Sobre o artigo
  
  
  
  
    
    
  
  
    | co-autores | 
    Klaus Scheicher | 
  
  
     | 
    Víctor F. Sirvent | 
    
  
    | idioma | 
    inglês | 
  
  
    | publicado no | 
    Ergodic Theory and Dynamical Systems 38, v. 3 (2016) | 
  
  
    | páginas | 
    924 a 943 | 
  
    
    | DOI | 
    10.1017/etds.2014.84 | 
  
  
    | título em português | 
    Beta-representações de números p-ádicos | 
  
   
   
     Resumo
   
No presente artigo nós introduzimos beta-representações no anel 
p dos inteiros p-ádicos. Descrevemos os conjuntos dos números com representações periódicas e finitas.
   
 
   
     Bibliografia
   
   
                        - 
                                S. Akiyama,
        Pisot numbers and greedy algorithm.,
         Number theory (Eger, 1996), 9—21, de Gruyter, Berlin, 1998.
      
 
       - 
        S. Akiyama, T. Borbély, H. Brunotte, A. Pethő, J. M. Thuswaldner,
        Generalized radix representations and dynamical systems I,
        Acta Math. Hungar. 108 (2005), 207—238.
      
 
      - 
        S. Akiyama, H. Brunotte, A. Pethő, J. M. Thuswaldner,
        Generalized radix representations and dynamical systems II,
        Acta Arith. 121 (2006), 21—61.
      
 
      - 
        S. Akiyama, H. Brunotte, A. Pethő, J. M. Thuswaldner,
        Generalized radix representations and dynamical systems III,
        Osaka J. Math. 45 (2008), 347—374.
      
 
      - 
        S. Akiyama, H. Brunotte, A. Pethő, J. M. Thuswaldner,
        Generalized radix representations and dynamical systems IV,
        Indag. Math. (N.S.) 19 (2008), 333—348.
      
 
      - 
              S. Akiyama, H. Rao, W. Steiner,
        A certain finiteness property of Pisot number systems,
        J. Number Theory 107 (2004) 135—160.
      
 
      - 
        S. Akiyama, K. Scheicher,
        Symmetric shift radix systems and finite expansions,
        Math. Pannon. 18 (2007), 101—124.
      
 
      - 
        A. Bertrand,
        Développements en base de Pisot et répartition modulo 1,
        C. R. Acad. Sci. Paris Sér. A-B 285 (1977), A419—A421.
      
 
      - 
              D. W. Boyd,
              Salem numbers of degree four have periodic expansions,
              Théorie des nombres (Quebec, PQ, 1987), 57—64, de Gruyter, Berlin, 1989
      
 
      - 
              D. W. Boyd,
              On the beta expansion for Salem numbers of degree 6,
              Math. Comp. 65 (1996), 861—875, S29—S31.
      
 
      - 
              H. Brunotte, P. Kirschenhofer, J. M. Thuswaldner,
              Contractivity of three-dimensional shift radix systems with finiteness property,
              J. Difference Equ. Appl. 18 (2012), 1077—1099.
      
 
       - 
        C. Frougny, B. Solomyak,
        Finite beta-expansions,
        Ergod. Th. and Dynam. Sys. 12 (1992), 713—723.
      
 
       - 
        M. Hbaib, M. Mkaouar,
        Sur le bêta-développement de 1 dans le corps des séries formelles,
        Int. J. Number Theory 2 (2006), 365—378.
      
 
      - 
         A. Huszti, K. Scheicher, P. Surer, J. M. Thuswaldner,
         Three-dimensional symmetric shift radix systems,
         Acta Arith., 129 (2007), 147—166.
      
 
      - 
         P. Kirschenhofer, J. M. Thuswaldner,
         Shift radix systems - a survey,
         RIMS Kôkyûroku Bessatsu, aceito para publicação.
      
 
      - 
                         J. Neukirch,
                         Algebraic number theory,
                         volume 322 de  Grundlehren der Mathematischen Wissenschaften [Princípios fundamentais  das ciências matemáticas].
                         Springer-Verlag, Berlin, 1999.
      
 
      - 
        W. Parry,
        On the β-expansions of real numbers,
        Acta  Math. Acad. Sci. Hungar. 11 (1960), 401—416.
      
 
       - 
        A. Rényi,
        Representations for real numbers and their ergodic properties,
        Acta  Math. Acad. Sci. Hungar. 8 (1957), 477—493.
      
 
       - 
        K. Scheicher,
        β-expansions in algebraic function fields over finite fields,
        Finite Fields Appl. 13 (2007), 394—410.
      
 
      - 
        K. Scheicher, P. Surer, J. M. Thuswaldner, C. van de Woestijne,
        Digit systems over commutative rings,
        Int. J. Number Theory 10 (2014), 1459—1483.
      
 
      - 
                                K. Scheicher, J. M. Thuswaldner,
                                Digit systems in polynomial rings over finite fields,
                                Finite Fields Appl. 9 (2003), 322—333.
      
 
      - 
        K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers,
        Bull. London Math. Soc., 12 (1980), 269—278.
      
 
      - 
              P. Surer,
              Characterisation results for shift radix systems,
              Math. Pannon., 18 (2007), 265—297.
      
 
      - 
              M. Weitzer,
              Characterization algorithms for shift ratix systems with finiteness property,
              submetido.
      
 
    
    
      Links
    
    
                        Ergodic Theory and Dynamical Systems
      Pré-publicação no arXiv.org