About the paper
  
  
  
  
    
    
  
  
    | coauthors | 
    Benoît Loridant | 
  
  
     | 
    Ali Messaoudi | 
  
  
     | 
    Jörg M. Thuswaldner | 
  
  
    | language | 
    English | 
  
  
    | published in | 
    Theoretical Computer Science 477 (2013) | 
  
  
    | pages | 
    6 to 31 | 
  
  
    | DOI | 
    10.1016/j.tcs.2012.12.019 | 
  
  
    | supported by | 
    FAPESP, process 2009/07744-0 | 
  
   
   
     Abstract
   
We study aperiodic and periodic tilings induced by the Rauzy fractal and its subtiles asso-
ciated with beta-substitutions related to the polynomial
x3 - ax2 - bx -1
for a ≥ b ≥ 1.
In particular, we compute the corresponding boundary graphs, describing the adjacencies
in the tilings. These graphs are a valuable tool for more advanced studies of the topological
properties of the Rauzy fractals. As an example, we show that the Rauzy fractals are not
homeomorphic to a closed disc as soon as a ≤ 2b - 4. The methods presented in this paper
may be used to obtain similar results for other classes of substitutions.
   
   
     References
   
   
                        - 
                                S. Akiyama,
        On the boundary of self affine tilings generated by Pisot numbers,
        J. Math. Soc. Japan 54 (2002) 283—308.
      
 
      - 
              S. Akiyama, H. Rao, W. Steiner,
        A certain finiteness property of Pisot number systems,
        J. Number Theory 107 (2004) 135—160.
      
 
      - 
        P. Arnoux, S. Ito,
        Pisot substitutions and Rauzy fractals,
        Bull. Belg. Math. Soc. Simon Stevin 8 (2001) 181—207. Journées Montoises d’Informatique Théorique (Marne-la-Vallée, 2000).
      
 
      - 
        C. Bandt, G. Gelbrich,
        Classification of self-affine lattice tilings,
        J. Lond. Math. Soc. (2) 50 (1994) 581—593.
      
 
      - 
        M. Barge, B. Diamond,
        Coincidence for substitutions of Pisot type,
        Bull. Soc. Math. France 130 (2002) 619—626.
      
 
      - 
        M. Barge, J. Kwapisz,
        Geometric theory of unimodular substitutions,
        Amer. J. Math. 128 (5) (2006) 1219—1282.
      
 
      - 
              V. Berthé, M. Rigo,
              Combinatorics, automata, and number theory,
              in: Encyclopedia of Mathematics and its Applications, vol. 135, Cambridge University Press, Cambridge, 2010.
      
 
      - 
        V. Berthé, A. Siegel,
        Tilings associated with beta-numeration and substitutions,
        Integers 5 (2005) (electronic).
      
 
      - 
        V. Berthé, A. Siegel, W. Steiner, P. Surer, J.M. Thuswaldner,
        Fractal tiles associated with shift radix systems,
        Adv. Math. 226 (2011) 139—175.
      
 
      - 
         V. Canterini,
         Connectedness of geometric representation of substitutions of Pisot type,
         Bull. Belg. Math. Soc. Simon Stevin 10 (2003) 77—89.
      
 
      - 
              V. Canterini, A. Siegel,
              Automate des préfixes-suffixes associé à une substitution primitive,
              J. Théor. Nombres Bordeaux 13 (2001) 353—369.
      
 
     - 
              V. Canterini, A. Siegel,
              Geometric representation of substitutions of Pisot type,
              Trans. Amer. Math. Soc. 353 (2001) 5121—5144 (electronic).
      
 
      - 
              H. Ei, S. Ito,
              Tilings from some non-irreducible, Pisot substitutions,
              Discrete Math. Theor. Comput. Sci. 7 (2005) 81—121 (electronic).
      
 
      - 
                         H. Ei, S. Ito, H. Rao,
                         Atomic surfaces, tilings and coincidences. II. Reducible case,
                         Ann. Inst. Fourier (Grenoble) 56 (2006) 2285—2313. Numération, pavages, substitutions.
      
 
      - 
                         B. Grünbaum, G.C. Shephard,
                         Tilings and Patterns,
                         W. H. Freeman and Company, New York, 1987.
      
 
      - 
                        P. Hubert, A. Messaoudi,
                        Best simultaneous Diophantine approximations of Pisot numbers and Rauzy fractals,
                        Acta Arith. 124 (2006) 1—15.
      
 
      - 
                        S. Ito, M. Kimura,
                        On the Rauzy fractal,
                        Japan J. Ind. Appl. Math. 8 (1991) 461—486.
      
 
      - 
                        S. Ito, H. Rao,
                        Atomic surfaces, tilings and coincidence. I. Irreducible case,
                        Israel J. Math. 153 (2006) 129—155.
      
 
      - 
                        A. Messaoudi,
                        Propriétés arithmétiques et dynamiques du fractal de Rauzy,
                        J. Théor. Nombres Bordeaux 10 (1998) 135—162.
      
 
      - 
                        A. Messaoudi,
                        Frontière du fractal de Rauzy et système de numération complexe,
                        Acta Arith. 95 (2000) 195—224.
      
 
      - 
                        A. Messaoudi,
                        Arithmetic and topological properties of a class of fractal sets (Propriétés arithmétiques et topologiques d’une classe d’ensembles fractales.),
                        Acta Arith. 121 (2006) 341—366.
      
 
      - 
                        G. Rauzy,
                        Nombres algébriques et substitutions,
                        Bull. Soc. Math. France 110 (1982) 147—178.
      
 
      - 
                        A. Siegel, J.M. Thuswaldner,
                        Topological properties of Rauzy fractals,
                        Mém. Soc. Math. Fr. (N.S.) (2009).
      
 
      - 
                        V.F. Sirvent, Y. Wang,
                        Self-affine tiling via substitution dynamical systems and Rauzy fractals,
                        Pacific J. Math. 206 (2002) 465—485.
      
 
      - 
                        B. Solomyak,
                        Substitutions, adic transformations, and beta-expansions,
                        in: Symbolic Dynamics and Its Applications, (New Haven, CT, 1991), in: Contemp. Math., vol. 135, Amer. Math. Soc, Providence, RI, 1992, pp. 361—372.
      
 
      - 
                        J.M. Thuswaldner,
                        Unimodular Pisot substitutions and their associated tiles,
                        J. Théor. Nombres Bordeaux 18 (2006) 487—536.
      
 
    
    
      Links
    
    
      Theoretical Computer Science
      Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)