A∗∪A

∗

(modulo ∼). Therefore, in the rest of the article we can represent all words by elements of A∗∪A
∗
.
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2.2. Substitutions and related graphs. Let σ be a substitution over A, that is a morphism
of the free monoid A∗. Throughout the article we require σ to be primitive which means that
there exists a positive integer n such that we have ∣σn(y)∣x > 0 for each two letters x, y ∈ A. We
let Mσ ∶= (∣σ(y)∣x)1≤x,y≤m denote the incidence matrix of σ. Observe that the primitivity of σ

implies that Mσ is a primitive matrix and, thus, it possesses a dominant real Perron-Frobenius
eigenvalue θ > 1.

A substitution σ extends in a natural way to words over A∪A by setting σ(x̄) ∶= σ(x) for each

x ∈ A. Note that for X, Y ∈ (A ∪A)∗ with X = Y (modulo ∼) we have σ(X) = σ(Y ) (modulo ∼).
This makes σ a morphism of the free group (A∪A)∗/ ∼. Furthermore, for each X ∈ (A ∪A)∗ we
have

(2.1) l(σ(X)) =Mσl(X).
Note that we are not confronted with the problem of uncontrolled cancellation which is a great
challenge in the study of the dynamics of (general) endomorphisms of the free group (cf. [8]).

We associate with the substitution σ the directed multigraph Gσ with set of vertices A ∪ A.
Whenever σ(x) = PyS for x, y ∈ A and P, S ∈ A∗ there are four edges in Gσ

● an edge from x to y labelled by (P, y);
● an edge from x to ȳ labelled by (Py, ȳ);
● an edge from x̄ to y labelled by (yS, y);
● an edge from x̄ to ȳ labelled by (S, ȳ).

Let G1
σ(x) denote the set of edges that start in x represented by their labels and observe that for

each x ∈ A ∪A the set G1
σ(x) contains exactly one edge (D, y) with D = ε which we will refer to

as zero-edge.
If (D, x1) ∈ G1

σ(x) then, by definition, D is a prefix of σ(x) or D is a suffix of σ(x̄). Therefore,
if (D′, x′1) /= (D, x1) is another edge that starts in x then D and D′ are ≺-comparable: we have

D1 ≺ D′1, D′1 ≺ D1 or D1 = D′1. We see by definition that in the latter case x1 ∈ A and x′1 ∈ A
(or vice versa), and the edges are different from the zero edge. Motivated by this observation we
extend the ordering ≺ to the set G1

σ(x) of edges and define

(D, x1) ≺ (D′, x′1) ⇐⇒
⎧⎪⎪⎨⎪⎪⎩

D ≺D′ if D /=D′

Dx1 ≺D′x′1 if D =D′

Due to primitivity the graph Gσ is strongly connected. Observe that Gσ is a generalisation
of the well-known prefix-suffix graph Fσ (see, e.g., [15]) defined as follows. The set of vertices of
Fσ is A and there is an edge from x to y in Fσ labelled by (P, y, S) whenever σ(x) = PyS (with
P, S ∈ A∗). We see that (P, y, S) ∈ F 1

σ(x) if and only if (P, y) ∈ G1
σ(x).

Example (Accompanying example). We illustrate our formalism and our results by an example
that will accompany us until Section 4. Further examples (that refer especially to the results of
Section 5) can be found in Section 6.

Let σ ∶ 1↦ 112, 2↦ 1 over the alphabet A = {1, 2}. We find the associated graph Gσ in Figure 1
(left). For comparison the classical prefix-suffix graph Fσ is depicted on the right hand side. The
set of edges that start, for instance, in 1̄ is given by

G1

σ(1̄) = {(112, 1), (12, 1̄), (12, 1), (2, 1̄), (2, 2), (ε, 2̄)}.
The latter one is the zero-edge. Observe that we have

(112, 1) ≺ (12, 1̄) ≺ (12, 1) ≺ (2, 1̄) ≺ (2, 2) ≺ (ε, 2̄).
For a positive integer n a path of length n on Gσ is a sequence of edges (Dj , xj)nj=1

such that

(Dj , xj+1) ∈ G1
σ(xj) holds for all j ∈ {1, . . . , n − 1}. We say that the path starts in x ∈ A ∪ A if(D1, x1) ∈ G1

σ(x). We write Gn
σ(x) for the set of paths of length n that start in x. The uniquely

determined element of Gn
σ(x) that consists of zero edges only is the zero path of length n (that
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1 2

1̄ 2̄

(ε,1)
(1,1)

(ε,1)

(1,1̄)
(11,1̄) (112,2̄)

(11,2)

(1,1̄)

(2̄,1̄)
(12,1̄) (ε,1̄)

(12,1)
(112,1)

(2̄,2)

(ε,2̄)

(1̄,1)
1 2

(ε,1,12)
(1,1,2)

(ε,1,ε)

(11,2,ε)

Figure 1. Left: The graph Gσ associated with the substitution σ ∶ 1 ↦ 112, 2 ↦
1. Right: The corresponding prefix-suffix graph Fσ. For not getting lost in a
jumble of edges we joined edges with the same origin and the same destination
and put multiple labels in a respective way.

starts in x). We extend the ordering on the edges in a lexicographical way to the elements of
Gn

σ(x). In particular, for (Dj , xj)nj=1
, (D′j , x′j)nj=1

∈ Gn
σ(x) we have

(Dj , xj)nj=1 ≺lex (D′j , x′j)nj=1 ⇐⇒
∃n0 ∈ {1, . . . , n} ∶ (Dj , xj) = (D′j , x′j) for all j < n0 ∧ (Dn0

, xn0
) ≺ (D′n0

, x′n0
).

For x ∈ A ∪ A consider a path of length two that starts in x, hence (D1, x1)(D2, x2) ∈ G2
σ(x).

Then trivial calculations yield that (σ(D1)D2, x2) ∈ G1

σ2(x), that is (σ(D1)D2, x2) is an edge in
the graph associated with σ2 with initial vertex x. Especially, we see that σ(D1)D2 is (modulo

∼) contained in A∗ ∪A
∗
.

On the other hand, for each edge (D, x1) ∈ G1

σ2(x) there exists a path (D1, x′1)(D2, x1) ∈ G2
σ(x)

such that D = σ(D1)D2 (in fact, there are exactly two paths with this property). Observe

that this composition of edges is in general not order preserving, that is if x ∈ A ∪ A and(Dj , xj)2j=1
, (D′j , x′j)2j=1

∈ G2
σ(x) with (Dj , xj)2j=1

≺lex (D′j , x′j)2j=1
then we cannot conclude that(σ(D1)D2, x2) ≺ (σ(D′1)D′2, x′2).

The composition of edges extends to paths of arbitrary length n: if (Dj , xj)nj=1
∈ Gn

σ(x) then

(D, xn) ∈ G1
σn(x) where

D ∶= σn−1(D1)σn−2(D2)⋯σ(Dn−1)Dn ∈ A
∗ ∪A

∗

and for each edge in G1
σn(x) we always can find a corresponding path of length n in Gn

σ(x).
An (infinite) walk on Gσ is an infinite sequence of edges (Dj , xj)j≥1 such that (Dj , xj)nj≥1

is

a path on Gσ for each n ≥ 1. The walk starts in x ∈ A ∪ A if (D1, x1) ∈ G1
σ(x). The expression

G∞σ (x) represents the set of walks that start in x. In this article infinite walks are denoted by
Gothic letters. We extend the ordering ⪯lex in a straightforward way to the elements of G∞σ (x).
In particular for x, x′ ∈ G∞σ (x) with x = (Dj , xj)j≥1 and x′ = (D′j , x′j)j≥1 we have

x ⪯lex x′ ⇐⇒ ∀n ≥ 1 ∶ (Dj , xj)nj=1 ⪯lex (D′j , x′j)nj=1,

x ≺lex x′ ⇐⇒ x ⪯lex x′ ∧ x /= x′.
In accordance with our notations we call the uniquely determined element of G∞σ (x) that consists
of zero edges only the zero walk that starts in x.

Recall that we consider primitive substitutions and, thus, the incidence matrix Mσ has a
dominant real eigenvalue that we denoted by θ. Fix a left eigenvector v of Mσ with respect to θ

which we may assume to be strictly positive. Define

λ ∶ (A∪A)∗ Ð→ R, X z→ ⟨l(X), v⟩ .
Note that λ is compatible with ∼ and the positivity of v implies λ to be order preserving, that is
for X, X ′ ∈ (A ∪A)∗ we have X = X ′(modulo ∼)⇒ λ(X) = λ(X ′) and X ≺ X ′ ⇒ λ(X) < λ(X ′).
Observe that v = (λ(1), . . . , λ(m)).
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Now let x ∈ A ∪A and x ∶= (Dj , xj)j≥1 ∈ G∞σ (x). Consider the series

(2.2) Λ(x) ∶=∑
j≥1

θ−jλ(Dj)
which can be immediately seen to converge since Gσ is a finite graph and θ > 1. Thus, Λ is a
well-defined function that assigns to each infinite walk on Gσ a real number. Observe that Λ
depends on the choice of v (as λ does) but usually v is fixed in the respective context and does
not vary.

Example (Accompanying example). We want to illustrate the latter notations by our example.
We have

Mσ = ( 2 1
1 0

) .

Therefore, the dominant root of Mσ is θ = 1+
√

2. As a left eigenvector with respect to θ we fix u ∶=(θ, 1). Hence, λ(1) = θ and λ(2) = 1. We are interested in elements of the set G∞σ (1̄), that is the set

of walks that start in the vertex 1̄. The zero walk is given by x0 = ((ε, 2̄), (ε, 1̄))ω. Further examples

of walks that start in 1̄ are x1 = (2̄, 1̄)ω, x2 = ((2̄1̄, 1)(11, 1̄))ω and x3 = (2̄1̄, 1) ((11, 2)(ε, 1))ω. We
clearly have Λ(x0) = 0. Furthermore, we obtain

Λ(x1) =∑
j≥1

λ(2̄)θ−j =∑
j≥1

−1 ⋅ θ−j = −(θ − 1)−1 = −
√

2/2,
Λ(x2) =∑

j≥1

λ(2̄1̄)θ−2j+1
+∑

j≥1

λ(11)θ−2j = −
√

2/2,
Λ(x3) =λ(2̄1̄)θ−1

+∑
j≥1

λ(11)θ−2j = 1 −
√

2.

2.3. Coding prescriptions and subgraphs. In the present article we are mainly interested in
subgraphs of Gσ induced by so-called coding prescriptions.

Definition 2.1 (Coding prescription, cf. [40]). Let σ be a primitive substitution over the alphabet

A. A coding prescription (with respect to σ) is a function c that assigns to each element of A ∪A
a finite set of integers such that for each x ∈ A we have

(1) c(x) ⊂ {0, . . . , ∣σ(x)∣ − 1} and c(x̄) ⊂ {1 − ∣σ(x)∣, . . . , 0};
(2) for each k ∈ {0, . . . , ∣σ(x)∣} we have k ∈ c(x) if and only if k − ∣σ(x)∣ /∈ c(x̄).
If c is a coding prescription with respect to σ then we call the pair (σ, c) a setting.

From the definition we can deduce several basic but useful facts that we keep in mind.

● 0 is contained in both c(x) and c(x̄);
● #c(x) +#c(x̄) = ∣σ(x)∣ + 1;
● c(x) ∪ c(x̄) is a complete residue system modulo ∣σ(x)∣;
● the sets c(x) and ∣σ(x)∣ + c(x̄) form a partition of the set {0, . . . , ∣σ(x)∣};
● c is completely determined by fixing c(x) for all x ∈ A.

For a setting (σ, c) we define by Gσ,c the spanning subgraph of Gσ such that for each x ∈ A∪A
we have

G1

σ,c(x) = {(D, x1) ∈ G1

σ(x) ∶ ∣D∣ ∈ c(x)} .

Observe that the set G1
σ,c(x) of edges that start in x is a ≺-chain, hence there exists a minimal

element (minimal edge) (D−, x−1), and a maximal element (maximal edge) (D+, x+1). If x ∈ A then

the minimal element is the zero edge and x+1 ∈ A while for x ∈ A the maximal element is the zero

edge and x−1 ∈ A. Depending on the coding prescription c, the minimal edge and the maximal edge
may coincide.
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Example (Accompanying example). We continue with our example σ ∶ 1 ↦ 112, 2 ↦ 1. There are
4 coding prescriptions with respect to σ.

c1 ∶ 1↦ {0} 2↦ {0} (Ô⇒ 1̄↦ {−2,−1, 0}, 2̄↦ {0})
c2 ∶ 1↦ {0, 1} 2↦ {0} (Ô⇒ 1̄↦ {−1, 0}, 2̄↦ {0})
c3 ∶ 1↦ {0, 1, 2} 2↦ {0} (Ô⇒ 1̄↦ {0}, 2̄↦ {0})
c4 ∶ 1↦ {0, 2} 2↦ {0} (Ô⇒ 1̄↦ {−2, 0}, 2̄↦ {0})

Each of them determines a setting and a certain subgraph of Gσ (see Figure 2). Consider again the

1 2

1̄ 2̄

(ε,1) (ε,1)

(2̄,1̄)
(12,1̄)

(ε,1̄)

(12,1) (2̄,2)

(ε,2̄)

1 2

1̄ 2̄

(ε,1)
(1,1)

(ε,1)

(1,1̄)

(2̄,1̄) (ε,1̄)

(2̄,2)

(ε,2̄)

1 2

1̄ 2̄

(ε,1)
(1,1)

(ε,1)

(1,1̄)
(11,1̄)

(11,2)

(ε,1̄)

(ε,2̄)

1 2

1̄ 2̄

(ε,1) (ε,1)

(11,1̄)

(11,2)

(12,1̄) (ε,1̄)

(12,1)

(ε,2̄)

Figure 2. The 4 subgraphs of Gσ for our accompanying example. From left to
right: Gσ,c1

, Gσ,c2
, Gσ,c3

, Gσ,c4
.

edges that start in the vertex 1̄. We have G1
σ,c1
(1̄) = {(12, 1̄), (12, 1), (2, 1̄), (2, 2), (ε, 2̄)}, G1

σ,c2
(1̄) =

{(2, 1̄), (2, 2), (ε, 2̄)}, G1
σ,c3
(1̄) = {(ε, 2̄)}, G1

σ,c4
(1̄) = {(12, 1̄), (12, 1), (ε, 2̄)}. The maximal edge is

the zero-edge (ε, 2̄) for all four setting. The minimal edge is given by (12, 1̄) for the settings (σ, c1)
and (σ, c4), respectively, and (2, 1̄) for the settings (σ, c2). For the setting (σ, c3) the minimal
edge and the maximal edge coincide.

