Shift Radix Systems and Variations of Them

Paul Surer

Montanuniversität Leoben

Department of Mathematics and Information

Technology

Chair for Mathematics and Statistics

8700 Leoben - AUSTRIA

Klagenfurt, September 2005

Research supported by FWF Project Nr. P17557-N12

Shift Radix System

Definition: Let $\mathbf{r} \in \mathbb{R}^d$ and

$$\tau_{\mathbf{r}}: \mathbb{Z}^d \to \mathbb{Z}^d, \mathbf{x} = (x_1, \dots, x_d) \to (x_2, \dots, x_d, -|\mathbf{r}\mathbf{x}|).$$

 au_{r} is called shift radix system (SRS) if

$$\forall \mathbf{x} \in \mathbb{Z}^d : \exists n \in \mathbb{N} \text{ such that } \tau^n_{\mathbf{r}}(\mathbf{x}) = \mathbf{0}.$$

$$\mathcal{D}_d := \{\mathbf{r} \in \mathbb{R}^d | \forall \mathbf{x} \in \mathbb{Z}^d \exists n, l \in \mathbb{N} : \\ \tau_{\mathbf{r}}^k(\mathbf{x}) = \tau_{\mathbf{r}}^{k+l}(\mathbf{x}) \ \forall k \geq n \}$$
$$\mathcal{D}_d^0 := \{\mathbf{r} \in \mathbb{R}^d | \tau_{\mathbf{r}} \text{ is SRS} \}$$

Obviously $\mathcal{D}_d^0 \subset \mathcal{D}_d$.

Problem: Characterisation of \mathcal{D}_d^0 and \mathcal{D}_d .

Related Systems

 β -expansion: (Rényi, Parry) Let $\beta \in \mathbb{R} \setminus \mathbb{Z}, \beta > 1$ and. Then $\gamma \in \mathbb{R}^+ \cup \{0\}$ has a unique representation of the form

$$\gamma = a_m \beta^m + a_{m-1} \beta^{m-1} + \cdots$$

with

$$a_i \in \{0, 1, \dots, \lfloor \beta \rfloor\}, \ 0 \le \gamma - \sum_{i=n}^m a_i \beta^i < \beta^n.$$

Theorem: Let β be an algebraic number with minimal polynomial $(x-\beta)(x^{d-1}-r_{d-1}x^{d-2}-\cdots-r_2x-r_1)$. The β -expansion is finite $\forall \gamma \in \mathbb{Z}[\frac{1}{\beta}] \cap [0,\infty) \Leftrightarrow (r_1,r_2,\ldots,r_{d-1}) \in \mathcal{D}_{d-1}^0$.

Canonical Number Systems: (Pethő) Let $P(X) = X^d + p_{d-1}X^{d-1} + \cdots + p_1X + p_0 \in \mathbb{Z}[X]$ with $|p_0| \geq 2$ and $R := \mathbb{Z}[X]/P(X)\mathbb{Z}[X]$ the quotient ring. Further let

$$x = X(P(X)Z[X]) \in R.$$

If every $A(x) \in R, A(x) \neq 0$ can be written in the form

$$A(x) = \sum_{i=0}^{n} a_i x^i, \ a_i \in \mathcal{N} := \{0, 1, \dots, |p_0| - 1\},$$

then $(P(X), \mathcal{N})$ is called Canonical Number System (CNS) and P(X) an CNS Polynomial.

Theorem: P(X) is an CNS Polynomial if and only if $(\frac{1}{p_0}, \frac{p_{d-1}}{p_0}, \dots, \frac{p_1}{p_0}) \in \mathcal{D}_d^0$.

Properties of \mathcal{D}_d

Obviously $\mathcal{D}_1 = [-1, 1]$.

For $d \geq 2$:

$$R(\mathbf{r}) := \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & 0 & \cdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & 1 & 0 \\ 0 & 0 & \cdots & 0 & 1 \\ -r_1 & -r_2 & \cdots & -r_{d-1} & -r_d \end{pmatrix}$$

with ${\bf r} = (r_1, r_2, \dots, r_d)$.

$$\mathcal{E}_d(\rho) := \{ \mathbf{r} \in \mathbb{R}^d | ||R(\mathbf{r})|| < \rho \}$$

where $\|\cdot\|$ denotes the spectral norm.

Theorem: $\mathcal{E}_d(1) \subset D_d \subset \overline{\mathcal{E}_d(1)}$.

$$\mathcal{E}_{2}(1) = \{(x, y) \in \mathbb{R}^{2} | |x| < 1, |y| < x + 1\}$$

$$\mathcal{E}_{3}(1) = \{(x, y, z) \in \mathbb{R}^{3} | |x| < 1,$$

$$|y - xz| < 1 - x^{2}, |x + z| < |y + 1|\}$$

Constructing \mathcal{D}_d^0

$$\bullet \mathcal{D}_d^0 = \{(r_1, \dots, r_d) \in \mathbb{R}^d | (0, r_1, \dots, r_d) \in \mathcal{D}_{d+1}^0 \}$$

- We gain \mathcal{D}_d^0 by cutting out convex polyhedra from \mathcal{D}_d . Each polyhedron $P(\pi)$ corresponds to a period π of integers.
- **Theorem** (Brunotte): For the convex hull $R \subset \mathcal{D}_d$ of points $\{r_1, \ldots, r_k\}$ with sufficiently small diameter there is an algorithm to find all the periods $\pi_j, \ j=1,\ldots,k$, such that

$$R \setminus \bigcup_{j=1}^k P(\pi_j) = \mathcal{D}_d^0 \cap R.$$

- ullet It is possible to improve the algorithm such that convex R, which are bounded by curves, are allowed.
- ullet Special methods are required for the analysis of areas near the boundary of \mathcal{D}_d .

