About the paper
  
  
  
  
    
    
  
  
    | coauthors | 
    Manfred Madritsch | 
  
  
     | 
    Volker Ziegler | 
  
  
    | language | 
    English | 
  
  
    | published in | 
    Elsholtz C., Grabner P. | 
  
   | 
    Number Theory – Diophantine Problems, Uniform Distribution and Applications | 
  
   | 
    Springer, Cham (2017) | 
  
  ISBN
  
    | pages | 
    313 to 332 | 
  
  
    | DOI | 
    10.1007/978-3-319-55357-3_16 | 
  
  
    | supported by | 
    FWF, project P23990 | 
  
   
   
     Abstract
   
                        In the present paper we are interested in number systems in the ring of integers of
                        cyclotomic number fields in order to obtain a result equivalent to Cobham’s theorem.
                        For this reason we first search for potential bases. This is done in a very general way in
                        terms of canonical number systems. In a second step we analyse pairs of bases in view of their multiplicative independence.
                        In the last part we state an appropriate variant of Cobham’s theorem.
   
   
     References
   
   
      - 
        B. Adamczewski, J. Bell,
        An analogue of Cobham’s theorem for fractals,
        Trans. Am. Math. Soc. 363 (2011), 4421—4442.
      
 
      - 
        S. Akiyama, A. Pethő,
        On canonical number systems,
        Theor. Comput. Sci. 270 (2002), 921—933.
      
 
      - 
        S. Akiyama, H. Rao,
        New criteria for canonical number systems,
        Acta Arith. 111 (2004), 5—25.
      
 
      - 
        S. Akiyama, H. Brunotte, A. Petho,
        Cubic CNS polynomials, notes on a conjecture of W.J. Gilbert,
        J. Math. Anal. Appl. 281 (2003), 402—415
      
 
      - 
        S. Akiyama, T. Borbély, H. Brunotte, A. Pethő, J.M. Thuswaldner,
        Generalized radix representations and dynamical systems I,
        Acta Math. Hungar. 108 (2005), 207—238.
      
 
      - 
        S. Akiyama, H. Brunotte, A. Pethő, J.M. Thuswaldner,
        Generalized radix representations and dynamical systems II,
        Acta Arith. 121 (2006), 21—61.
      
 
      - 
        S. Akiyama, H. Brunotte, A. Pethő,
        Reducible cubic CNS polynomials,
        Period. Math. Hungar. 55 (2207), 177—183.
      
 
      - 
        A. Bertrand-Mathis,
        Comment écrire les nombres entiers dans une base qui n’est pas entière,
        Acta Math. Hungar. 54 (1989), 237—241.
      
 
      - 
        B. Boigelot, J. Brusten,
        A generalization of Cobham’s theorem to automata over real numbers,
        Theor. Comput. Sci. 410 (2009), 1694—1703.
      
 
      - 
         A. Bremner,
         On power bases in cyclotomic number fields,
         J. Number Theory 28 (1988), 288—298.
      
 
      - 
        H. Brunotte,
        On trinomial bases of radix representations of algebraic integers,
        Acta Sci. Math. Acta Sci. Math. (Szeged), 67 (2001), 521—527.
      
 
      - 
        H. Brunotte,
        Characterization of CNS trinomials,
        Acta Sci. Math. (Szeged) 68 (2002), 673—679.
      
 
      - 
        H. Brunotte,
        On cubic CNS polynomials with three real roots,
        Acta Sci. Math. (Szeged) 70 (2004), 495—504.
      
 
      - 
        H. Brunotte,
        Symmetric CNS trinomials,
        Integers 9 (2009), 201—214.
      
 
      - 
        H. Brunotte,
        A unified proof of two classical theorems on CNS polynomials,
        Integers 12 (2012), 709—721.
      
 
      - 
        H. Brunotte,
        Unusual CNS polynomials,
        Math. Pannon. 24 (2013), 125—137.
      
 
      - 
        H. Brunotte, A. Huszti, A. Pethő,
        Bases of canonical number systems in quartic algebraic number fields,
        J. Théor. Nombres Bordeaux 18 (2006), 537–557.
      
 
      - 
        A. Cobham,
        On the base-dependence of sets of numbers recognizable by finite automata,
        Math. Syst. Theory 3 (1969), 186—192.
      
 
      - 
        F. Durand,
        Cobham’s theorem for substitutions,
        J. Eur. Math. Soc. (JEMS) 13 (2011), 1799—1814.
      
 
      - 
        F. Durand, M. Rigo,
        On Cobham’s theorem,
        in Handbook of Automata: From Mathematics to Applications (European Mathematical Society Publishing House, Zurich, 2017).
      
 
      - 
        S. Eilenberg,
        Automata, Languages, and Machines. Vol. A,
        Pure and Applied Mathematics, vol. 58 (Academic Press, New York, 1974).
      
 
      - 
        I. Gaál, L. Robertson,
        Power integral bases in prime-power cyclotomic fields,
        J. Number Theory 120 (2006), 372—384.
      
 
      - 
        W.J. Gilbert,
        Radix representations of quadratic fields,
        J. Math. Anal. Appl. 83 (1981), 264—274.
      