Based on our previous notations we let Gn
σ,c(x) denote the set of paths of length n on Gσ,c

that start in x while G∞σ,c(x) is the set of infinite walks on Gσ,c that start in x. Observe that
the zero path of length n (zero walk, respectively) is always an element of Gn

σ,c(x) (G∞σ,c(x),
respectively). Furthermore, Gn

σ,c(x) contains a maximal path (minimal path, respectively) of
length n, and G∞σ,c(x) contains the maximal walk (minimal walk, respectively), which are the
maximal (minimal, respectively) elements with respect to ⪯lex and consist of maximal (minimal,

respectively) edges only. Depending on whether x ∈ A or x ∈ A, either the minimal or the maximal
path (walk, respectively) coincides with the zero path (walk, respectively).

The finite paths on the subgraphs Gσ,c have already been studied in [41]. It turned out that here
the composition of edges is an injective operation that yields a coding prescription with respect
to a higher power of σ. The most important facts are collected in the next proposition.

Proposition 2.2. Let σ be a primitive substitution over the alphabet A, c a coding prescription
with respect to σ and n a positive integer. Then the following items hold.

(1) The function c(n) with domain A ∪A defined by

c(n) ∶ xz→
⎧⎪⎪⎨⎪⎪⎩

n∑
j=1

∣σn−j(Dj)∣ ∶ (Dj , xj)nj=1 ∈ Gn
σ,c(x)

⎫⎪⎪⎬⎪⎪⎭
is a coding prescription with respect to σn.

(2) The set of edges in the graph Gσn,c(n) that start in x is given by

G1

σn,c(n)
(x) = {(σn−1(D1)⋯σ(Dn−1)Dn, xn) ∶ (Dj , xj)nj=1 ∈ Gn

σ,c(x)}.
(3) For each x ∈ A ∪ A and distinct paths (Dj , xj)nj=1

, (D′j , x′j)nj=1
∈ Gn

σ,c(x) we have (D, xn) /=(D′, x′n) where D = σn−1(D1)⋯σ(Dn−1)Dn and D′ = σn−1(D′1)⋯σ(D′n−1)D′n.

Proof. The notations from [41] differ a little from the actual ones. Coding prescriptions are defined
as the function that assigns to a pair of letters ab ∈ A2 the set c(ā) ∪ c(b). The associated graph
Hσ,c has vertex set A2 and each edge in Hσ,c corresponds to two edges in Gσ,c. In particular, let

x ∈ A∪A and (D, x1) ∈ G1
σ,c(x). If (D, x1) is not the zero edge then there exists exactly one further
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edge (D, x′1) ∈ G1
σ,c(x) and we either have x1 ∈ A, x′1 ∈ A or vice versa. If (D, x1) is the zero edge

then there is no other similar edge. This shows that if ab ∈ A2 and (D, x1) ∈ G1
σ,c(ā)∪G1

σ,c(b) then

there always exists exactly one further edge (D, x′1) (with either x1 ∈ A, x′1 ∈ A or vice versa).
Now, there is an edge from ab ∈ A2 to a1b1 ∈ A

2 labelled by (D, a1b1) if (D, ā1) and (D, b1) are
contained in G1

σ,c(ā) ∪G1
σ,c(b). This implies that the set of edges that start in the vertex ab is

given by

H1

σ,c(ab) = {(D, a1b1) ∶ (D, ā1), (D, b1) ∈ G1

σ,c(ā) ∪G1

σ,c(b)} .

With these preparations one easily obtains Item (1) from [41, Theorem 2.4], Item (2) from [41,
Corollary 3.4], and Item (3) by observing [41, Remark 3.3]. �

Remark 2.3. The graph Hσ,c, as defined in the proof of Proposition 2.2, has m2 vertices. For
showing the results in this article the smaller graph Gσ,c (2∣A∣ = 2m vertices) is much more
convenient. In Corollary 4.2 we formulate our main Theorem in terms of the graph Hσ,c which
yields some interesting aspects.

We introduce two special coding prescriptions c− and c+ with respect to a primitive substitution
σ that assign either to all elements of A or to all elements of A the set {0}:

c− ∶ x ∈ A z→ {0}, x ∈ A z→ {−∣σ(x)∣ + 1, . . . , 0},
c+ ∶ x ∈ A z→ {0, . . . , ∣σ(x)∣ − 1}, x ∈ A z→ {0}.

Observe that Gσ,c+ is closely related with the prefix-suffix graph since for each x ∈ A we have

F 1

σ(x) = {(P, x1, S) ∶ (P, x1) ∈ G1

σ,c+
(x), S = Px1σ(x)} .

In Theorem 4.1 we will see that a setting (σ, c+) corresponds to the Dumont-Thomas numeration.
We already observed that the composition of edges is in general not order preserving. We

introduce the ordering condition (O) for a setting (σ, c) by

(O) ∀n ≥ 1, x ∈ A, (Dj , xj)nj=1, (D′j , x′j)nj=1 ∈ Gn
σ,c(x) ∶

(Dj , xj)nj=1 ≺lex (D′j , x′j)nj=1 Ô⇒ (σn−1(D1)⋯σ(Dn−1)Dn, xn) ≺ (σn−1(D′1)⋯σ(D′n−1)D′n, x′n) .

The condition will turn out to be very important for our research. The following types of settings
are of special interest since they satisfy (O).

Continuous setting: Here c(x) is a set of consecutive integers for all x ∈ A ∪A. By the
definition of coding prescriptions this is equivalent to

(CS) ∀x ∈ A ∶max c(x) −min c(x̄) = ∣σ(x)∣ − 1.

Even setting: In this setting σ assigns to each letter a word of odd length and c assigns to
each x ∈ A ∪A a subset of 2Z. Formally we can specify this by the following condition:

∀x ∈ A ∶ ∣σ(x)∣ ≡ 1 (mod 2)∧
c(x) = {0, 2, . . . , ∣σ(x)∣ − 1} (Ô⇒ c(x̄) = {−∣σ(x)∣ + 1,−∣σ(x)∣ + 3, . . . , 0}) .(ES)

Clearly, settings that involve c+ or c− satisfy (CS). Observe that if c(x) is a set of consecutive
integers then the definition of coding prescriptions immediately implies that the same holds for
c(x̄).
Proposition 2.4. Let σ be a substitution over the alphabet A and c a coding prescription with
respect to σ such that the pair (σ, c) fulfils (CS) or (ES). Then the ordering condition (O) is

satisfied. Furthermore, for each positive integer n the pair (σn, c(n)) also fulfils (CS) or (ES),
respectively.

Proof. The first part is shown in [41, Proposition 2.7]. For the second part see [41, Theorem 2.4]
and [41, Lemma 3.10], respectively. �

We also have a converse statement, namely that the Continuous setting and the Even setting
are the only ones that satisfy (O).
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Proposition 2.5. If a setting (σ, c) has the ordering property (O) then it either satisfies (CS) or
(ES).

Proof. We show that if (σ, c) has the ordering property (O) and does not satisfy (ES) then it
satisfies (CS).

If (ES) is not satisfied then there exists a letter x ∈ A such that c(x) or c(x̄) contain two
consecutive integers k, k + 1. We suppose that k ≥ 0, that is k, k + 1 ∈ c(x) (the case k + 1 ≤ 0
runs analogously). Let P, S ∈ A∗, y ∈ A such that σ(x) = PyS and ∣P ∣ = k. By definition G1

σ,c(x)
contains the edges (P, y) and (Py, ȳ).

We show indirectly that c(y) (and hence c(ȳ)) is a set of consecutive integers. Indeed, suppose
that this claim did not hold. Then there exists a positive integer k1 ∈ c(y) such that k1 − 1 /∈ c(y)
(in fact, k1 ≥ 2). By definition k1 − 1 − ∣σ(y)∣ ∈ c(ȳ). Let (D1, x1) ∈ G1

σ,c(y) and (D′1, x′1) ∈ G1
σ,c(ȳ)

be respective edges, i.e. ∣D1∣ = k1 and ∣D′1∣ = k1 − 1 − ∣σ(y)∣. In this way we obtain two paths of
length 2 that start in x: (P, y)(D1, x1) and (Py, ȳ)(D′1, x′1) where the first one is clearly smaller
then the second one with respect to ≺. However, we have

∣σ(Py)D′1∣ = ∣σ(P )∣ + ∣σ(y)∣ + k1 − 1 − ∣σ(y)∣ < ∣σ(P )∣ + k1 = ∣σ(P )D1∣
which implies that (σ(Py)D′1, x1) ≺ (σ(P )D1, x1). This contradicts (O).

Now observe that by definition c(2)(x) contains the elements of ∣σ(P )∣+c(y) and ∣σ(Py)∣+c(ȳ)
which implies that {∣σ(P )∣, ∣σ(P )∣ + 1, . . . , ∣σ(P )∣ + ∣σ(y)∣} ⊂ c(2)(x). We therefore can repeat the
argumentation from above and show that for each letter y′ that occurs at position ∣σ(P )∣ + 1 to∣σ(Py)∣ in σ2(x) we also have that c(y′) is a set of consecutive integers. By observing that these
letters are exactly the letters that occur in σ(y) and that σ is primitive we conclude that (CS)
must hold. �

Example (Accompanying example). The coding prescriptions c1 and c3 correspond to the special
coding prescriptions c− and c+, respectively. The settings (σ, c1), (σ, c2) and (σ, c3) satisfy (CS)
while (σ, c4) satisfies (ES). Hence, all four settings have the ordering condition (O). Observe that
the graph Hσ,c2

is depicted in the centre of Figure 5.
Let us consider σ2

∶ 1↦ 1121121, 2 ↦ 112. There are 26
⋅ 22 = 256 different coding prescriptions

with respect to σ2. Four of them can be obtained as powers of the coding prescriptions c1, c2,
c3 and c4 (due to Theorem 2.2). For instance, by considering the paths of length 2 of Gσ,c2

we

easily calculate that c
(2)
2
∶ 1 ↦ {0, 1, 2, 3}, 2 ↦ {0, 1}. The setting (σ2, c

(2)
2
) also satisfies (CS) (cf.

Proposition 2.4).
Coding prescriptions with respect to σ2 that are not powers of coding prescriptions with respect

to σ are, for example,

c′ ∶ 1↦ {0, 1}, 2↦ {0, 1, 2},
c′′ ∶ 1↦ {0, 3, 4}, 2↦ {0, 1}.

The setting (σ2, c′) clearly satisfies (CS) while (σ2, c′′) does neither satisfy (CS) nor (ES). In fact,
only 7 ⋅ 3 = 21 of the 256 coding prescriptions with respect to σ2 induce a Continuous setting and

only one, namely c
(2)
4

, induces an Even setting. The 234 remaining settings violate the ordering
condition (O).

2.4. The Dumont-Thomas numeration. Let σ be a primitive substitution and consider the
prefix-suffix graph Fσ.

Theorem 2.6 (Dumont-Thomas numeration, cf [9, 11, 16]). Let x ∈ A be an arbitrary vertex of
Fσ. Then for each γ ∈ [0, λ(x)) there exists a unique walk (Pj , xj , Sj)j≥1 ∈ F∞σ (x), such that Sj /= ε

for infinitely many indices j ∈ N, that satisfies

(2.3) γ =∑
j≥1

θ−jλ(Pj).
Following [11] we call the representation (2.3) the (σ, x)-expansion of γ. The sequence dσ,x(γ) ∶=(λ(Pj))j≥1 is the respective digit string. We say that the Dumont-Thomas numeration induced by
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σ fulfils the finiteness condition if for all x ∈ A the (σ, x)-expansion of each element of [0, λ(x)) ∩
Z[v] is a finite sum, where Z[v] = Z[λ(1), . . . , λ(m)].

The main purpose of this article is to generalise the Dumont-Thomas numeration. Before we
are able to properly state this in Theorem 4.1 we need the results of the next section. It will turn
out that only settings that have the ordering property (O) come into question.

3. Infinite walks

Throughout the section let σ denote a primitive substitution and c a coding prescription with
respect to σ. The main object that we deal with are infinite walks on Gσ and the subgraph Gσ,c.

For x ∈ A ∪A let

Iσ,c(x) ∶= {Λ(x) ∶ x ∈ G∞σ,c(x)} ⊂ R.

We associate with the setting (σ, c) the finite collection

Cσ,c ∶= {Iσ,c(x) ∶ x ∈ A ∪A}.
If x = (Dj , xj)j≥1 ∈ G∞σ (x) and (D, x) ∈ G1

σ(x′) then we obviously have that

x′ = (D, x)(D1, x1)(D2, x2)(D3, x3) . . . ∈ G∞σ (x′)
and Λ(x′) = θ−1(λ(D) +Λ(x)). Therefore,

G∞σ (x) = ⋃
(D1,x1)∈G1

σ(x)
{(Dj , xj)j≥1 ∶ (Dj , xj)j≥2 ∈ G∞σ (x1)},

G∞σ,c(x) = ⋃
(D1,x1)∈G1

σ,c(x)
{(Dj , xj)j≥1 ∶ (Dj , xj)j≥2 ∈ G∞σ,c(x1)},

and especially

(3.1) Iσ,c(x) = ⋃
(D1,x1)∈G1

σ,c(x)
θ−1 (λ(D1) + Iσ,c(x1)) .

From this we see that our construction fits into the framework of graph directed iterated function
systems (GIFS) presented in [28]. In particular, when we associate with each edge (D, x1) that
appears in Gσ,c the similarity

fD ∶ RÐ→ R, ξ z→ θ−1(ξ + λ(D))
(with ratio θ−1 < 1) then we obtain a realisation of Gσ,c and Cσ,c is the uniquely determined
invariant set list. We immediately deduce that Cσ,c is a collection of compact sets. The main
result of the present section is a characterisation of Cσ,c. We denote by µ the one-dimensional
Lebesgue measure.

