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Observation 1

Congruence

The Rauzy fractals induced by the substitutions

σ : 1 7→ 1211, 2 7→ 311, 3 7→ 1 and

σ′ : 1 7→ 1112, 2 7→ 113, 3 7→ 1

over the alphabet A = {1, 2, 3} are congruent (that is they

di�er by an a�ne transformation only).



Symmetric
Rauzy
fractals

Paul Surer

Motivation

Construction

Congruence

Symmetry

Problems

Observation 2

Symmetry (Sellami, Sirvent: 2011, 2012, 2016)

The (original) Rauzy fractal induced by the substitutions

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

(over the alphabet A = {1, 2, 3}) is central-symmetric with

respect to some point c.
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Problem

Some Questions

Which conditions ensure that Rauzy fractals are congruent?

Which conditions ensure that a Rauzy fractal is central

symmetric?

What is the centre of symmetry?

Are the conditions necessary?
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De�nitions

Notations

We denote
A �nite set (alphabet) (here A = {1, 2, . . . ,m})
A∗ �nite words over A
ε empty word

X̃ mirror-word of X ∈ A∗
|X |y number of occurrences of the letter y ∈ A within the

word X ∈ A∗
l(X ) �Ablianisation� of X ∈ A∗, i.e.

l(X ) = (|X |1, . . . , |X |m) ∈ Zm
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Some linear algebra

Substitution and induced subspaces

Let σ be a primitive unimodular Pisot substitution over A, i.e.
an endomorphism A∗ −→ A∗ such that

Mσ := (|σ(x)|y )1≤x ,y≤m is an primitive matrix; the dominant

real eigenvalue θ > 1 of Mσ is a Pisot unit. Let d + 1 be the

algebraic degree of θ. If d + 1 = m then σ is irreducible. We

de�ne
Eu subspace spanned by the right eigenvector associated

with θ (Eu ∼= R).
E s subspace spanned by the right eigenvectors associated

with the Galois conjugates di�erent from θ (Eu ∼=
Rd).

E c subspace spanned by the right eigenvectors associated

with the remaining eigenvalues (Eu ∼= Rm−d−1).
π projection of Rm onto E s (along E s and E c)
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Induced language and Rauzy fractal

De�nition

Let (xj)j≥1 ∈ AN be a periodic word (that is

σn(x1)σ
n(x2)σ

n(x3) · · · = (xj)j≥1 for some n ≥ 1).

The language Lσ induced by σ is the subset of words over

A that appear in (xj)j≥1, i.e.

Lσ = {X ∈ A∗ : ∃1 ≤ i ≤ j : X = xi · · · xj}.

The Rauzy fractal associated with σ is the compact set

Rσ := {π ◦ l(x1 · · · xn) : n ∈ N} ⊂ E s .
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On congruence
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A general result

Theorem

Let σ, σ′ be irreducible primitive unimodular Pisot substitutions

over the same alphabet A. If Lσ = Lσ′ then Rσ and Rσ′ are
congruent.

Remark

For reducible substitutions this does not hold in general. For

example, the substitutions σ1, σ2, σ3 over A = {1, 2, 3} induce
the same language, but . . .

Substitution Rauzy fractal

σ1 : 1 7→ 131, 2 7→ 312, 3 7→ 2 -2 -1 0 1 2

σ2 : 1 7→ 13, 2 7→ 1312, 3 7→ 12 -2 -1 0 1 2

σ3 : 1 7→ 12, 2 7→ 1313, 3 7→ 13 -2 -1 0 1 2
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Conjugacy

De�nition

Two substitutions σ, σ′ over A are conjugated (written σ ∼ σ′)
if there exists a word X ∈ A∗ such that for each y ∈ A we have

Xσ(y) = σ′(y)X (or for each y ∈ A we have

σ(y)X = Xσ′(y)).

Lemma

If two substitutions σ, σ′ over A are conjugated then Lσ = Lσ′

and Mσ = Mσ′ .

Theorem

Suppose that σ ∼ σ′ such that Xσ(y) = σ′(y)X holds for all

y ∈ A. Then Rσ′ = Rσ + t with t =
∑

n≥0 f
n ◦ π ◦ l(X ) ∈ E s ,

where f is the restriction of the action of Mσ on E s (especially,

f is a contraction).
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Example

Our initial example

The Rauzy fractals induced by the substitutions

σ : 1 7→ 1211, 2 7→ 311, 3 7→ 1 and

σ′ : 1 7→ 1112, 2 7→ 113, 3 7→ 1

over the alphabet A = {1, 2, 3} di�er by a translation only since

σ ∼ σ′ (we have 11σ(y) = σ′(y)11 for all y ∈ A. We can easily

calculate the translation vector t.
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On symmetry
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A general result

De�nition

The language Lσ induced by a primitive substitution σ is called

mirror-invariant if for each X ∈ Lσ we have X̃ ∈ Lσ.

