Rauzy fractals Paul Surer Motivation Construction

Symmetry

Problems

Symmetric and congruent Rauzy fractals

Paul Surer

Universität für Bodenkultur Institut für Mathematik 1180 Vienna - AUSTRIA

Paris, May 2018

based on a joint-research with Klaus Scheicher and Víctor Sirvent

Der Wissenschaftsfonds.

Symmetric Rauzy fractals Paul Surer Motivation

Constructior Congruence Symmetry Problems

Motivation

Observation 1

Symmetric Rauzy fractals Paul Surer

Motivation

Construction Congruence Symmetry Problems

Congruence

The Rauzy fractals induced by the substitutions

$$\begin{split} \sigma: 1 \mapsto 1211, 2 \mapsto 311, 3 \mapsto 1 \text{ and } \\ \sigma': 1 \mapsto 1112, 2 \mapsto 113, 3 \mapsto 1 \end{split}$$

over the alphabet $\mathcal{A} = \{1, 2, 3\}$ are congruent (that is they differ by an affine transformation only).

Observation 2

Symmetric Rauzy fractals Paul Surer

Motivation

Construction Congruence Symmetry Problems

Symmetry (Sellami, Sirvent: 2011, 2012, 2016)

The (original) Rauzy fractal induced by the substitutions

 $\sigma: 1 \mapsto 12, 2 \mapsto 13, 3 \mapsto 1$

(over the alphabet $\mathcal{A} = \{1, 2, 3\}$) is central-symmetric with respect to some point c.

Problem

Symmetric Rauzy fractals Paul Surer

Motivation

Construction Congruence Symmetry Problems

Some Questions

- Which conditions ensure that Rauzy fractals are congruent?
- Which conditions ensure that a Rauzy fractal is central symmetric?
- What is the centre of symmetry?
- Are the conditions necessary?

Rauzy fractals Paul Surer Motivation Construction

Problems

Construction

Definitions

Symmetric. Rauzy fractals Paul Surer Motivation Construction Congruence Symmetry Problems

Notations We denote \mathcal{A} finite set (alphabet) (here $\mathcal{A} = \{1, 2, ..., m\}$) \mathcal{A}^* finite words over \mathcal{A} ε empty word \tilde{X} mirror-word of $X \in \mathcal{A}^*$ $|X|_y$ number of occurrences of the letter $y \in \mathcal{A}$ within the word $X \in \mathcal{A}^*$ I(X) "Ablianisation" of $X \in \mathcal{A}^*$, *i.e.* $I(X) = (|X|_1, ..., |X|_m) \in \mathbb{Z}^m$

Some linear algebra

Rauzy fractals Paul Surer Motivation Construction

Congruence Symmetry

Substitution and induced subspaces

Let σ be a primitive unimodular Pisot substitution over \mathcal{A} , *i.e.* an endomorphism $\mathcal{A}^* \longrightarrow \mathcal{A}^*$ such that

 $\mathbf{M}_{\sigma} := (|\sigma(x)|_y)_{1 \le x, y \le m}$ is an primitive matrix; the dominant real eigenvalue $\theta > 1$ of \mathbf{M}_{σ} is a Pisot unit. Let d + 1 be the algebraic degree of θ . If d + 1 = m then σ is irreducible. We define

- E^u subspace spanned by the right eigenvector associated with θ ($E^u \cong \mathbb{R}$).
- E^s subspace spanned by the right eigenvectors associated with the Galois conjugates different from θ ($E^u \cong \mathbb{R}^d$).
- E^c subspace spanned by the right eigenvectors associated with the remaining eigenvalues ($E^u \cong \mathbb{R}^{m-d-1}$).
- π projection of \mathbb{R}^m onto E^s (along E^s and E^c)

Induced language and Rauzy fractal

Animetric Rauzy fractals Paul Surer Motivation Construction Congruence Symmetry Problems