Theorem 3.1. Let σ be a primitive substitution over A and c a coding prescription with respect
to σ. Then the following items hold.

(i) For each x ∈ A we have

Iσ,c(x) ⊆ [0, Λ(x+)] ⊆ [0, λ(x)],
Iσ,c(x̄) ⊆ [Λ(x−), 0] ⊆ [−λ(x), 0],

where x+ ∈ G∞σ,c(x) and x− ∈ G∞σ,c(x̄) denote the maximal walk and minimal walk, respectively.
(ii) If the setting satisfies (ES) then for each x ∈ A we have Iσ,c(x) = [0, λ(x)] and Iσ,c(x̄) =[−λ(x), 0].

(iii) For each x ∈ A we have

Iσ,c(x) ∪ (λ(x) + Iσ,c(x̄)) = [0, λ(x)].
If the setting does not satisfy (ES) then this union is disjoint with respect to µ.

(iv) For all x ∈ A ∪A the set equation (3.1) is disjoint with respect to µ.

We need some, partly technical, lemmas to show the theorem. The first lemma refers to walks
in the entire graph Gσ.
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Lemma 3.2. Let x ∈ A and x ∈ G∞σ (x). Then we have 0 ≤ Λ(x) ≤ λ(x). Analogously, for x ∈ G∞σ (x̄)
we have −λ(x) ≤ Λ(x) ≤ 0.

Proof. Let x = (Dj .xj)j≥1 ∈ G∞σ (x). By definition we have

Λ(x) =∑
j≥1

θ−jλ(Dj).
Now we write Λ(x) as the limit of the partial sums, that is

Λ(x) = lim
n→∞

n∑
j=1

θ−jλ(Dj) = lim
n→∞

n∑
j=1

θ−j ⟨l(Dj), v⟩ = lim
n→∞

θ−n
n∑

j=1

θn−j ⟨l(Dj), v⟩ .
Since v is a left eigenvector of Mσ with respect to the eigenvalue θ and by (2.1) we obtain for all
j ∈ {1, . . . , n}

θn−j ⟨l(Dj), v⟩ = ⟨l(Dj), θn−jv⟩ = ⟨l(Dj), vMn−j
σ ⟩

= ⟨Mn−j
σ l(Dj), v⟩ = ⟨l(σn−j(Dj)), v⟩ .

The additivity of the inner product thus yields

Λ(x) = lim
n→∞

θ−n
n∑

j=1

⟨l(σn−j(Dj)), v⟩ = lim
n→∞

θ−n ⟨l(Xn), v⟩ = lim
n→∞

θ−nλ(Xn)
where

Xn = σn−1(D1)σn−2(D2)⋯σ(Dn−1)Dn.

Now observe that by Item 2 of Proposition 2.2 we have (Xn, xn) ∈ G1
σn(x) and we conclude that

Xn ∈ A
∗ is a prefix of σn(x). Since λ is order-preserving we obtain

0 ≤ Λ(x) = lim
n→∞

θ−nλ(Xn) ≤ lim
n→∞

θ−nλ(σn(x)) = λ(x).
The analogue statement for a path that starts in x̄ can be shown similarly. �

The function Λ does not act on G∞σ in an order-preserving way, i.e. for each x ∈ A ∪A and
two walks x, x′ ∈ G∞σ (x) with x ≺lex x′ we may not expect that Λ(x) ≤ Λ(x′) holds. The next result
shows that Λ preserves the order on the subgraph Gσ,c provided that the setting (σ, c) satisfies
the ordering property (O).

Lemma 3.3. Let x ∈ A ∪A, x, x′ ∈ G∞σ,c(x), and suppose that (σ, c) satisfies (O). If x ≺lex x′ then
Λ(x) ≤ Λ(x′).
Proof. Let x = (Dj , xj)j≥1, x′ = (D′j , x′j)j≥1 and suppose that x ≺lex x′. We apply the idea used in

the proof of Lemma 3.2, that is Λ(x) = limn→∞ θ−nλ(Xn) and Λ(x′) = limn→∞ θ−nλ(X ′n), where

Xn =σ
n−1(D1)σn−2(D2)⋯σ(Dn−1)Dn

X ′n =σ
n−1(D′1)σn−2(D′2)⋯σ(D′n−1)D′n.

Since (σ, c) satisfies (O) we immediately see that Xn ⪯ X ′n holds for all n ≥ 1 and therefore
Λ(x) ≤ Λ′(x). �

The proofs of the following results are based on the same notations that we carefully introduce
here. Each time we consider an (arbitrary) letter x ∈ A. For this letter we define for each

n ∈ N the family of intervals Jn = {J(n)k
∶ 0 ≤ k < ∣σn(x)∣} in the following way. Let σn(x) =

y
(n)
1

y
(n)
2

. . . y
(n)
∣σn(x)∣. For each k ∈ {0, . . . , ∣σn(x)∣} we let P

(n)
k

denote the kth prefix of σn(x), that

is

P
(n)
0
= ε,

P
(n)
k
= y
(n)
1
⋯y
(n)
k

for k ≥ 1.

Now for each k ∈ {0, . . . , ∣σn(x)∣ − 1} we set

J
(n)
k
∶= [θ−nλ (P (n)

k
) , θ−nλ (P (n)

k+1
)] .
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Each of the intervals J
(n)
k

has length θ−nλ (y(n)
k+1
) > 0 and we obviously have

[0, λ(x)] = ∣σ
n(x)∣−1⋃
k=0

J
(n)
k

,

where the union is disjoint with respect to the interior.
The main idea in the proofs below is the following observation. If x is a walk that starts in x then

for each n ∈ N the first n edges determine an index k ∈ {0, . . . , ∣σn(x)∣ − 1} such that Λ(x) ∈ J
(n)
k

.
Indeed, let x = (Dj , xj)j≥1. We clearly have

Λ(x) ∈ n∑
j=1

θ−jλ(Dj) + θ−nIσ,c(xn)
and by using the techniques from the proof of Lemma 3.2 we see that

Λ(x) ∈ θ−nλ(D) + θ−nIσ,c(xn),
where D = σn−1(D1)⋯σ(Dn−1)Dn ∈ A

∗ is a prefix of σn(x) and (D, xn) ∈ G1

σn,c(n)
(x).

We have to distinguish whether xn ∈ A or xn ∈ A. If xn ∈ A then Dxn is also a prefix of σn(x)
and by Lemma 3.2 we have

Λ(x) ∈ θ−nλ(D) + θ−nIσ,c(xn) ⊂ J
(n)
k

with k = ∣D∣. If xn ∈ A then we similarly obtain that Λ(x) ∈ J
(n)
k

with k = ∣D∣ − 1.

Lemma 3.4. For each x ∈ A we have

Iσ,c(x) ⊆ [0, Λ(x+)],
where x+ ∈ G∞σ,c(x) denotes the maximal walk, and

Iσ,c(x̄) ⊆ [Λ(x−), 0],
where x− ∈ G∞σ,c(x̄) is the minimal walk.

Proof. We show the first statement explicitly. The second one can be proved analogously.
Let x ∈ A, x+ = (D+j , x+j )j≥1 ∈ G∞σ,c(x) be the maximal walk and x = (Dj , xj)j≥1 ∈ G∞σ,c(x)

different from x+. We have x ≺lex x+, thus there exists an index n ≥ 1 such that (Dj , xj) = (D+j , x+j )
holds for all j < n and (Dn, xn) ≺ (D+n, x+n). Then, by our considerations from above, x ∈ J

(n)
k

with

k ≤ ∣σn−1(D1)∣ + ⋯ + ∣Dn∣ where the inequality is strict if xn ∈ A. On the other hand x+ ∈ J
(n)
k+

with k+ = ∣σn−1(D1)∣+⋯+ ∣Dn∣. In the latter case we clearly have equality since x+ is the maximal
walk and, thus, x+n ∈ A. Since (Dn, xn) ≺ (D+n, x+n) we either have Dn ≺ D+n - in this case k < k+

obviously holds - or we have Dn = D+n. Then the inequality for k is strict and we have k = k+ − 1.
This immediately shows that Λ(x) ≤ Λ(x+). �

Lemma 3.5. Let x ∈ A. If Iσ,c(x) = [0, λ(x)] and Iσ,c(x̄) = [−λ(x), 0] then (ES) is satisfied.

Proof. We only need the collection J1 = {J(1)k
∶ 0 ≤ k < ∣σ(x)∣} here. Consider (3.1), i.e.

Iσ,c(x) = ⋃
(D1,x1)∈G1

σ,c(x)
θ−1(λ(D1) + Iσ,c(x1)),

Iσ,c(x̄) = ⋃
(D′

1
,x′

1
)∈G1

σ,c(x̄)
θ−1(λ(D′1) + Iσ,c(x′1)).

For each edge (D1, x1) ∈ G1
σ,c(x) we have θ−1(λ(D1) + Iσ,c(x1)) ⊂ J

(1)
k

where k = ∣D1∣ if x1 ∈ A or

k = ∣D1∣ − 1 if x1 ∈ A. Since the interiors of the intervals in J1 are disjoint we see that if Iσ,c(x)
and int(J(1)

k
) have non-empty intersection then {k, k + 1} and c(x) have non-empty intersection.

Therefore, the assumption Iσ,c(x) = [0, λ(x)] implies that for each k ∈ {0, . . . , ∣σ(x)∣ − 1} either
k ∈ c(x) or k + 1 ∈ c(x) holds.
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For Iσ,c(x̄) we proceed similarly. Observe that

[−λ(x), 0] = ∣σ(x)∣⋃
k=0

(−λ(x) + J
(1)
k
)

and λ(x) = θ−1λ(σ(x)). For each edge (D′1, x′1) ∈ G1
σ,c(x̄) we have that D′

1
∈ A∗ is a suffix of σ(x).

Therefore

λ(x) + θ−1(λ(D′1) + Iσ,c(x′1)) = θ−1(λ(σ(x)D′1) + Iσ,c(x′1)) ⊂ J
(1)
k

where k = ∣σ(x)∣ + ∣D′1∣ if x′1 ∈ A or k = ∣σ(x)∣ + ∣D′1∣ − 1 if x′1 ∈ A. We conclude that Iσ,c(x) ∩
(−λ(x) + int(J(1)

k
)) /= ∅ implies that {k− ∣σ(x)∣, k+1− ∣σ(x)∣}∩c(x̄) /= ∅. The assumption Iσ,c(x̄) =

[−λ(x), 0] shows that for each k ∈ {0, . . . , ∣σ(x)∣ − 1} either k − ∣σ(x)∣ ∈ c(x̄) or k + 1 − ∣σ(x)∣ ∈ c(x̄)
holds.

Summing up, the two conditions on c(x) and c(x̄) and the fact that c is a coding prescription
yield two necessary conditions. At first, ∣σ(x)∣ is odd and c(x) as well as c(x̄) are subsets of 2Z.
Secondly, for all letters y that appear in σ(x) we have Iσ,c(y) = [0, λ(y)] and Iσ,c(x̄) = [−λ(y), 0].
By repeating the argumentation from above and by the primitivity of σ we finally see that (ES)
must hold. �

Lemma 3.6. If (σ, c) does not satisfy (ES) then for all x ∈ A the intersection B(x) ∶= Iσ,c(x) ∩(λ(x) + Iσ,c(x̄)) has zero Lebesgue measure.

Proof. By (3.1) we have for each x ∈ A that

Iσ,c(x) = ⋃
(D,x1)∈G1

σ,c(x)
θ−1(λ(D) + Iσ,c(x1)),

λ(x) + Iσ,c(x̄) = ⋃
(D′,x′

1
)∈G1

σ,c(x̄)
θ−1(λ(σ(x)) + λ(D′) + Iσ,c(x′1)).

We already observed that each term in both unions is contained in J
(1)
k

for a particular k and
the intervals contained in the collection J1 have pairwise disjoint interiors. This allows us to

characterise B(x) in terms of the collection {J(1)
k
∩ B(x) ∶ 0 ≤ k < ∣σ(x)∣} - at least up to the

finitely many boundary points {θ−1λ (P (1)
k
) ∶ 0 ≤ k ≤ ∣σ(x)∣} that do not influence considerations

concerning the Lebesgue measure µ.
Consider an arbitrary k ∈ {0, . . . , ∣σ(x)∣ − 1}. If k ∈ c(x) as well as k + 1 ∈ c(x) then neither

k− ∣σ(x)∣ ∈ c(x̄) nor k+1− ∣σ(x)∣ ∈ c(x̄). In the proof of Lemma 3.5 we have seen that this implies

that int(J(1)
k
) ∩ (λ(x) + Iσ,c(x̄)) = ∅ which shows that B(x) does not contain any point of the

(open) interval int(J(1)
k
). Similarly, if both k− ∣σ(x)∣ and k+1− ∣σ(x)∣ are contained in c(x̄), then

int(J(1)
k
) ∩B(x) = ∅, too.

On the other hand, if k ∈ c(x) and k + 1 − ∣σ(x)∣ ∈ c(x̄) then

int(J(1)
k
) ∩ Iσ,c(x) = int (J(1)

k
) ∩ θ−1 (λ (P(1)

k
) + Iσ,c (y(1)k

)) ,

int(J(1)
k
) ∩ (λ(x) + Iσ,c(x̄)) = int (J(1)

k
) ∩ θ−1 (λ (P(1)

k
) + λ (y(1)

k
) + Iσ,c (y(1)k

))
which yields that, up to the boundary points θ−1λ (P (1)

k
) and θ−1λ (P (1)

k+1
), we have J

(1)
k
∩B(x) =

θ−1 (λ(P (1)
k
) +B (y(1)

k
). A similar observation can be made if k + 1 ∈ c(x) and k − ∣σ(x)∣ ∈ c(x̄).

Let

b(x) ∶={k ∈ {0, . . . , ∣σ(x)∣ − 1} ∶ k ∈ c(x), k + 1 − ∣σ(x)∣ ∈ c(x̄)}
∪{k ∈ {0, . . . , ∣σ(x)∣ − 1} ∶ k + 1 ∈ c(x), k − ∣σ(x)∣ ∈ c(x̄)}.