Theorem

Let σ be a primitive unimodular Pisot substitution such that the

language Lσ is mirror-invariant. Then the Rauzy fractal Rσ is

central symmetric (with respect to some centre of symmetry c).

Example

The (reducible) substitution

σ : 1 7→ 23, 2 7→ 23, 3 7→ 45, 4 7→ 23, 5 7→ 1 over

A = {1, 2, 3, 4, 5} induces the (original) Rauzy fractal which is

central symmetric but Lσ is not mirror-invariant (the words of

length 2 in Lσ are given by {12, 23, 31, 34, 45, 52}).
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Necessity

De�nition

A primitive unimodular Pisot substitution σ is said to have the

tiling property if Rσ induces a proper lattice tiling with respect

to the lattice

{π(z1, . . . , zm) : (z1, . . . , zm) ∈ Zm, z1 + · · ·+ zm = 0}.

Conjecture (Pisot conjecture)

Each irreducible primitive unimodular Pisot substitution has the

tiling property.

Theorem

Let σ be a primitive unimodular Pisot substitution with central

symmetric Rauzy fractal Rσ that possesses the tiling property.

Then the language Lσ is mirror-invariant.
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Substitutions that are conjugate to their mirror

substitution

De�nition

For a substitution σ we de�ne the mirror-substitution σ̃ by

σ̃(y) := σ̃(y) for each y ∈ A.

Theorem

Let σ be a primitive unimodular Pisot substitution such that

σ(y)X = X σ̃(y) holds for all y ∈ A. Then the Rauzy fractal

Rσ is central symmetric with respect to

c := 1
2

∑
n≥0 f

n ◦ π ◦ l(X ).
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Arnoux-Rauzy substitutions

De�nition

Let

σ1 :1 7→ 1, 2 7→ 12, 3 7→ 13

σ2 :1 7→ 21, 2 7→ 2, 3 7→ 23

σ3 :1 7→ 31, 2 7→ 32, 3 7→ 3.

Each composition that includes σ1, σ2 and σ3 at least once is a

primitive, irreducible, unimodular Pisot substitution.

Theorem

If σ = σi1 ◦ · · · ◦ σin then σ(y)X = X σ̃(y) for all y ∈ {1, 2, 3}
with

X = σi1(σi2(σi3(· · · (σin−1(in)in−1) · · · )i3)i2)i1.
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Example

A speci�c Arnoux-Rauzy substitution

Let σ = σ2 ◦ σ1 ◦ σ2 ◦ σ2 ◦ σ3. Then for each y ∈ {1, 2, 3} we
have σ(y)X = X σ̃(y) with

X = σ2(σ1(σ2(σ2(3)2)2)1)2 = 2122122123212212212.

Therefore, Rσ is central symmetric with respect to

c := 1
2

∑
n≥0 f

n ◦ π ◦ l(X ).

c

!1.0 !0.5 0.0 0.5 1.0

!1.0

!0.5

0.0

0.5
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Some related problems
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The class P-conjecture

De�nition

The language Lσ induced by a primitive substitution σ is called

palindromic if it contains in�nitely many palindromes.

Conjecture (Hof-Knill-Simon: 1995, Labbé: 2014,

Harju-Vesti-Zamboni: 2015)

Let σ be a primitive substitution such that Lσ is palindromic.

Then there exist a primitive substitution σ′ with σ′ ∼ σ̃′ (the
class P) such that Lσ = Lσ′ .

Remark

The conjecture is solved for the 2-letter case (Tan: 2007) and

for a class of substitutions related with interval exchange

transformations (Masáková-Pelantová-Starosta: 2017).
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The class P-conjecture in context with symmetric

Rauzy fractals

The example from above

The substitutions σ1, σ2, σ3 over A = {1, 2, 3} induce the same

language which is palindromic, but only σ3 is conjugate to its

mirror-substitution..

Substitution Rauzy fractal

σ1 : 1 7→ 131, 2 7→ 312, 3 7→ 2 -2 -1 0 1 2

σ2 : 1 7→ 13, 2 7→ 1312, 3 7→ 12 -2 -1 0 1 2

σ3 : 1 7→ 12, 2 7→ 1313, 3 7→ 13 -2 -1 0 1 2
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Palindomicity vs. mirror-invariance

Proposition

A palindomic language is always mirror invariant.

Question

Is there a primitive substitution σ such that Lσ is

mirror-invariant but not palindromic?

Parial answer

In the two-letter case palindomicity and mirror-invariance are

equivalent (Tan: 2007).
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Thanks

Thank you for your
attention
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