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Shift Radix System

Definition: Let r € R? and

o 20— 74 x = (x1,...,2q) — (x2,..., x4, —|rx]).
7+ IS called shift radix system (SRS) if

vx € Z% : 3n € N such that r7(x) = 0.

Dy :={r € RYvx € Z%n,l € N :
(%) = (%) ¥k > n}
DY :={r € RYr is SRS}
Obviously DY C D,.

Problem: Characterisation of DY and D,.



Related Systems

p-expansion: (Rényi, Parry) Let 8 € R\Z,3 >
1 and. Then v € RT U{0} has a unique repre-
sentation of the form

v =amB™ + ap_18™ "+ -

with
m .
a; €{0,1,...,18]}, 0<~—> a8 <G
1=n

Theorem: Let 8 be an algebraic number with
minimal polynomial (z — 8)(z% 1 —r ; 292 —
..« —rox —1r1). The g-expansion is finite Vv €
Z[%] N[0,00) < (r1,72,...,74-1) € DI ;.



Canonical Number Systems: (Pethd) Let
P(X)=X%4py 1 X1 4+ p1 X +po € Z[X]
with |pg| > 2 and R := Z[X]/P(X)Z[X] the
quotient ring. Further let

r= X(P(X)Z[X]) € R.
If every A(x) € R,A(x) #% 0 can be written in
the form

mn
A(x) = Z a;x’, a; € N :={0,1,...,|po| — 1},
1=0

then (P(X),N) is called Canonical Number Sys-
tem (CNS) and P(X) an CNS Polynomial.

Theorem: P(X) is an CNS Polynomial if and

e r1 Pd-1
only if (p—o,g—o,...,g—é) e DY.



Properties of D,

Obviously D1 = [-1, 1].

For d > 2:
(0 1 0 - 0 )
s o --. . :
R(r) := s S 1 0
0 o .- 0 1
\ —r1y —T2 - —Tg_1 —Tq )
with r = (rq,72,...,74).
Ea(p) = {r e RY|R(®)|| < p}
where || - || denotes the spectral norm.

Theorem: &£,(1) Cc D; C £4(1).

E2(1) = {(z,y) € R?||z| < 1, |yl < =+ 1}
£3(1) = {(z,y,2) € R3||z| < 1,
ly —zz| <1—2% |z + 2] < |y + 1|}



N\







Constructing DY
oD = {( ) € RY|(0 ) € DY
d T1,.--.,Td) € yT1,---,Td) € d—|—1}

e We gain Dg by cutting out convex polyhedra
from D,;. Each polyhedron P(x) corresponds
to a period 7 of integers.

e Theorem (Brunotte): For the convex hull
R C Dy of points {r1,...,r} with sufficiently
small diameter there is an algorithm to find all
the periods w;, 5 =1,...,k, such that

k
R\ |J P(rj) =DINR.
j=1
e It is possible to improve the algorithm such
that convex R, which are bounded by curves,
are allowed.

e Special methods are required for the analysis
of areas near the boundary of Dy.



Results for low dimensions
d = 1: It is easy to see that DY = [0, 1).

d=2: Example: Let r=-1,—-1,1,2,1.
P(r)={reR?|m:(-1,-1) — (-1,1) —
P(m) is the solution of the system of in-
equalities
O<ar+a41y+t+a4o<1,¢1=1,...,5
with a{,...,a7 =-1,-1,1,2,1, -1, —1.

P ={(z.y) B2 ]z > VT2

r< 2y, r<y+2}

There are families of periods, which all yield
nonempty cutout polyhedra. DS cannot be
constructed by finitely many cutouts.






Symmetric Shift Radix Systems

Definition: Let r € R? and
~ . d d 1
Tr . 7 —>Z,X=(a:l,...,a;d)—>(a:2,...,a:d,—LrX—|—5J)

Tr is called symmetric shift radix system (SSRS)
if
vx € Z%: 3n € N such that T (x) =0.
Analogously we define
Dy :={r ¢ Rdwx € Z%n,1 e N :
() = FHT(x) Vk > n}
DY :={r ¢ RY% is SSRS}

5d(1) C ﬁd C 5d(1)

,Dl — [_17 1]7 le — (__75]

The methods for SRS to construct Dg can be
transferred to SSRS.



DY is fully characterised (Akiyama, Scheicher):

_ 1
pg=52( )

\ (L1 UL»)

with

1 1
Ll — {(way) S R2||33| S an — — X — 5}7

1 1
Ly ={(5v) € R2|5 <y<1}
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<0
D3

Tjg is partly characterised (together with Huszti,
Scheicher, Thuswaldner):

DYNoD3 = (. The set is away from the bound-
ary. Finitely many cutout polyhedra suffice:

DY = D3\ |J P(x)
mell

with I finite and for a sequence

X1y, p €EMN=|x;| <2,1=1,...,n.

158 consists of three connected convex bodies
where some planes are attached.



DY (expected)