By our considerations we conclude that

µ(B(x)) = ∑
k∈b(x)

θ−1µ(B (y(1)
k
)) .
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For each y ∈ A let bx,y ∶= {k ∈ b(x) ∶ y(1)
k
= y}. Then the equation from above rewrites as

µ(B(x)) = m∑
y=1

θ−1bx,yµ(B(y)).
We now represent this relation for all letters in terms of a matrix. In particular, let B =(bx,y)1≤x,y≤m. Then

(µ(B(1)), . . . , µ(B(m))) = (µ(B(1)), . . . , µ(B(m))) ⋅ θ−1B.

The entries of the matrix B are non-negative integers and we obviously have that B ≤Mσ (the
inequality holds component-wisely). Observe that equality holds if and only if (σ, c) satisfies
(ES). Hence, the requirements on (σ, c) imply that B /=Mσ. The matrix Mσ is primitive and we
conclude from [43] that all eigenvalues of B are strictly smaller than θ in modulus, especially, the
spectral radius of θ−1B is strictly smaller than 1 showing that (µ(B(1)),⋯, µ(B(m))) = 0. �

Actually, the interested reader easily verifies that for each x ∈ A the set equation

B(x) = ⋃
(P,y,S)∈F 1

σ(x)
∣P ∣∈b(x)

θ−1(λ(P ) +B(y))

even holds for the above excluded boundary points. This makes the collection {B(x) ∶ x ∈ A}
itself the invariant set list of a GIFS with uniform ratio θ−1 and construction matrix B.

Lemma 3.7. For all x ∈ A we have

(λ(x) + Iσ,c(x̄)) ∪ Iσ,c(x) = [0, λ(x)].
If (ES) holds then Iσ,c(x) = [0, λ(x)] and Iσ,c(x̄) = [−λ(x), 0].
Proof. Let x ∈ A and ξ ∈ [0, λ(x)]. Again we consider the collections Jn. There exists a (not

necessarily unique) sequence of intervals (J(n)
kn
)

n≥1
such that J

(n)
kn
∈ Jn and ξ ∈ J

(n)
kn

holds for all

n ≥ 1. Recall that P
(n)
kn
∈ A∗ is the prefix of σn(x) with ∣P (n)

kn
∣ = kn and y

(n)
kn+1

is the kn + 1st letter

of σn(x), hence

J
(n)
kn
= θ−n (λ (P (n)

kn
) + [0, λ(y(n)

kn+1
)]) = θ−n (λ (P (n)

kn
y
(n)
kn+1
) + [−λ (y(n)

kn+1
) , 0]) .

We clearly have that

ξ = lim
n≥∞

θ−nλ(P (n)
kn
) = θ−nλ(P (n)

kn
y
(n)
kn+1
).

Now, for each n ≥ 1 we either have kn ∈ c(n)(x) or kn− ∣σn(x)∣ ∈ c(n)(x̄). Suppose that kn ∈ c(n)(x)
holds for infinitely many n. Then

θ−nλ (P (n)
kn
) ∈ θ−n (λ (P (n)

kn
) + Iσ,c (y(n)kn+1

)) ⊂ Iσ,c(x)
holds for infinitely many indices and since Iσ,c(x) is a compact set we see that ξ ∈ Iσ,c(x). If

kn − ∣σn(x)∣ ∈ c(n)(x̄) holds for infinitely many n then from

θ−nλ (P (n)
kn
) − λ(x) ∈ θ−n (λ (σn(x)P (n)

kn
) + Iσ,c (y(n)kn+1

)) ⊂ Iσ,c(x̄)
we deduce that ξ − λ(x) ∈ Iσ,c(x̄). This shows that ξ ∈ (λ(x) + Iσ,c(x̄)) ∪ Iσ,c(x) which yields the
first statement of the lemma.

Now suppose that (ES) holds. If for infinitely many n we have kn ∈ c(n)(x) then we have seen

that ξ ∈ Iσ,c(x). By the structure of the setting we see that for these indices kn + 1 /∈ c(n)(x) and,

hence kn + 1 − ∣σn(x)∣ ∈ c(n)(x̄). This implies that

θ−nλ (P (n)
kn

y
(n)
kn+1
) − λ(x) ∈ θ−n (λ (σn(x)P (n)

kn
y
(n)
kn+1
) + Iσ,c (ȳ(n)kn+1

)) ⊂ Iσ,c(x̄)
and therefore ξ−λ(x) ∈ Iσ,c(x̄), too. Analogously, if for infinitely many indices we have kn−∣σn(x)∣ ∈
c(n)(x̄) then kn − 1 ∈ c(n)(x) and we also have both ξ − λ(x) ∈ Iσ,c(x̄) as well as ξ ∈ Iσ,c(x). �
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Proof of Theorem 3.1. Item (i) is shown in Lemma 3.2 and Lemma 3.4. The assertion of Item (ii)
has been shown in Lemma 3.7. Item (iii) follows from Lemma 3.6 and Lemma 3.7. Finally, for
showing Item (iv) we consider the collection J1 and observe that for two distinct edges (D1, x1)
and (D′1, x′1) (where we may assume that (D1, x1) ≺ (D′1, x′1)) the sets θ−1(λ(D1) + Iσ,c(x1))
and θ−1(λ(D′1) + Iσ,c(x′1)) are contained in the same subset J

(1)
k

if and only if x1 = x′
1
∈ A and

k + 1 = ∣D1x1∣ = ∣D′1∣. If (ES) is satisfied then c(x) does not contain ∣D1∣ and ∣D1∣ + 1, thus,
(3.1) has disjoint interior. If (ES) is not satisfied then the intersection θ−1(λ(D1) + Iσ,c(x1)) and
θ−1(λ(D1x1) + Iσ,c(x̄1)) has zero Lebesgue measure by Lemma 3.6. �

The next lemma states that for each vertex x ∈ A∪A there are at most four distinct walks with
the same Λ-image. We will need this result in the next section, however, we put it here since for
the prove we use (for the last time) the collections Jn. Observe that in Example 6.1 we study a
particular setting where this maximum occurs.

Lemma 3.8. Let x ∈ A ∪ A and x1, . . . , x5 ∈ G∞σ,c(x) distinct walks. Then there exist indices
r1, r2 ∈ {1, . . . , 5} such that Λ(xr1

) /= Λ(xr2
).

Proof. Let x ∈ A (for x ∈ A the proof runs analogously) and xr ∶= (D(r)j , x
(r)
j )j≥1

for each r ∈

{1, . . . , 5}. Choose n ∈ N that large such that the 5 initial walks (D(r)j , x
(r)
j )

n

j=1
, r ∈ {1, . . . , 5}

are pairwise different. For each r ∈ {1, . . . , 5} we have Λ (xr) ∈ θ−nλ (D(r)) + θ−nIσ,c (x(r)n ) with

D(r) ∶= σn−1 (D(r)
1
)⋯σ (D(r)n−1

)D
(r)
n and (D(r), x

(r)
n ) ∈ G1

σn,c(n)
(x(r)). Therefore Λ(xr) ∈ J

(n)
kr

with kr = ∣D(r)∣ if x
(r)
n ∈ A and kr = ∣D(r)∣ − 1 if x

(r)
n ∈ A. By the choice of n and Item (3)

of Proposition 2.2 we conclude that the edges (D(1), x(1)) , . . . , (D(5), x(5)) are pairwise distinct
and we see by the Pigeonhole principle that there must be at least two indices r1, r2 ∈ {1, . . . , 5}
such that kr1

− kr2
≥ 2 which implies that Λ (xr1

) > Λ (xr2
) since each interval J

(n)
k

has positive
length. �

We already have seen that for the Even setting Cσ,c is a collection of closed intervals. In the
next theorems we show that the same holds for the Continuous setting.

Theorem 3.9. Let the setting (σ, c) satisfy (CS). Then there exist non-positive real numbers
v−1 , v−2 , . . . , v−m and non-negative real numbers v+1 , v+2 , . . . , v+m such that for all x ∈ A we have v+x−v−x =
λ(x), Iσ,c(x) = [0, v+x], and Iσ,c(x̄) = [v−x , 0].
Proof. Let x ∈ A and set v−x ∶= Λ(x−) and v+x ∶= Λ(x+), where x− = (D−j , x−j )j≥1 ∈ G∞σ,c(x̄) and

x+ = (D+j , x+j )j≥1 ∈ G∞σ,c(x) are the minimal walk and the maximal walk, respectively. Since (CS)

holds we have ∣D+1 ∣− ∣D−1 ∣+1 = ∣σ(x)∣, hence (D−1 , x−1) = (σ(x)D+1 x+1 , x+
1
). By successive application

of the same argument we see that (D−j , x−j ) = (σ(x+j−1
)D+j x+j , x+j ) holds for all j ≥ 1. Therefore,

v−x = Λ(x−) =θ−1 (−λ(σ(x)) + λ(D+1 ) + λ(x+1)) +∑
j≥2

θ−j (λ(σ(x+j−1) + λ(D+j ) + λ(x+j ))
= − λ(σ(x)) +∑

j≥1

θ−jλ(D+j ) = Λ(x+) − λ(σ(x)) = v+x − λ(σ(x)).
By Lemma 3.4 we have Iσ,c(x) ⊆ [0, v+x] and Iσ,c(x̄) ⊆ [v−x , 0] and due to Lemma 3.7 equality

must hold. �

Denote by Aσ,c the adjacency matrix of the graph Gσ,c. We consider it as composition of four
submatrices

Aσ,c = ( M+ M+
M− M−

) ∈ Z2m×2m,
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where each of these submatrices is of dimension m ×m. In particular, we have

M+ ∶= (#{(D, x1) ∈ G1

σ,c(y) ∶ x1 = x})
1≤x,y≤m

,

M− ∶= (#{(D, x1) ∈ G1

σ,c(y) ∶ x1 = x̄})
1≤x,y≤m

,

M+ ∶= (#{(D, x1) ∈ G1

σ,c(ȳ) ∶ x1 = x})
1≤x,y≤m

,

M− ∶= (#{(D, x1) ∈ G1

σ,c(ȳ) ∶ x1 = x̄})
1≤x,y≤m

.

By observing the definition of Gσ,c one readily verifies that

M+ +M+ =Mσ =M− +M−.

Let u ∈ Rm denote a right eigenvector of Mσ with respect to θ. Then we immediately see that (u
u
)

is a corresponding right eigenvector of Aσ,c with respect to θ.
Let

w ∶= (µ (Iσ,c(1)) , µ (Iσ,c(2)) , . . . , µ (Iσ,c(m)) , µ (Iσ,c(1̄)) , µ (Iσ,c(2̄)) , . . . , µ (Iσ,c(m̄))) ∈ R2m.

By Item (iv) of Theorem 3.1 the union (3.1) is disjoint with respect to µ and, hence w is
a left eigenvector of Aσ,c with respect to θ. Especially, if (σ, c) satisfies (CS) we have w =(v+1 , . . . , v+m,−v−1 , . . . ,−v−m) and if (σ, c) satisfies (ES) then w = (v v).
Example (Accompanying example). We want to illustrate the results by our example. We start
with the collection Cσ,c2

. The minimal element of G∞σ,c2
(1̄) is (2̄, 1̄)ω. With the calculations that

we already performed we immediately obtain v−1 = −
√

2/2 and v+1 = θ + v−1 = 1 +
√

2/2. The minimal
element of G∞σ,c2

(2̄) is (ε, 1̄)(2̄, 1̄)ω. This yields that v−2 = θ−1v−1 = −1 +
√

2/2 and v+2 =
√

2/2. We
therefore obtain

Iσ,c2
(1̄) =[−√2/2, 0], Iσ,c2

(1) =[0, 1 +
√

2/2],
Iσ,c2
(2̄) =[−1 +

√
2/2, 0], Iσ,c2

(2) =[0,
√

2/2].
The sets are sketched at the top right position in Figure 3.

Concerning the other settings that satisfy (CS): one easily verifies that for (σ, c1) we have
Iσ,c1
(1̄) = [−θ, 0], Iσ,c1

(2̄) = [−1, 0] while Iσ,c1
(1) and Iσ,c1

(2) consist of the origin only; similarly
the situation for the setting (σ, c3) where Iσ,c1

(1) = [0, θ], Iσ,c1
(2) = [0, 1] and Iσ,c1

(1) = Iσ,c1
(2) ={0} (see the left hand side of Figure 3).

Finally, we consider the setting (σ, c4). Here Item (ii) if Theorem 3.1 implies that Iσ,c4
(1̄) =[−θ, 0], Iσ,c4

(1) = [0, θ], Iσ,c4
(2̄) = [−1, 0] and Iσ,c4

(2) = [0, 1]. This result is visualised bottom
right in Figure 3.

Iσ,c1(1)

Iσ,c1(2)

Iσ,c1(1)

Iσ,c1(2)

0 λ�1)λ�1)

0 λ�2)λ�2)

Iσ,c2(1)

Iσ,c2(2)

Iσ,c2(1)

Iσ,c2(2)

0 λ(1)λ(1)

0 λ(2)λ(2)

Iσ,c3(1)

Iσ,c3(2)

Iσ,c3(1)

Iσ,c3(2)

0 λ(1)λ(1)

0 λ(2)λ(2)

Iσ,c4(1)

Iσ,c4(2)

Iσ,c4(1)

Iσ,c4(2)

0 λ(1)λ(1)

0 λ(2)λ(2)

Figure 3. The shape of the elements of Cσ,c1
(top left), Cσ,c2

(top right), Cσ,c3

(bottom left), Cσ,c4
(bottom right).

