
NEW CHARACTERISATION RESULTS FOR SHIFT
RADIX SYSTEMS

For r ∈ Rd define the mapping

τr : Zd → Zd,x = (x1, . . . , xd) 7→ (x2, . . . , xd,−br · xc).
τr is called a shift radix system (SRS) if ∀x ∈ Zd ∃n ∈ N : τn

r (x) = 0.
Shift radix systems are strongly related to other well known notions
of number systems as β-expansion [9, 11] or canonical number systems
[10]. Let

Dd :=
{
r ∈ Rd |τr is ultimately periodic

}
and

D0
d :=

{
r ∈ Rd |τr is an SRS

}
.

Obviously D0
d ⊂ Dd. The set Dd is bounded and connected. Its interior

can be described relatively easy: for an r = {r1, . . . , rd} ∈ Rd define

R(r) :=


0 1 0 · · · 0
... 0

. . . . . .
...

...
...

. . . 1 0
0 0 · · · 0 1
−r1 −r2 · · · −rd−1 −rd


and the set

Ed :=
{
r ∈ Rd |ρ(R(r)) < 1

}
,

where ρ(A) denotes the spectral radius of the matrix A. Then intDd =
Ed (see [1, section 4]). An analysis of the boundary seems to be difficult
and has been done only partially (for d = 2, see [1] or [3]). The set D0

d

can be obtained by cutting out polyhedra (cutout-polyhedra) from Dd.
Each of these polyhedra corresponds to a period of τr of integer vectors
v1, . . . ,vn such that τr : v1 7→ v1 7→ · · · 7→ vn 7→ v1. Such a period
induces a system of linear inequalities which is sufficient exactly for
the corresponding polyhedron. Each closed set Q ⊂ intDd intersects
with only finitely many cutout-polyhedra, but infinitely many cutout-
polyhedra are needed to describe D0

d. The difficulties are at the bound-
ary. Up to now, the 2-dimensional case is the best known one. In [1] and
[2] big areas of D2 have been analysed in order to characterse D0

2. Es-
pecially near the boundary of D2 we have a very complicated structure.
Ideas for algorithms, that can help characterising D0

d, and some basic
applications of them were also presented in [1] and [2]. In [12] these al-
gorithms have been improved and implemented in Mathematica R©. We
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Figure 1. An overview of D0
d

present these results that yield a very good image of the set D0
2 as it is

shown in figure 1. The whole triangle represents the set D2, the black
polygons are cut out. Less than 1.86% (grey) of the entire area of D2 is
left to analyse whether it is part of D0

2. For the visualization the pro-
gram cdd of Fukuda [6] has been used which converts a given system
of inequalities into the list of vertices of the polygon.

Beside algorithmic ways to solve the problem of characterising D0
2

there are other approaches. From [1, 12] we know two infinite families
of cutout-polyhedra. One cuts out triangles, the other one quadrangles
from D2. Each neighbourhood of the point (1, 1) intersects with infin-
itely many polyhedra of the first family, each neighbourhood of (1, 0)
intersects with infinitely many polyhedra of the second one.

The mentioned algorithms’ aim is, to find all the periods that have
corresponding cutout-polyhedra within a closed set Q ⊂ Dd. One of
them is based on Brunotte [5]: construct the set V(Q) ⊂ Zd recursively
by observing

V0(Q) := {±(δ1i, δ2i . . . , δdi)|i = 1, . . . , d} ,

Vi+1(Q) :=
⋃

x∈Vi(Q)

{
(x2, . . . , xd, j)

∣∣∣∣j = min
r∈Qx

b−rxc, . . . , max
r∈Qx

−brxc
}

∪ Vi(Q).

δji denotes the Kronecker delta, x = (x1, . . . , xd) and the set Qx ⊂ ∂Q
consists of the points where rx is extreme. For sufficiently small Q this
recursion stabilises, i.e. ∃k : Vk+1(Q) = Vk(Q). Then we set V(Q) :=
Vk(Q). With this set we build up a directed graph G = V ×E with set
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of vertices V = V(Q) and edges E ⊂ V(Q)× V(Q) with

(x,y) ∈ E ⇔ ∃r ∈ Q : τr(x) = y.

Now each period, that induces a cutout-polyhedron intersecting with
Q, coresponds to a cycle of this graph. Hence all these periods can be
obtained by analyzing the cycles of G. For big Q the set V(Q) can be
infinite. Then Q is subdivided into sufficiently small subsets and the
procedure is applied on each of them separately. However, the graph
can be very big, especially for Q near the boundary of Dd. Handling
them without a computer is nearly impossible.

The mapping τr can be modified in the following way:

τ̃r : Zd → Zd,x = (x1, . . . , xd) 7→ (x2, . . . , xd,−br · x +
1

2
c)

for an r ∈ Rd. If ∀x ∈ Zd ∃n ∈ N : τ̃n
r (x) = 0, we call τ̃r a symmetric

shift radix system (SSRS). The sets D̃d and D̃0
d are defined in an analo-

gous manner. Again we have Ed ⊂ D̃d ⊂ Ed, but note that ∂D̃d 6= ∂Dd,
and analagously D̃0

d can be obtained by cutting out polyhedra from

D̃d. This symmetric case is interesting because finitely many polyhedra
seem to suffice, at least for small d . Akiyama and Scheicher [4] analysed
the case d = 2 and completely characterised the set D̃0

2. It is a triangle
with two lines of the boundary removed. The three dimensional case is
a little more complex. The analysis of D̃0

3 requires the support of the
computer by using an adapted version of the above algorithm. As result
we gain a rather simple figure, a composition of three convex bodies.
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conjecture on certain integer sequences, Period. Math Hungar., to appear

[4] S. Akiyama, K. Scheicher, Symmetric shift radix systems and finite expan-
sions, preprint

[5] H. Brunotte, On trinomial bases of radix representations of algebraic integers,
Acta Sci. Math. Acta Sci. Math. (Szeged) 67 (2001), no. 3-4, 521–527.

[6] K. Fukuda, cdd and cddplus Homepage, ETHZ, Zürich, Switzerland,
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