 
      - 
        G. Hansel, T. Safer,
        Vers un théorème de Cobham pour les entiers de Gauss,
        Bull. Belg. Math. Soc. Simon Stevin 10 (2003),  723—735.
      
 
      - 
        I. Kátai, B. Kovács,
        Kanonische Zahlensysteme in der Theorie der quadratischen algebraischen Zahlen,
        Acta Sci. Math. (Szeged) 42 (1980),  99—107.
      
 
      - 
        I. Kátai, B. Kovács,
        Canonical number systems in imaginary quadratic fields,
        Acta Math. Acad. Sci. Hungar. 37 (1981),  159—164.
      
 
      - 
        I. Kátai, J. Szabó,
        Canonical number systems for complex integers,
        Acta Sci. Math. (Szeged) 37 (1975),  255—260.
      
 
      - 
        S.I. Khmelnik,
        Specialized digital computer for operations with complex numbers,
        Quest. Radio Electronics XII (1964), 60—82. In Russian.
      
 
      - 
        P. Kirschenhofer, J.M. Thuswaldner,
        Shift radix systems—a survey,
        RIMS K%circo;ky&circu;roku Bessatsu B46 (2014), 1—59.
      
 
      - 
        D.E. Knuth,
        A imaginary number system,
        CACM 3 (1960), 245—247.
      
 
      - 
        D.E. Knuth,
        The Art of Computer Programming, vol. 2: Seminumerical Algorithms,
        3rd ed., Addison-Wesley, London, 1998.
      
 
      - 
        B. Kovács,
        Canonical number systems in algebraic number fields,
        Acta Math. Hungar. 37 (1981), 405—407.
      
 
      - 
        B. Kovács, A. Pethő,
        Number systems in integral domains, especially in orders of algebraic number fields,
        Acta Sci. Math. (Szeged) 55 (1981), 287—299.
      
 
      - 
        B. Kovács, A. Pethő,
        On a representation of algebraic integers,
        Studia Sci. Math. Hungar. 27 (1992), 169—172.
      
 
      - 
        M.G. Madritsch, V. Ziegler,
        An infinite family of multiplicatively independent bases of number systems in cyclotomic number fields,
        Acta Sci. Math. (Szeged) 81 (2015), 33—44.
      
 
      - 
        M.G. Madritsch, V. Ziegler,
        On multiplicatively independent bases in cyclotomic number fields,
        Acta Math. Hungar. 146 (2015), 224—239.
      
 
      - 
        W. Penney,
        A "binary" system for complex numbers,
        J. ACM 12(1965), 247—249.
      
 
      - 
        A. Pethő,
        On a polynomial transformation and its application to the construction of a public key cryptosystem,
        in: Computational Number Theory, Debrecen, 1989, de Gruyter, Berlin, 1991, 31—43.
      
 
      - 
        A. Pethő, R.F. Tichy,
        S-unit equations, linear recurrences and digit expansions,
        Math. Debr. 42 (1993), 145—154.
      
 
      - 
        G. Ranieri,
        Générateurs de l’anneau des entiers d’une extension cyclotomique,
        J. Number Theory 128 (2008), 1576—1586.
      
 
      - 
        L. Robertson,
        Power bases for cyclotomic integer rings,
        J. Number Theory 69 (1998), 98—118.
      
 
       - 
        L. Robertson,
        Power bases for 2-power cyclotomic fields,
        J. Number Theory 88 (2001), 196—209.
      
 
      - 
        L. Robertson,
        Monogeneity in cyclotomic fields,
        Int. J. Number Theory 6 (2010), 1589—1607.
      
 
      - 
        L. Robertson, R. Russell,
        A hybrid Gröbner bases approach to computing power integral bases,
        Acta Math. Hungar. 147 (2015), 427—437.
      
 
      - 
        J. Sakarovitch,
        Elements of Automata Theory
        Cambridge University Press, Cambridge, 2009.
      
 
      - 
        H.P. Schlickewei,
        Linear equations in integers with bounded sum of digits,
        J. Number Theory 35 (1990), 335—244.
      
 
      - 
        K. Scheicher, J.M. Thuswaldner,
        On the characterization of canonical number systems,
        Osaka J. Math. 41 (2004), 327—351.
      
 
      - 
         K. Scheicher, P. Surer, J.M. Thuswaldner, C.E. van de Woestijne,
         Digit systems over commutative rings,
         Int. J. Number Theory 10 (2004), 1459—1483.
      
 
      - 
        H.G. Senge, E.G. Straus,
        PV-numbers and sets of multiplicity,
        Period. Math. Hungar. 3 (1973), 93—100.
      
 
      - 
        C.L. Stewart,
        On the representation of an integer in two different bases,
        J. Reine Angew. Math. 319 (1980), 63—72.
      
 
      - 
        M. Waldschmidt,
        Diophantine Approximation on Linear Algebraic Groups,
        Grundlehren der Mathematischen Wissenschaften, vol. 326 (Springer, Berlin, 2000)
      
 
    
    
      Links
    
    
      Information on the entire collection at Springer
      Austrian Science Foundation (FWF)