We finish the section with some observations concerning higher powers of σ. By Proposition 2.2
a path of length n ∈ N on Gσ,c corresponds to an edge of Gσn,c(n) . Therefore, each walk on

Gσ,c corresponds to a walk on on Gσn,c(n) . In particular, let x ∈ A ∪ A and x = (Dj , xj)j≥1 ∈

G∞σ,c(x). Then the corresponding walk on Gσn,c(n) is given by x(n) ∶= (D′j , x′j)j≥1 ∈ G∞
σnc(n)

(x)
with x′j = xnj , D′j = σn−1(Dn(j−1)+1)σn−2(Dn(j−1)+2)⋯σ(Dnj−1)Dnj . Now observe that we have
Mσn =Mn

σ. Therefore, if θ is the dominant root of Mσ then θn is the dominant root of Mσn , and
a left eigenvector v of Mσ with respect to θ is a left eigenvector of Mσn with respect to θn (and
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vice versa). We thus can define λ and subsequently Λ with respect to this eigenvector v for both
σ as well as σn. By using the argumentation of Lemma 3.2 we obtain

Λ(x) =∑
j≥1

θ−jλ(Dj) =∑
j≥1

θ−nj
n∑

i=1

θn−iλ(Dn(j−1)+i) =∑
j≥1

θ−njλ(D′j) = Λ(x′).
We immediately see that for each n we have Cσ,c = Cσn,c(n) . If we choose different eigenvectors for
Mσ and Mσn then the sets contained in Cσ,c and Cσn,c(n) coincide up to a multiplicative factor.

Example (Accompanying example). The latter considerations can be easily illustrated by our

example. The dominant eigenvalue of Mσ2 is θ2 = 3 + 2
√

2 and v = (θ, 1) is a corresponding left
eigenvector. Then C

σ2,c
(2)
1

coincides with Cσ,c1
.

For characterising Cσ2,c′ we need additional calculations since the shape of this collection is not
determined by a coding prescription with respect to σ. In particular, the interested reader verifies
that (21121, 1̄)ω is the minimal walk that starts in 1̄ while (11, 2)ω is the maximal element of
G∞σ2,c′(2). Hence,

Iσ2,c′(1̄) =[−1/2 −√2, 0] Iσ2,c′(1) =[0, 1/2]
Iσ2,c′(2̄) ={0} Iσ2,c′(2) =[0, 1]

(see left hand side of Figure 4).
The sets contained in Cσ2,c′′ have a much more complex shape as it can be seen on the right

hand side in Figure 4. We can calculate the Lebesgue measures by using the matrix

Aσ2,c′′ =

⎛⎜⎜⎜⎝

3 2 2 0
0 0 2 1
1 1 4 1
1 0 1 1

⎞⎟⎟⎟⎠
.

One easily verifies that w = (3/4, 5/4−√2/2, 1/4+√2,−1/4+√2/2) is a left eigenvector of A with respect
to the eigenvalue θ2 such that the sum of the first and third entry equals λ(1) and the sum of the
other two entries yields λ(2). We conclude that

µ (Iσ2,c′(1̄)) = 1

4
+
√

2, µ (Iσ2,c′(1)) = 3

4
, µ (Iσ2,c′(2̄)) = −1

4
+

√
2

2
, µ (Iσ2,c′(2)) = 5

4
−

√
2

2
.

Iσ,c1(1)

Iσ,c1(2)

Iσ,c1(1)

Iσ,c1(2)

0 λ(1)λ(1)

0 λ(2)λ(2)

Iσ,c1(1)

Iσ,c1(2)

Iσ,c1(1)

Iσ,c1(2)

0 λ(1)λ(1)

0 λ(2)λ(2)

Figure 4. On the left we see the shape of the elements of Cσ2,c′ . They are
intervals since the setting (σ2, c′) satisfies (CS). On the right an approximation
of the elements of Cσ2,c′′ is depicted. The setting (σ2, c′′) does neither satisfy
(CS) nor (ES), hence the sets have a more complicated structure.

4. Representation of real numbers

In this section we properly state and prove our main result, a generalisation of the Dumont-
Thomas numeration. Let σ denote a primitive substitution over the alphabet A and c a coding
prescription with respect to A. We require (σ, c) to satisfy (CS) or (ES). Recall that in these
cases Cσ,c is a collection of closed intervals. More precisely, there exist non-negative real numbers
v+1 , . . . , v+m, and non-positive real numbers v−1 , . . . , v−m such that for each x ∈ A we have

Iσ,c(x) ∶= [0, v+x], Iσ,c(x̄) ∶= [v−x , 0].
If (σ, c) fulfils (CS) then we have v+x − v−x = λ(x) (see Theorem 3.9) while for (σ, c) satisfying (ES)
we have v+x = −v−x = λ(x) (see Theorem 3.1). We want to represent real numbers with respect
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to the dominant root θ of Mσ. For obtaining uniqueness we have to restrict to the right-open
intervals. We introduce the following notations: For each x ∈ A we define

Ĩσ,c(x) ∶= [0, v+x), Ĩσ,c(x̄) ∶= [v−x , 0).
With this notation (3.1) can be rewritten as

(4.1) Ĩσ,c(x) = ⋃
(D1,x1)∈G1

σ,c(x)
θ−1 (λ(D1) + Ĩσ,c(x1))

and due to Item (iv) of Theorem 3.1 this union is completely disjoint. Note that all results in this
section hold in an analogous way if we consider the left-open intervals.

Theorem 4.1. Let (σ, c) satisfy (CS) or (ES) and x = x0 ∈ A ∪A. For each γ ∈ Ĩσ,c(x) there
exists a unique walk x = x(γ) = (Dj , xj)j≥1 ∈ G∞σ,c(x) that satisfies

(4.2) ∀n ≥ 0 ∶ (Dj , xj)j≥n+1 is not the maximal element of G∞σ,c(xn)
such that

(4.3) γ = Λ(x) =∑
j≥1

θ−jλ(Dj).
If γ′ is another element of Ĩσ,c(x) different from γ then we have

γ < γ′ ⇐⇒ x(γ) ≺lex x(γ′).
We call the representation (4.3) the (σ, c, x)-expansion of γ and dσ,c,x(γ) ∶= (λ(Dj))j≥1 is the

corresponding digit string. The specification of the initial vertex x is important since if γ is
contained in Ĩσ,c(x) as well as Ĩσ,c(x′) with x /= x′ then the (σ, c, x)-expansion of γ does in general
not coincide with the (σ, c, x′)-expansion of γ, that is dσ,c,x(γ) /= dσ,c,x′(γ).

If c = c+ then we immediately see that Theorem 4.1 holds since it corresponds to the Dumont-
Thomas numeration stated in Theorem 2.6. Indeed, for each x ∈ A the set G∞σ,c+

(x) consists of
the zero-walk only that is simultaneously the maximal walk and, hence, forbidden. Therefore, the
action takes place on the subgraph induced in Gσ,c+ by A and this subgraph corresponds to the
prefix-suffix graph. Observe that for each x ∈ A the edge (D, x1) ∈ G1

σ,c+
(x) is maximal if and only

if (D, x1, ε) ∈ F 1
σ(x).

Proof of Theorem 4.1. We already observed that for c = c+ the theorem corresponds to Theo-
rem 2.6. Actually, our proof is inspired by the discourses on the Dumont-Thomas numeration in
[9, 11]. We define

Aσ,c ∶= {(ξ, y) ∈ R × (A ∪A) ∶ ξ ∈ Ĩσ,c(y)} .

Consider an element (ξ, y) ∈ Aσ,c. By the disjointness of the union (4.1) there exists a unique edge

eσ,c(ξ, y) ∶= (D, y′) ∈ G1

σ,c(y) such that ξ ∈ θ−1(λ(D) + Ĩσ,c(y′)),
especially (θξ − λ(D), y′) ∈ Aσ,c. We define the transformation Tσ,c ∶ Aσ,c Ð→ Aσ,c by

Tσ,c ∶ (ξ, y)z→ (θξ − λ(D), y′) where (D, y′) = eσ,c(ξ, y).
Now let γ ∈ Ĩσ,c(x) and observe that (γ, x) ∈ Aσ,c. We show that x ∶= (Dj , xj)j≥1 with (Dj , xj) =

eσ,c ○T j−1
σ,c (γ, x) for each j ≥ 1 is the unique walk x(γ) as claimed in the statement of the theorem.

Indeed, by construction x ∈ G∞σ,c(x) and for all n ≥ 1 we have

γ ∈
n∑

j=1

θ−jλ(Dj) + θ−nĨσ,c(xn).
Since the intervals become arbitrary small we clearly have

γ =∑
j≥1

θ−jλ(Dj) = Λ(x).
Suppose that x does not satisfy Condition (4.2). Then there exists an n ∈ N0 such that

xn ∶= (Dj , xj)j≥n+1 is the maximal walk starting in xn and, hence Λ(xn) is the right endpoint of

Iσ,c(xn). But by construction we have (Λ(xn), xn) = T n
σ,c(γ, x) ∈ Aσ,c and, thus, Λ(xn) ∈ Ĩσ,c(xn),

a contradiction.
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Finally, we prove the uniqueness. Suppose that there were another walk x′ = (D′j , x′j)j≥1 ∈
G∞σ,c(x) different from x that satisfies (4.2) with Λ(x′) = γ. We show constructively that this yields
a contradiction. We assume that x ≺lex x′ (for x′ ≺lex x the proof runs analogously). Then there
exists an index n′ such that (Dj , xj) = (D′j , x′j) for j < n′ and (Dn′ , xn′) = (D′n′ , x′n′). Since x

satisfies (4.2) we can find an index n1 > n′ such that (Dn1
, xn1
) is not the maximal element of

G1
σ,c(xn1−1). Let x(1) ∶= (D(1)j , x

(1)
j )n≥1

∈ G∞σ,c(x) such that (D(1)j , x
(1)
j ) = (Dj , xj) for j < n1 and

(D(1)j , x
(1)
j )n≥n1

is the maximal walk that starts in xn1
. With the same argumentation we find

another index n2 > n1 such that (Dn2
, xn2
) is not the maximal edge and we let x(2) denote the

walk whose first n2−1 edges coincide with the fist n2−1 edges of x and from there on all edges are
maximal. Finally, in the same way we construct x(3). Summing up, we have five distinct walks
and by construction they fulfil

x ≺lex x(3) ≺lex x(2) ≺lex x(1) ≺lex x′.

As Λ(x) = Λ(x′) = γ and (σ, c) satisfies (O) we conclude that

Λ (x) = Λ (x(3)) = Λ (x(2)) = Λ (x(1)) = Λ (x′) = γ

which contradicts Lemma 3.8. �

Let

Nσ,c ∶= {λ(D) ∶ (D, x′) ∈ G1

σ,c(x), x ∈ A ∪A}.
Then Nσ,c is the (finite) set of digits induced by the (σ, c, x)-expansions, independently of x. In

other words, for each x ∈ A ∪A and γ ∈ Ĩσ,c(x) the digit string dσ,c,x(γ) is an infinite sequence
over Nσ,c.

Observe that a vertex x ∈ A yields expansions of non-negative numbers while a vertex x ∈ A
provides expansions of negative numbers. This fact suggests to consider the graph Hσ,c whose
vertices correspond to pairs of letters (see Remark 2.3). We therefore state Theorem 4.1 in terms
of Hσ,c as a corollary.

Corollary 4.2. Let (σ, c) satisfy (CS) or (ES) and ab = a0b0 ∈ A
2. For each γ ∈ [v−a , v+b ) =

Ĩσ,c(ā) ∪ Ĩσ,c(b) there exists a unique walk x = (Dj , ajbj)j≥1 ∈H∞σ,c(ab) that satisfies

∀n ≥ 0 ∶ xn ∶= (Dj , ajbj)j≥n+1 is not the maximal element of H∞σ,c(anbn)
such that

γ = Λ(x) =∑
j≥1

θ−jλ(Dj).
If γ′ is another element of [v−a , v+b ) different from γ then we have

γ < γ′ ⇐⇒ x(γ) ≺lex x(γ′).
Proof. Observe that, if (D, a1b1), (D′, a′1b′1) ∈ H∞σ,c(ab) are distinct edges, then we always have
D ≺D′ or D′ ≺D. We therefore can define ≺ on edges, paths and walks on Hσ,c in a straightforward
way. The rest of the proof is obvious. �

To better characterise the digit strings we introduce a special variant of the graph Gσ,c. In

particular, define the digit graph Ĝσ,c to be the graph obtained from Gσ,c by relabelling each edge

(D, x′) with λ(D) ∈ Nσ,c. In accordance with our notations we let Ĝ∞σ,c(x) denote the infinite

walks that start in the vertex x. Observe that the digit graph Ĝσ,c is not right-resolving in the
sense of [25] since in general the vertices have more than one outgoing edge with the same label.

Here the larger graph Hσ,c shows its advantage. Indeed, we can define the digit graph Ĥσ,c in an
analogous way and this graph is right-resolving.

Example (Accompanying example). Each of the four settings (σ, c1),(σ, c2), (σ, c3) and (σ, c4)
from our example satisfy the condition of Theorem 4.1.

At first observe that the setting (σ, c3) corresponds to the Dumont-Thomas numeration. We
clearly see by the respective graph in Figure 2 that the only walks that start in 1̄ or 2̄ are maximal
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walks and, hence, forbidden. For considering expansions it suffices to concentrate on the subgraph
induced in Gσ,c by the set A which corresponds to the prefix-suffix graph (up to the labels that
do not contain the suffixes).

Since the setting (σ, c3) does not yield new aspects we concentrate on the setting (σ, c2). Here

the digit set is given by Nσ,c2
∶= {0,−1, 1 +

√
2}. Let us consider the initial vertex 1̄. We can

uniquely expand the elements of the interval Ĩσ,c2
(1̄) = [−√2/2, 0) with respect to the base θ. For

instance, one easily verifies that

x(1 −√2) = (2̄, 2)(ε, 1)ω Ô⇒ dσ,c2,1̄ (1 −√2) = −1, (0)ω,

x (1−2
√

2/7) = ((2̄, 2)(ε, 1)(1, 1̄))ω Ô⇒ dσ,c2,1̄ (1−2
√

2/7) = (−1, 0, 1 +
√

2)ω .

Observe that (2̄, 1̄) ((ε, 2̄)(ε, 1̄))ω ∈ G∞σ,c2
(1̄) does not satisfy (4.2).

With the initial vertex 2 we can represent the elements of Ĩσ,c2
(2) = [0,

√
2/2). Some examples:

x (√2 − 1) = (ε, 1)(1, 1)(ε, 1)(ε, 11)ω Ô⇒ dσ,c2,2 (√2 − 1) = 0, 1 +
√

2, (0)ω,

x (1 −√2/2) = (ε, 1)(1, 1̄)(2̄, 1̄)ω Ô⇒ dσ,c2,2 (1 −√2/2) = 0, 1 +
√

2, (−1)ω.