Results for low dimensions

d=1: It is easy to see that $\mathcal{D}_1^0=[0,1)$.

d=2: Example: Let $\pi=-1,-1,1,2,1$.

$$P(\pi) = \{ \mathbf{r} \in \mathbb{R}^2 \mid \tau_{\mathbf{r}} : (-1, -1) \mapsto (-1, 1) \mapsto (1, 2) \mapsto (2, 1) \mapsto (1, -1) \mapsto (-1, -1) \}$$

 $P(\pi)$ is the solution of the system of inequalities

$$0 \le a_i x + a_{i+1} y + a_{i+2} < 1, i = 1, ..., 5$$

with $a_1, ..., a_7 = -1, -1, 1, 2, 1, -1, -1$.

$$P(\pi) = \{(x,y) \in \mathbb{R}^2 \mid x \ge \frac{-y+1}{2}, \\ x < -2y, x < y+2\}$$

There are families of periods, which all yield nonempty cutout polyhedra. \mathcal{D}_2^0 cannot be constructed by finitely many cutouts.

Symmetric Shift Radix Systems

Definition: Let $\mathbf{r} \in \mathbb{R}^d$ and

$$\tilde{\tau}_{\mathbf{r}}: \mathbb{Z}^d \to \mathbb{Z}^d, \mathbf{x} = (x_1, \dots, x_d) \to (x_2, \dots, x_d, -\lfloor \mathbf{r}\mathbf{x} + \frac{1}{2} \rfloor)$$

 $ilde{ au}_{\mathbf{r}}$ is called symmetric shift radix system (SSRS) if

$$\forall \mathbf{x} \in \mathbb{Z}^d : \exists n \in \mathbb{N} \text{ such that } \tilde{\tau}^n_{\mathbf{r}}(\mathbf{x}) = \mathbf{0}.$$

Analogously we define

$$\begin{split} \tilde{\mathcal{D}}_{d} := & \{\mathbf{r} \in \mathbb{R}^{d} | \forall \mathbf{x} \in \mathbb{Z}^{d} \exists n, l \in \mathbb{N} : \\ \tilde{\tau}_{\mathbf{r}}^{k}(\mathbf{x}) &= \tilde{\tau}_{\mathbf{r}}^{k+l}(\mathbf{x}) \ \forall k \geq n \} \\ \tilde{\mathcal{D}}_{d}^{0} := & \{\mathbf{r} \in \mathbb{R}^{d} | \tilde{\tau}_{\mathbf{r}} \text{ is SSRS} \} \end{split}$$
$$\mathcal{E}_{d}(1) \subset \tilde{\mathcal{D}}_{d} \subset \overline{\mathcal{E}_{d}(1)}$$
$$\tilde{\mathcal{D}}_{1} = [-1, 1], \qquad \tilde{\mathcal{D}}_{1}^{0} = (-\frac{1}{2}, \frac{1}{2}]$$

The methods for SRS to construct \mathcal{D}_d^0 can be transferred to SSRS.

$\tilde{\mathcal{D}}_2^0$

 $\tilde{\mathcal{D}}_2^0$ is fully characterised (Akiyama, Scheicher):

$$\tilde{\mathcal{D}}_2^0 = \frac{\overline{\mathcal{E}_2(1)}}{2} \setminus (L_1 \cup L_2)$$

with

$$L_1 = \{(x, y) \in \mathbb{R}^2 | |x| \le \frac{1}{2}, y = -x - \frac{1}{2} \},$$

$$L_2 = \{(\frac{1}{2}, y) \in \mathbb{R}^2 | \frac{1}{2} < y < 1 \}$$

$\tilde{\mathcal{D}}_3^0$

 $\tilde{\mathcal{D}}_3^0$ is partly characterised (together with Huszti, Scheicher, Thuswaldner):

 $\tilde{\mathcal{D}}_3^0\cap\partial\tilde{\mathcal{D}}_3=\emptyset$. The set is away from the boundary. Finitely many cutout polyhedra suffice:

$$\tilde{\mathcal{D}}_3^0 = \tilde{\mathcal{D}}_3 \setminus \bigcup_{\pi \in \Pi} P(\pi)$$

with Π finite and for a sequence

$$x_1,\ldots,x_n\in\Pi\Rightarrow |x_i|\leq 2, i=1,\ldots,n.$$

 $\tilde{\mathcal{D}}_3^0$ consists of three connected convex bodies where some planes are attached.

$\tilde{\mathcal{D}}_3^0$ (expected)