Definition

- Let $(x_j)_{j\geq 1} \in \mathcal{A}^{\mathbb{N}}$ be a periodic word (that is $\sigma^n(x_1)\sigma^n(x_2)\sigma^n(x_3)\cdots = (x_j)_{j\geq 1}$ for some $n\geq 1$).
 - The language L_σ induced by σ is the subset of words over *A* that appear in (x_j)_{j≥1}, *i.e.*

$$\mathfrak{L}_{\sigma} = \{ X \in \mathcal{A}^* : \exists 1 \leq i \leq j : X = x_i \cdots x_j \}.$$

ullet The Rauzy fractal associated with σ is the compact set

$$\mathcal{R}_{\sigma} := \overline{\{\pi \circ \mathsf{I}(x_1 \cdots x_n) : n \in \mathbb{N}\}} \subset E^s$$

Symmetric Rauzy fractals Paul Surer Motivation Construction Congruence Symmetry

On congruence

A general result

Symmetria Rauzy fractals Paul Surei

Construction Congruence Symmetry Problems

Theorem

Let σ, σ' be irreducible primitive unimodular Pisot substitutions over the same alphabet \mathcal{A} . If $\mathfrak{L}_{\sigma} = \mathfrak{L}_{\sigma'}$ then \mathcal{R}_{σ} and $\mathcal{R}_{\sigma'}$ are congruent.

Remark

For reducible substitutions this does not hold in general. For example, the substitutions $\sigma_1, \sigma_2, \sigma_3$ over $\mathcal{A} = \{1, 2, 3\}$ induce the same language, but ...

Substitution

 $\begin{array}{c} \sigma_1: 1 \mapsto 131, 2 \mapsto 312, 3 \mapsto 2 \\ \sigma_2: 1 \mapsto 13, 2 \mapsto 1312, 3 \mapsto 12 \\ \sigma_3: 1 \mapsto 12, 2 \mapsto 1313, 3 \mapsto 13 \end{array}$

Conjugacy

Symmetric Rauzy fractals Paul Surer Activation

Construction Congruence Symmetry Problems

Definition

Two substitutions σ, σ' over \mathcal{A} are *conjugated* (written $\sigma \sim \sigma'$) if there exists a word $X \in \mathcal{A}^*$ such that for each $y \in \mathcal{A}$ we have $X\sigma(y) = \sigma'(y)X$ (or for each $y \in \mathcal{A}$ we have $\sigma(y)X = X\sigma'(y)$).

Lemma

If two substitutions σ, σ' over \mathcal{A} are *conjugated* then $\mathfrak{L}_{\sigma} = \mathfrak{L}_{\sigma'}$ and $M_{\sigma} = M_{\sigma'}$.

Theorem

Suppose that $\sigma \sim \sigma'$ such that $X\sigma(y) = \sigma'(y)X$ holds for all $y \in \mathcal{A}$. Then $\mathcal{R}_{\sigma'} = \mathcal{R}_{\sigma} + \mathbf{t}$ with $\mathbf{t} = \sum_{n \geq 0} f^n \circ \pi \circ \mathbf{l}(X) \in E^s$, where f is the restriction of the action of \mathbf{M}_{σ} on E^s (especially, f is a contraction).

Example

Animetric Rauzy fractals Paul Surer Motivation Construction Congruence Symmetry Problems

Our initial example

The Rauzy fractals induced by the substitutions

 $\label{eq:started_st$

over the alphabet $\mathcal{A} = \{1, 2, 3\}$ differ by a translation only since $\sigma \sim \sigma'$ (we have $11\sigma(y) = \sigma'(y)11$ for all $y \in \mathcal{A}$. We can easily calculate the translation vector t.

Symmetric Rauzy fractals Paul Surer Motivation Construction Congruence

Symmetry

Problems

On symmetry

A general result

Symmetric Rauzy fractals Paul Surer

Motivation Construction Congruence Symmetry Problems

Definition

The language \mathfrak{L}_{σ} induced by a primitive substitution σ is called *mirror-invariant* if for each $X \in \mathfrak{L}_{\sigma}$ we have $\tilde{X} \in \mathfrak{L}_{\sigma}$.

Theorem

Let σ be a primitive unimodular Pisot substitution such that the language \mathfrak{L}_{σ} is mirror-invariant. Then the Rauzy fractal \mathcal{R}_{σ} is central symmetric (with respect to some centre of symmetry **c**).