For obtaining the digit strings directly we replaced each label by the corresponding element of
Nσ,c2

. In this way we get the digit graph Ĝσ,c2
that is shown on the left hand side of Figure 5.

Due to Corollary 4.2 we can use the graph Hσ,c2
(depicted in the centre of Figure 5) to combine

the expansions of negative numbers with respect to the vertex 1̄ and the expansions of non-negative
numbers with respect to the vertex 2. Indeed, by starting in the vertex 12 we obtain the (σ, c2, 1̄)
expansions of the elements of Ĩσ,c2

(1̄) and the (σ, c2, 2) expansions of the elements of Ĩσ,c2
(2).

By relabelling the edges in an analogous way we obtain the digit graph Ĥσ,c2
(right hand side of

Figure 5) that also represents the digit strings, but this time in a right-resolving way.

1 2

1̄ 2̄

0

1+
√

2

0

1+
√

2

−1 0

−1

0

11 12

21 22

(1,11)
(2̄,12)

(ε,21) (ε,21)

(2̄,12)

(ε,11)
(1,11)

(ε,11)

11 12

21 22

1+
√

2

−1

0

0

−1

0

1+
√

2
0

Figure 5. On the left we see the digit graph Ĝσ,c2
that represents the digit

strings. It is clearly not right-resolving. In the centre we see the graph Hσ,c2
. By

relabelling the edges in a proper way we obtain the digit graph Ĥσ,c2
on the right

that is right-resolving.

The setting (σ2, c′) also satisfies the condition of Theorem 4.1. Here the representations are
with respect to the base θ2. The respective digit set is given by

Nσ2,c′ = {−5 − 3
√

2,−4 − 3
√

2,−3 − 2
√

2,−2 −
√

2,−1 −
√

2, 0, 1 +
√

2, 2 + 2
√

2} .

Remark 4.3. Theorem 4.1 allows us to represent substantially larger classes of real numbers. Let
x ∈ A and suppose that v+x > 0. Then for each non-negative γ ∈ R there exists an integer n ≥ 0 such
that (θ−nγ, x) ∈ Aσ,c. Let (dj)j≥1 = dσ,c,x(θ−nγ). Then we obtain a representation of γ as

γ =∑
j≥1

djθn−j .

Note that in order to maintain uniqueness we have to additionally require that n is chosen in a
minimal way. A similar consideration for x̄ allows us to represent arbitrary negative real numbers.
Clearly, if v+x = 0 or v−x = 0 this idea does not work for the entire real line but only for real numbers
with an appropriate sign. In the rest of the article we will not further consider this approach and
concentrate on the respective intervals Ĩσ,c(x) and Ĩσ,c(x̄).
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Assume that for the left eigenvector v of Mσ with respect to the dominant eigenvalue θ we
have v ∈ Q(θ)m. We say that the setting (σ, c) satisfies the periodicity property if

(P) ∀x ∈ A ∪A, γ ∈ Q(θ) ∩ Ĩσ,c(x) ∶ dσ,c,x(γ) is eventually periodic.

A digit string dσ,c,x(γ) is finite if only finitely many digits are different from zero (i.e. the (σ, c, x)-
expansion (4.3) is a finite sum). Motivated by the considerations concerning the Dumont-Thomas
numeration (see Subsection 2.4) we say that the setting (σ, c) has the finiteness property (F) if

(F) ∀x ∈ A ∪A, γ ∈ Z[v] ∩ Ĩσ,c(x) ∶ dσ,c,x(γ) is finite.

Obviously (σ, c+) satisfies (F) if and only if the Dumont-Thomas numeration induced by σ satisfies
the finiteness condition (as defined in Subsection 2.4). One easily obtains the following equiva-
lent conditions: (σ, c) satisfies (P) if and only if for all (γ, x) ∈ Aσ,c with γ ∈ Q(θ) the orbit{T n

σ,c(γ, x) ∶ n ∈ N} is a finite set; (σ, c) satisfies (F) if and only if for all (γ, x) ∈ Aσ,c with γ ∈ Z[v]
there exists an integer n ≥ 0 such that T n

σ,c(γ, x) = (0, y). We start with a well-known classical
result.

Proposition 4.4. If θ is a Pisot number then (σ, c) satisfies (P). On the other hand, if (σ, c)
satisfies (P) then θ is a Pisot number or a Salem number.

Proof. This can be shown similarly as in [33] (see also [12]). �

Our intention in the present article is not to give characterisation results concerning periodicity
and finiteness. Actually, we show that (P) does not depend on the choice of c. For (F) we show a
similar result with a minor restriction, namely, that some special settings never satisfy (F).

Proposition 4.5. Suppose that for a setting (σ, c) that satisfies (O) we have

(4.4) ∃x ∈ A ∶ Iσ,c(x̄) = [−λ(x), 0].
Then (σ, c) does not have the finiteness property (F).

Proof. We show indirectly that the (σ, c, x̄)-expansion of γ = −λ(x) ∈ Z[v] is not finite. Let
x(γ) = (Dj , xj)j≥1 and suppose that there exists an index n such that Dj = ε for all j > n.
By the considerations from the proof of Lemma 3.2 this implies that γ = θ−nλ(X) with X =
σn−1(D1)⋯σ(Dn−1)Dn. By Theorem 2.2 we have (X, xn) ∈ G1

σn,c(n)
(x̄) which shows that σn(x̄) ≺

X, and since λ is order-preserving we obtain

γ = −λ(x) = θ−n (σn(x̄)) < θ−nλ(X) = γ,

a contradiction. �

Note that if (σ, c) satisfies (CS) then condition (4.4) means that Iσ,c(x) = {0} and, hence(0, x) /∈ Aσ,c. It is therefore not really astonishing that finiteness does not hold. But the proposition
also induces that Even settings do not have the finiteness property.

Our main argument in context with periodicity and finiteness is that the transformation Tσ,c

is conjugate with the transformation Tσ,c+ .

Lemma 4.6. Let (σ, c) satisfy (CS) or (ES). Then for all (ξ, x) ∈ Aσ,c we have S ○ Tσ,c(ξ, x) =
Tσ,c+ ○ S(ξ, x) where

S ∶ (ξ, x)z→ ⎧⎪⎪⎨⎪⎪⎩
(ξ, x) if x ∈ A,

(ξ − λ(x), x) if x ∈ A.

Proof. Let (ξ, x) ∈ Aσ,c and eσ,c(ξ, x) = (D1, y). Then Tσ,c(ξ, x) = (θξ − λ(D1), y). We have four
cases:

Case 1. x ∈ A, y ∈ A: Obviously

S ○ Tσ,c(ξ, x) = (θξ − λ(D1), y) ∈ Aσ,c+ .

On the other hand, since y ∈ A we have D1 ∈ A
∗ and therefore (D1, y) ∈ G1

σ,c+
(x). We

immediately obtain

Tσ,c+ ○ S(ξ, x) = Tσ,c+(ξ, x) = (θξ − λ(D1), y) = S ○ Tσ,c(ξ, x).
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Case 2. x ∈ A, y ∈ A: We clearly have

S ○ Tσ,c(ξ, x) = (θξ − λ(D1) − λ(y), ȳ) ∈ Aσ,c+ .

By the definition of Gσ we have D1 = D′1ȳ ∈ A+ and we conclude that (D′1, ȳ) ∈ G1
σ,c+
(x).

This shows that

Tσ,c+ ○ S(ξ, x) = Tσ,c+(ξ, x) =(θξ − λ(D′1), ȳ) =
=(θξ − λ(D1) − λ(y), ȳ) = S ○ Tσ,c(ξ, x)

must hold.
Case 3. x ∈ A, y ∈ A: Note that

S ○ Tσ,c(ξ, x) = (θξ − λ(D1), y) = (θ(ξ + λ(x̄)) − λ(σ(x̄)D1), y) ∈ Aσ,c+ .

From D1 ∈ A
+

we see that (σ(x̄)D1, y) ∈ G1
σ,c+
(x̄). We conclude that

Tσ,c+ ○ S(ξ, x) = Tσ,c+(ξ + λ(x̄), x̄) = (θ(ξ + λ(x̄)) − λ(σ(x̄)D1), y) = S ○ Tσ,c(ξ, x).
Case 4. x ∈ A, y ∈ A: We have

S ○ Tσ,c(ξ, x) =(θξ − λ(D1) − λ(y), ȳ) = (θξ + λ(σ(x̄)) − λ(σ(x̄)) − λ(D1y), ȳ)
= (θ(ξ + λ(x̄)) − λ(σ(x̄)D1y), ȳ) ∈ Aσ,c+ .

Since D1 ∈ A
∗

we obtain (σ(x̄)D1y, ȳ) ∈ G1
σ,c+
(x̄) and moreover

Tσ,c+ ○ S(ξ, y) = Tσ,c+(ξ + λ(x̄), x̄) = (θ(ξ + λ(x̄)) − (σ(x̄)D1y), ȳ) = S ○ Tσ,c(ξ, x).
�

Theorem 4.7. Let (σ, c) be a setting that satisfies (O). Then (σ, c) has the periodicity property
(P) if and only if (σ, c+) has (P).

If for all x ∈ A we have −λ(x) /∈ Iσ,c(x̄) (i.e. (σ, c) does not satisfy (4.4)) then (σ, c) has the
finiteness property (F) if and only if (σ, c+) has (F) (which is equivalent to the Dumont-Thomas
numeration induced by σ satisfying the finiteness condition).

Proof. At first suppose that (σ, c+) satisfies (P). Let (γ, x) ∈ Aσ,c with γ ∈ Q(β) and set (γ′, x′) ∶=
S(γ, x). We are interested in the orbit O ∶= {T n

σ,c(γ, x) ∶ n ∈ N}. We clearly have γ′ ∈ Q(β) and
since (σ, c+) satisfies (P) the orbit O′ ∶= {T n

σ,c+
(γ′, x′) ∶ n ∈ N} is a finite set. Obviously S(O) = O′

by Lemma 4.6. If (σ, c) satisfies (CS) then S acts bijectively onto Aσ,c, hence #O = #O′. If(σ, c) satisfies (ES) then each (ξ, y) ∈ Aσ,c+ has exactly two pre-images with respect to S, namely(ξ, y) ∈ Aσ,c and (ξ − λ(y), ȳ) ∈ Aσ,c. We see that #O ≤ 2#O′. Therefore, the orbit O is a finite
set and (σ, c) satisfies (P).

Now assume that (σ, c+) satisfies (F). Similarly as before we let (γ, x) ∈ Aσ,c with γ ∈ Z[v] and
set (γ′, x′) ∶= S(γ, x). Then γ′ ∈ Z[v] and there exists an integer n ≥ 0 such that

S ○ T n
σ,c(γ, x) = T n

σ,c+
(γ′, x′) = (0, y)

for an y ∈ A (where we used Lemma 4.6). By the requirements on (σ, c) we see that (−λ(y), ȳ) /∈
Aσ,c and conclude that T n

σ,c(γ, x) = (0, y).
The contrary statements can be shown analogously. �

We complete the section by a result that relates periodicity and finiteness properties of different
powers of σ.

Proposition 4.8. Let (σ, c) be a setting that satisfies (O). Then (σ, c) satisfies (P) ( (F), respec-

tively), if and only if (σn, c(n)) satisfies (P) ( (F), respectively).

Proof. Trivial, since each walk on Gσ,c corresponds to exactly one walk on Gσn,c(n) . �

Example (Accompanying example). We consider the last time our example. From Proposition 4.5
we immediately deduce that the setting (σ, c4) does not have the finiteness property (F). By
Theorem 4.7 the Dumont-Thomas numeration induced by σ fulfils the finiteness condition if and
only if (σ, c3) satisfies (F) if and only if (σ, c2) does which is in turn equivalent to (σ, c1) having
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(F). Observe that σ is a beta-substitution related with the beta-expansion with respect to the
base θ, which is a Pisot number of degree 2. This implies that the Dumont-Thomas numeration
induced by σ really satisfies the finiteness property. We will deal with beta-substitutions in the
next section. Due to Proposition 4.8 we even have equivalence with the finiteness property of(σ2, c′).

5. Connections with generalised beta-expansions

It is well known that (classical) beta-expansions are intimately related with substitutions via the
Dumont-Thomas numeration. This immediately implies that, for respective settings, Theorem 4.1
covers the beta-expansion. With our generalised approach we are able to show relations between
generalised beta-expansions and substitutions.

Let δ ∈ [0, 1) and β > 1. We consider transformations of the shape

Tβ,δ ∶ [−δ, 1 − δ)Ð→ [−δ, 1 − δ), ξ z→ βξ − ⌊βξ + δ⌋ .

For each γ ∈ [−δ, 1 − δ) successive application of Tβ,δ induces the (β, δ)-expansion

(5.1) γ = d1β−1
+ d2β−2

+ d3β−3
+⋯

where dj = βT
j−1

β,δ
(γ) − T

j
β,δ
(γ) ∈ Z. We denote the digit string by dβ,δ(γ) ∶= (dj)j≥1. Observe that

(5.1) is the unique radix representation of γ with respect to the base β and with integer digits
that satisfies

∑
j≥1

dn+jβ−j ∈ [−δ, 1 − δ)
for all n ≥ 0. An integers sequence (dj)j≥1 is called admissible (with respect to Tβ,δ) if there exists
a γ ∈ [−δ, 1−δ) such that dβ,δ(γ) = (dj)j≥1. The (β, δ)-shift Ωβ,δ is the symbolic dynamical system
induced by the admissible sequences, that is

Ωβ,δ ∶= {dβ,δ(γ) ∶ γ ∈ [−δ, 1 − δ)}.
The case δ = 0 is the most famous one and corresponds to the classical beta-expansion introduced

in [32]. For details we refer, e.g., to the survey article [18]. For δ = 1/2 we obtain the symmetric
beta-expansion introduced in [6].

For a characterisation of the admissible sequences we follow the notations introduced in in [23].
Define the left-continuous counterpart of Tβ,δ by

T̂β,δ ∶ (−δ, 1 − δ]Ð→ (−δ, 1 − δ], ξ z→ βξ + ⌊−βξ + 1 − δ⌋

and for γ ∈ (−δ, 1−δ] let d∗β,δ(γ) ∶= (dj)j≥1 be the integer sequence satisfying dj = βT̂
j−1

β,δ
(γ)−T̂

j
β,δ
(γ).

Observe that d∗β,δ(γ) also provides a representation of γ since we have γ = ∑j≥1 β−jdj . For the

characterisation of the admissible sequences the sequence d∗β,δ(1 − δ) is important.

Proposition 5.1. Let β > 1, δ ∈ [0, 1). Then the following assertions hold.

(1) An integer sequence (dj)j≥1 is admissible with respect to Tδ,β if and only if

∀n ≥ 1 ∶ dβ,δ(−δ) ≤lex (dj)j≥n <lex d∗β,δ(1 − δ).
(2) An integer sequence (dj)j≥1 is contained in Ωβ,δ if and only if

∀n ≥ 1 ∶ dδ,β(−δ) ≤lex (dj)j≥n ≤lex d∗β,δ(1 − δ).
(3) The (β, δ)-shift is sofic if and only if dβ,δ(−δ) as well as d∗β,δ(1 − δ) are eventually periodic

sequences.

Proof. Item (1) follows immediately from [23, Theorem 2.5]. Item (2) is obvious (cf. Formula (6)
in [23]). Finally, Item (3) is a consequence of [23, Proposition 2.14]. �

We want to remark that if both dβ,δ(−δ) and d∗β,δ(1− δ) are purely periodic then Ωβ,δ is a shift

of finite type. This can be easily shown by using the strategy from [6, Theorem 3.6].
In context with the classical case δ = 0 the sequence d∗β,0(1) is frequently called the characteristic

sequence and the results of the previous proposition can be found in [13, 30]. Observe that if this
characteristic sequence is eventually periodic then β is said to be a Parry-number (in literature
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we also find the term beta-number). If the characteristic sequence is purely periodic then the term
simple Parry-number has established. For more informations concerning Parry-numbers we refer
to [14, 30, 38].

It has been observed in [17, 42] that for β a Parry number the structure of the admissible
sequences with respect to Tβ,0 can be described by a specific beta-substitution σβ = σβ,0. We
follow [11] and state this relation in terms of the Dumont-Thomas numeration. Let d∗β,0(1) =
e1, . . . , eq, (eq+1, . . . , e1+p)ω. The beta-substitution σβ,0 over the alphabet A = {1, . . . , m = p+ q} is
defined by

σβ,0(x) =
⎧⎪⎪⎨⎪⎪⎩

1ex(x + 1) if x ∈ {1, . . . , m − 1},
1em(q + 1) if x =m,

where 1ex denotes ex repetitions of the letter 1 (and 10 = ε).

Remark 5.2. Although we speak of the beta-substitution, σβ,0 is actually not uniquely determined
since we did not require the pre-period q and the period p to be chosen in a minimal way. However,
the following results hold even when q and p are not chosen to be minimal (cf. Example 6.5).

Lemma 5.3 (cf. [11, 17, 42]). Let β > 1 be a Parry-number and denote by σβ,0 the corresponding
beta-substitution. Then the dominant eigenvalue of Mσβ,0

is β.
If we normalise the left eigenvector v of Mσβ,0

that corresponds to β such that we have λ(1) = 1

(i.e. the first entry of v equals 1) then for each x ∈ {1, . . . , m} we have λ(x) = T̂ x−1

β,0 (1) ≤ 1.

Now we describe the exact relation between Dumont-Thomas numeration and beta-expansion.

Theorem 5.4 (cf. [11, 17, 42]). Let β > 1 be a Parry-number, σβ,0 the corresponding beta-
substitution, and v a left eigenvector of Mσβ,0

with respect to β such that λ(1) = 1. Then for each
γ ∈ [0, 1) = [0, λ(1)) we have dσβ,0,1(γ) = dβ(γ), that is the (β, 0)-expansion coincides with the(σβ , 1)-expansion.

By observing Theorem 4.1 this immediately yields the following corollary.

Corollary 5.5. Let β > 1 be a Parry-number, and σβ, v as in Theorem 5.4. Then for each

γ ∈ [0, 1) = Ĩσ,c+(1) we have dσβ ,c+,1(γ) = dβ(γ), i.e. the (σβ , c+, 1)-expansion coincides with the(β, 0)-expansion of γ.

In Theorem 5.8 we amplify this result and show that Theorem 4.1 also covers beta-expansions
for δ different from 0. We need some preliminary results. In the next lemma we fix a base β and
relate the sequences dβ,δ(−δ) and d∗β,δ(1 − δ) with the characteristic sequence d∗β,0(1).
Lemma 5.6. Let β > 1, δ ∈ [0, 1) and define dβ,δ(−δ) = (lj)j≥1 and d∗β,δ(1 − δ) = (rj)j≥1. If these
sequences satisfy

(5.2) (∀j ≥ 1 ∶ rj ≥ 0, lj ≤ 0) ∧ (rj − lj /= 0 for infinitely many indices)
then

d∗β,0(1) = d∗β,δ(1 − δ) − dβ,δ(−δ) = (rj − lj)j≥1.

Proof. Let d∗β,0(1) = (dj)j≥1. By definition have that dj = βT̂
j−1

β,0
(1) − T̂

j
β,0
(1) holds for all j ≥ 1.

Especially, dj is the unique integer that satisfies

βT̂
j−1

β,0
(1) − dj ∈ (0, 1].

We show by induction on j that for each j ∈ N0 we have T̂
j
β,δ
(1 − δ) − T

j
β,δ
(−δ) = T̂

j
β,0
(1). The

base case j = 0 is clear. For the induction step assume that T̂ n
β,δ(1 − δ) − T n

β,δ(−δ) = T̂ n
β,0(1) holds

for some n ∈ N0. By definition we have

(5.3)
−δ < T̂ n+1

δ,β (1 − δ)=βT̂ n
δ,β(1 − δ) − rn+1 ≤ 1 − δ,

−δ ≤ T n+1

δ,β (−δ) =βT n
δ,β(−δ) − ln+1 < 1 − δ.

Since by Condition (5.2) (lj)j≥1 is a sequence of non-positive integers we see that

T n+1

β,δ (−δ) =∑
j≥1

lj+n+1β−j ≤ 0.
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Similarly, T̂ n+1

β,δ (1 − δ) ≥ 0. Therefore, from (5.3) we obtain

0 ≤ T̂ n+1

β,δ (1 − δ)=βT̂ n
δ,β(1 − δ) − rn+1 ≤ 1 − δ,

0 ≤ −T n+1

β,δ (−δ) =−βT n
δ,β(−δ) + ln+1 ≤ δ

and addition yields

0 ≤ T̂ n+1

β,δ (1 − δ) − T n+1

β,δ (−δ) = β(T̂ n
β,δ(1 − δ) − T n

β,δ(−δ)) − (rn+1 − ln+1)
= βT̂ n

β,0(1) − (rn+1 − ln+1) ≤ 1.

Finally, observe that the leftmost inequality is strict due to the additional requirement that rj−lj /=
0 (and, hence, rj − lj > 0) for infinitely many indices. Since rn+1 − ln+1 is an integer we conclude

that dn+1 = rn+1 − ln+1 and, hence T̂ n+1

β,δ (1 − δ) − T n+1

β,δ (−δ) = T̂ n
β,0(1). �

Now consider a base β > 0 and an δ ∈ [0, 1) such that (5.2) is satisfied. If dβ,δ(−δ) as well as
d∗β,δ(1− δ) are eventually periodic then, by Lemma 5.6, d∗β,0(1) is also eventually periodic. Hence,
the soficness of Ωβ,δ implies Ωβ,0 to be sofic, too. Note that it is not clear whether a contrary
statement also holds. Only for the purely periodic case we are able to show equivalence.

Lemma 5.7. Let β > 1, δ ∈ [0, 1) and suppose that dβ,δ(−δ) and d∗β,δ(1 − δ) satisfy (5.2). Then

d∗β,0(1) is purely periodic with minimal period p if and only if dβ,δ(−δ) and d∗β,δ(1 − δ) are purely
periodic and the least common multiple of the minimal periods is p.

Proof. Suppose that d∗β,0(1) is purely periodic with minimal period p, hence, T̂
p
β,0
(1) = 1. Now

consider the proof of Lemma 5.6. We immediately see that in (5.3) equality must hold for the

non-strict inequalities, that is T
p
β,δ
(−δ) = −δ and T̂

p
β,δ
(1 − δ) = 1 − δ. Therefore, dβ,δ(−δ) as well

as d∗β,δ(1 − δ) are purely periodic with period p. Since T̂ n
β (1) /= 1 for 0 < n < p we also see that

T n
β,δ(−δ) = −δ and T̂ n

β,δ(1 − δ) = 1 − δ cannot hold at the same time for 0 < n < p, hence, the LCM

of the minimal periods of dβ,δ(−δ) and d∗β,δ(1 − δ) is at least p.
The other direction follows immediately from Lemma 5.6 �

We now show that in case of a sofic (β, δ)-shift such that (5.2) is satisfied there exists a particular(β, δ)-substitution σβ,δ and a suitable coding prescription cδ with respect to σβ,δ such that we can
retrieve the (β, δ)-expansions from Theorem 4.1.

Let dβ,δ(−δ) = (lj)j≥1 and d∗β,δ(1−δ) = (rj)j≥1 be eventually periodic. We may assume that they

have the same pre-period q and the same period p (possibly by considering common multiples),
i.e.

dβ,δ(−δ) =l1, . . . , lq, (lq+1, . . . , lq+p)ω,

d∗β,δ(1 − δ) =r1, . . . , rq, (rq+1, . . . , rq+p)ω.

In the purely periodic case we have q = 0. Now we define σβ,δ over the alphabet A ∶= {1, . . . , m =
p + q} and the coding prescription cδ with respect to σβ,δ for each x ∈ A by

σβ,δ ∶ xz→
⎧⎪⎪⎨⎪⎪⎩

1rx(x + 1)1lx if x ∈ {1, . . . , m − 1},
1rm(q + 1)1lm for x =m,

cδ ∶ xz→ {0, . . . , rx}, (and therefore cδ(x̄) = {−lx, . . . , 0}).
(5.4)

Obviously the setting (σβ,δ, cδ) satisfies (CS). Observe that due to Lemma 5.6 we know that dβ,δ

corresponds, up to the order of the letters, with a beta-substitution σβ,0. If dβ,δ(−δ) or d∗β,δ(1−δ)
is not purely periodic then this beta-substitution is possibly not the minimal one (cf. Remark 5.2
and Example 6.5). For this reason we wrote a beta-substitution. However, by Lemma 5.3 β is the
dominant root of Mσβ,δ

.

Theorem 5.8. Let β > 1 be a real (algebraic) number, δ ∈ [0, 1) such that Ωβ,δ is sofic and
(5.2) is satisfied. Define the setting (σβ,δ, cδ) as in (5.4) and denote by v the left eigenvector
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of Mσβ,δ
with respect to the dominant root β such that λ(1) = 1. Then for each x ∈ A we have

Iσβ,δ,cδ
(x) = [0, T̂ x−1

β,δ (1 − δ)] and Iσβ,δ,cδ
(x̄) = [T x−1

β,δ (−δ), 0]. For each (γ, x) ∈ Aσβ,δ,cδ
we have

dσβ,δ,cδ,x(γ) = dβ,δ(γ)
In other words, the (σβ,δ, cδ, x)-expansion coincides with the (β, δ)-expansion of γ.

Proof. Let dβ,δ(−δ) = (lj)j≥1 and d∗β,δ(1− δ) = (rj)j≥1 By construction we have for each x ∈ A that

(1rx , y) is the maximal element of G1
σβ,δ,cδ

(x) and (1̄lx , ȳ) is the minimal element of G1
σβ,δ,cδ

(x̄)
where y = x + 1 if x ∈ {1, . . . , m − 1} and y = q + 1 if x = m. For each x ∈ A let x+x and x−x̄ denote
the maximal element of G∞σβ,δ,cδ

(x) and the minimal element of G∞σβ,δ,cδ
(x̄), respectively. We

immediately see that

x+x =
⎧⎪⎪⎨⎪⎪⎩
(1rx , x + 1)⋯(1rq , q + 1)((1rq+1 , q + 2)⋯(1rm−1 , m)(1rm , q + 1))ω if x ≤ q,

((1rx , x + 1)⋯(1rm−1 , m)(1rm , q + 1)⋯(1rx−1 , x))ω if x ≥ q + 1,

and, by the choice of v, Λ(x+x) = T̂ x−1

β,δ (1 − δ). This shows that Iσβ,δ,cδ
(x) has the stated shape.

Analogously, we obtain that Λ(x−x) = T x−1

β,δ (−δ).
Now let (γ, x) ∈ Aσβ,δ,cδ

and (γ′, x′) = Tσβ,δ,cδ
(γ, x). For finishing the proof we show that

γ′ = Tβ,δ(γ). Indeed, we clearly have that γ ∈ Ĩσβ,δ,cδ
(x) ⊂ [−δ, 1 − δ), thus γ is contained in the

domain of Tβ,δ. Now, γ′ = βγ − λ(D) ∈ Ĩσβ,δ,cδ
(x′) ⊂ [−δ, 1 − δ) with (D, x′) ∈ G1

σδ,β ,cδ
(x). By

construction we have λ(D) ∈ Z, hence λ(D) = ⌊βγ + δ⌋. �

We say that the (β, δ)-expansion fulfils the finiteness condition if dβ,δ(γ) is finite for all γ ∈
Z[β−1]∩[−δ, 1−δ). There exists a large amount of research concerning this topic, especially for the
classical case δ = 0. In [19] it has been shown that the finiteness condition implies β to be a Pisot
number but a precise characterisation of the Pisot numbers that induce the finiteness condition
does not exist yet. For partly results we refer to [1, 7, 10, 21, 24].

The symmetric case δ = 1/2 has been analysed in [6, 22]. For general δ ∈ [0, 1) a research was
performed in [39]. It turned out that for the case δ = 0 a characterisation of bases β such that the(β, 0)-expansion fulfils the finiteness condition seems to be harder then for other choices of δ.

Following [11] the (β, 0)-expansion fulfils the finiteness property if and only if the Dumont-
Thomas numeration induced by the beta-substitution σβ,0 fulfils the finiteness condition. The
following corollary to Theorem 5.8 generalises this result.

Corollary 5.9. Let β > 1 be a real (algebraic) number, δ ∈ [0, 1) such that Ωβ,δ is sofic and (5.2)
is satisfied. Define the setting (σβ,δ, cδ) as in (5.4). Then (σβ,δ, cδ) satisfies (F) if and only if the(β, δ)-expansion fulfils the finiteness condition.

Proof. Let γ ∈ Z[β−1] ∩ [−δ, 1 − δ) and note that there exists an n ∈ N such that T n
β,δ(γ) ∈ Z[β].

Thus it suffices to concentrate on the set Z[β]. Now observe that by the choice of v we have

λ(1) = 1. By Lemma 5.3 for x = 1, . . . , m − 1 we have λ(x + 1) = T̂ x
β,0(1) = βλ(x) − dx with dx ∈ Z

where m is greater than or equal to the algebraic degree of β. From this we immediately see that
Z[v] = Z[β] and therefore Theorem 5.8 shows the equivalence of the two notions of finiteness. �

We have seen that our theory unifies several notions of generalised beta-expansions and the
respective notions of finiteness. However, there are still gaps. On one hand we had restrictions
on the base β (the sequences dβ,δ(−δ) and d∗β,δ(1 − δ) have to satisfy (5.2)). On the other hand,
there are further particular concepts of non-integer systems that we have not even discussed. As
conclusion we will therefore state the following questions.

Open question 1. Let β > 1, δ ∈ [0, 1) such that Ωβ,δ is sofic and suppose that (5.2) is not satisfied.
Does there exist a setting (σ, c) such that we can recover the (β, δ)-expansion by Theorem 4.1.

Open question 2. Does Theorem 4.1 cover further known systems of numeration.
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6. Examples

Example 6.1. Let σ ∶ 1 ↦ 121, 2 ↦ 12 over the alphabet A = {1, 2}. The dominant root of Mσ is
θ ∶= (3+

√
5)/2, the square of the golden mean. We consider the coding prescription c determined by

c(1) = {0} and c(2) = {0, 1}. The setting (σ, c) clearly satisfies (CS). The graph Gσ,c is depicted
in Figure 6 on the left hand side. We see that it has three strongly connected components. In
fact, it is straightforward that Iσ,c(1) = Iσ,c(2̄) = {0} which implies that Iσ,c(1̄) = [−λ(1), 0] and
Iσ,c(2) = [0, λ(2)].

1 2

1̄ 2̄

(ε,1)
(ε,1)

(1,2)

(1,1̄)

(ε,1̄)
(21,1̄)

(1̄,2̄)

(1̄,1)
(21,2)

(ε,2̄)

1 2

1̄ 2̄

0
0

ϕ

ϕ

0
−θ

−ϕ

−ϕ
−θ

0

Figure 6. Left: The graph Gσ,c for the setting (σ, c) in Example 6.1. It has three

strongly connected components. Right: The digit graph Ĝσ,c. We can reduce it
by the vertices 1 and 2̄ since the walks that start in these vertices do not sat-
isfy (4.2)

.

Let v = (ϕ, 1), where ϕ ∶=
√

θ = θ − 1 = (1+
√

5)/2 is the golden mean. One easily verifies that v

is a left eigenvector of Mσ with respect to θ. At first we observe that for this setting the upper
bound of Lemma 3.8 is really achieved. For example, consider the vertex 1̄ and the walks

x(1) =(1̄, 2̄)(ε, 2̄)ω ∈ G∞σ,c(1̄), x(2) =(1̄, 1)(ε, 1)ω ∈ G∞σ,c(1̄),
x(3) =(21, 2)(1, 2)ω ∈ G∞σ,c(1̄), x(4) =(ε, 1̄)(21, 1̄)ω ∈ G∞σ,c(1̄).

Then we have Λ(x(1)) = Λ(x(2)) = Λ(x(3)) = Λ(x(4)) = −ϕ−1.
Our setting suggests only one way of representation: (σ, c, 2)-expansions for non-negative num-

bers and (σ, c, 1̄)-expansions for negative numbers. The vertices 1 and 2̄ are not involved. The

respective digit graph Ĝσ,c is shown in Figure 6 on the right. The (unique) (σ, c, 1̄)-expansion of

−ϕ−1 is given by x(4) (all other walks do not satisfy (4.2)). The setting (σ, c) does not have (F)
by Proposition 4.5.

We want to remark that our expansions (with respect to the base θ = ϕ2) can be easily seen as
expansions with respect to the base ϕ. Each digit in the digit string corresponds to two consecutive
digits in the new expansion. In this way we actually obtain integer digits.

Example 6.2. Let β be the dominant root of the polynomial t3
−2t2

−1. Then β is a Pisot number
and d∗

β,1/2(1/2) = −dβ,1/2(−1/2) = (1, 0, 0)ω, hence, the conditions of Theorem 5.8 are satisfied. We

define the setting (σβ,1/2, c1/2) as in (5.4) by σβ,1/2 ∶ 1 ↦ 121, 2 ↦ 3, 3 ↦ 1 and c1/2 ∶ 1 ↦ {0, 1}, 2 ↦
{0}, 3 ↦ {0}. The graph Gσβ,1/2,c1/2

is depicted in Figure 7. The vector v = (1, β − 2, β2
− 2β) is a

left eigenvector of Mσβ,1/2
with respect to the eigenvalue β. By Theorem 5.8 we have Iσβ,1/2

(1̄) =
[−1/2, 0] and Iσβ,1/2

(1) = [0, 1/2]. For each γ ∈ [−1/2, 1/2) we retrieve the symmetric beta-expansion

of γ by Theorem 4.1: the (σβ,1/2, c1/2, 1̄)-expansion if γ ∈ [−1/2, 0) and the (σβ,1/2, c1/2, 1)-expansion
if γ ∈ [0,−1/2).

Corollary 4.2 provides a way to obtain the (β, 1/2)-expansions as walks that start in the unique

initial vertex 11. Consider the digit graph Ĥσβ,1/2,c1/2
(see Figure 8). We can remove the dashed

vertices 22, 23, 32, 33 since they have no incoming edge. We see that the remaining graph corre-
sponds to the minimal right resolving presentation graph of the (β, 1/2)-shift.

Observe that the (β, 1/2)-expansions fulfil the finiteness condition. Therefore, by Corollary 5.9,(σβ,1/2, c1/2) has (F), by Theorem 4.7, (σβ,1/2, c+) has (F), which shows that the Dumont-Thomas
numeration induced by σβ,1/2 also fulfils the finiteness condition.
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1 2 3

1̄ 2̄ 3̄

(ε,1)

(1,2)

(1,1̄)

(ε,3)

(ε,1)

(ε,1̄)

(1̄,2̄)

(1̄,1)

(ε,3̄)

(ε,1̄)

1 2 3

1̄ 2̄ 3̄

0

1

1

0

0

0

−1

−1

0

0

Figure 7. On the left we see the graph Gσβ,1/2,c1/2
for the setting σβ,1/2, c1/2 dis-

cussed in Example 6.2. It corresponds to the symmetric beta-expansion with
respect to the dominant root of t3

− 2t2
− 1. On the right we see the digit graph

Ĝσβ,1/2,c1/2
.

22 12 13 32

11

33 21 31 23

1 0

−1 0
0

0

−11
−1

1

0

0

0

0

0

Figure 8. By considering the digit graph Ĥσβ,1/2,c1/2
we can obtain all (β, 1/2)-

expansions as walks that start in the unique initial vertex 11. We can omit the
dashed vertices since they have no incoming edge.

Note that in the next example we show that the substitution σ̃β provides another possibility to
expand real numbers with respect to β by using integer digits.

Example 6.3. We consider the substitution σ ∶ 1 ↦ 121, 2 ↦ 3, 3 ↦ 1 over the alphabet A (cf. Ex-
ample 6.2). Its dominant eigenvalue θ is the real root of t3

− 2t2
− 1. Let v ∶= (θ2/θ2+1, 1/θ2+1, θ/θ2+1)

and observe that it is a left eigenvector of Mσ with respect to θ. In this example we want to
discuss expansions with respect to a setting that satisfies (ES). Thus, we consider the coding
prescription c defined by c(1) = {0, 2}, c(2) = c(3) = {0}. The respective graph Gσ,c is depicted in
Figure 9 (left).

1 2 3

1̄ 2̄ 3̄

(ε,1)
(12,1)

(12,2̄) (ε,3)

(ε,1)

(ε,1̄)
(21,1̄)

(21,2) (ε,3̄)

(ε,1̄)

1 2 3

1̄ 2̄ 3̄

0
1

1 0

0

0
−1

−1 0

0

Figure 9. On the left the graph Gσ,c for the Even setting (σ, c) studied in

Example 6.3 is depicted. On the right we see the digit graph Ĝσ,c.

We are interested in the induced expansions. By Theorem 3.1 we have for all x ∈ {1, 2, 3} that
Iσ,c(x̄) = [−λ(x), 0] and Iσ,c(x) = [0, λ(x)]. Note that λ(1) > λ(2) > λ(3), hence we concentrate on
the vertices 1 and 1̄. In this way we can uniquely expand the real numbers in [−(θ−1)−1, (θ−1)−1)
with respect to the base θ. The right hand side of Figure 9 shows the digit graph Ĝσ,c We see that
(due to our choice of v) the digit set is Nσ,c = {−1, 0, 1}. In the induced digit strings the digits
1 and −1 appear only with at least two 0s in between. From Proposition 4.5 we deduce that the
setting (σ, c) does not satisfy the finiteness property (F).

Example 6.4. Let β ∶= (3+
√

17)/2, a Pisot number which is the positive root of t2
− 3t − 2. The(β, 0)-shift Ωβ,0 is of finite type since the characteristic sequence is given by d∗β,0(1) = (3, 1)ω. The

corresponding substitution is σβ,0 ∶ 1↦ 1112, 2↦ 11 over the alphabet A = {1, 2}.
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Now let δ ∶= (β − 1)−1. Then dβ,δ(−δ) = (−1)ω and d∗β,δ(1 − δ) = (2, 0)ω, thus Condition (5.2)

holds and the subshift Ωβ,δ is sofic (cf. Lemma 5.7) (in fact, it is also a shift of finite type). We
follow (5.4) and define the setting (σβ,δ, cδ) by

σβ,δ ∶1↦ 1121, 2↦ 11,

cδ ∶1↦ {0, 1, 2}, 2↦ {0}.
The graph Gσβ,δ,cδ

is depicted on the left in Figure 10. Fix the left eigenvector v ∶= (1, β − 3).
Then, due to Theorem 5.8, for each γ ∈ [−δ, 1 − δ) we can retrieve the (β, δ)-expansion by the(σβ,δ, cδ, 1̄)-expansion if γ < 0 and by the (σβ,δ, cδ, 1)-expansion if γ ≥ 0. The right hand side of

Figure 10 shows the digit graph Ĝσβ,δ,cδ
.

Observe that in this example σβ,0 and σβ,δ are conjugate substitutions which means that there

exists a word X ∈ A∗ ∪A
∗

such that for all x ∈ A we have σβ,δ(x) =Xσβ,0(x)X (modulo ∼).

1 2

1̄ 2̄

(ε,1)
(1,1)

(11,2)

(1,1̄)
(11,1̄)

(ε,1)

(ε,1̄) (1̄,2̄)

(1̄,1)

(ε,1̄),(1̄,1̄)

(1̄,1)
1 2

1̄ 2̄

0
1

2

1
2

0

0 −1

−1

0,−1

−1

Figure 10. Left: The graph Gσβ,δ,cδ
for the setting (σβ,δ, cδ) in Example 6.4.

The setting is related with the (β, δ)-expansions for β = (3+
√

17)/2 and δ = (β−1)−1.

Right: The corresponding digit graph Ĝσβ,δ,cδ
. The (β, δ)-expansions correspond

to the walks that start in 1 and 1̄.

Example 6.5. We let β ∶= (5+
√

21)/2. As in the previous examples β is a Pisot number and its minimal
polynomial equals t2

− 5t + 1. One easily verifies that d∗β,0(1) = 4, (3)ω, thus, the corresponding

(β, 0)-shift Ωβ,0 is sofic but not of finite type. Both the minimal pre-period and the minimal
period of d∗β,0(1) are 1. The corresponding beta-substitution is given by σβ,0 ∶ 1 ↦ 11112, 2 ↦
1112 over the alphabet A = {1, 2}. As observed in Remark 5.2 the beta-substitution σβ,0 is not
uniquely determined. For example, Lemma 5.3 and Theorem 5.4 also hold for the substitution
σ′β,0 ∶ 1↦ 11112, 2↦ 1113, 2↦ 1112 over the alphabet A = {1, 2, 3}. Note that Mσ′

β,0
possesses the

additional eigenvalue −1 (hence, the minimal polynomial of β is a proper factor of the characteristic
polynomial of Mσ′

β,0
).

From the point of view of the classical beta-expansion the second substitution σ′β,0 does not seem
to be very interesting. But it becomes important in context with generalised beta-expansions. Let
δ ∶= 3/(β+1). Without difficulties we obtain that dβ,δ(−δ) = −2, (−2,−1)ω and d∗β,δ(1 − δ) = (2, 1)ω,

therefore the subshift Ωβ,δ is sofic. Condition (5.2) is satisfied and, hence, d∗β,δ(1− δ)− dβ,δ(−δ) =
d∗β,0(1) (cf. Lemma 5.6). Observe that the minimal periods and pre-periods do not coincide.

Let

σβ,δ ∶ 1↦ 11211, 2↦ 1311, 3↦ 1121

(over the alphabet A = {1, 2, 3}), cδ the coding prescription determined by

cδ(1) = {0, 1, 2}, cδ(2) = {0, 1}, cδ(3) = {0, 1, 2},
and v ∶= (1, (

√
21−3)/2, (

√
21−3)/2) the left eigenvector. Then Ĩσβ,δ,c(1̄) = [−δ, 0) and Ĩσβ,δ,c(1) =[0, 1 − δ) and the respective expansions coincide with the (β, δ)-expansions. We see that σβ,δ

and σ′β,0 coincide up to the order of the letters but they are not conjugate substitutions as in
Example 6.4.
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