Example

The (reducible) substitution $\sigma: 1 \mapsto 23, 2 \mapsto 23, 3 \mapsto 45, 4 \mapsto 23, 5 \mapsto 1 \text{ over}$ $\mathcal{A} = \{1, 2, 3, 4, 5\} \text{ induces the (original) Rauzy fractal which is}$ central symmetric but \mathfrak{L}_{σ} is not mirror-invariant (the words of length 2 in \mathfrak{L}_{σ} are given by $\{12, 23, 31, 34, 45, 52\}$).

Necessity

Symmetric Rauzy fractals Paul Surer

Construction Congruence Symmetry

Definition

A primitive unimodular Pisot substitution σ is said to have the tiling property if \mathcal{R}_{σ} induces a proper lattice tiling with respect to the lattice

$$\pi(z_1,\ldots,z_m):(z_1,\ldots,z_m)\in\mathbb{Z}^m, z_1+\cdots+z_m=0\}.$$

Conjecture (Pisot conjecture)

Each irreducible primitive unimodular Pisot substitution has the tiling property.

Theorem

Let σ be a primitive unimodular Pisot substitution with central symmetric Rauzy fractal \mathcal{R}_{σ} that possesses the tiling property. Then the language \mathfrak{L}_{σ} is mirror-invariant.

Substitutions that are conjugate to their mirror substitution

Symmetric Rauzy fractals Paul Sure

Motivation Construction Congruence Symmetry Problems

Definition

For a substitution σ we define the *mirror-substitution* $\tilde{\sigma}$ by $\tilde{\sigma}(y) := \widetilde{\sigma(y)}$ for each $y \in \mathcal{A}$.

Theorem

Let σ be a primitive unimodular Pisot substitution such that $\sigma(y)X = X\tilde{\sigma}(y)$ holds for all $y \in \mathcal{A}$. Then the Rauzy fractal \mathcal{R}_{σ} is central symmetric with respect to $\mathbf{c} := \frac{1}{2} \sum_{n \ge 0} f^n \circ \pi \circ \mathbf{I}(X).$

Arnoux-Rauzy substitutions

Symmetry

Definition $\sigma_1: 1 \mapsto 1, 2 \mapsto 12, 3 \mapsto 13$ $\sigma_2: 1 \mapsto 21, 2 \mapsto 2, 3 \mapsto 23$ $\sigma_3: 1 \mapsto 31, 2 \mapsto 32, 3 \mapsto 3.$

Each composition that includes σ_1 , σ_2 and σ_3 at least once is a primitive, irreducible, unimodular Pisot substitution.

Theorem

l et

If $\sigma = \sigma_{i_1} \circ \cdots \circ \sigma_{i_n}$ then $\sigma(y)X = X\tilde{\sigma}(y)$ for all $y \in \{1, 2, 3\}$ with

$$X = \sigma_{i_1}(\sigma_{i_2}(\sigma_{i_3}(\cdots(\sigma_{i_{n-1}}(i_n)i_{n-1})\cdots)i_3)i_2)i_1$$

Example

Symmetric Rauzy fractals Paul Surei

Construction Congruence Symmetry

A specific Arnoux-Rauzy substitution

Let $\sigma = \sigma_2 \circ \sigma_1 \circ \sigma_2 \circ \sigma_2 \circ \sigma_3$. Then for each $y \in \{1, 2, 3\}$ we have $\sigma(y)X = X\tilde{\sigma}(y)$ with

 $X = \sigma_2(\sigma_1(\sigma_2(\sigma_2(3)2)2)1)2 = 2122122123212212212.$

Therefore, \mathcal{R}_{σ} is central symmetric with respect to $\mathbf{c} := \frac{1}{2} \sum_{n \geq 0} f^n \circ \pi \circ \mathbf{I}(X).$

Symmetric Rauzy fractals Paul Surer Motivation Construction Congruence

Symmetry

Problems

Some related problems

The class \mathcal{P} -conjecture

Symmetric Rauzy fractals Paul Surer

Motivation Construction Congruence Symmetry

Problems

Definition

The language \mathfrak{L}_{σ} induced by a primitive substitution σ is called *palindromic* if it contains infinitely many palindromes.

Conjecture (Hof-Knill-Simon: 1995, Labbé: 2014, Harju-Vesti-Zamboni: 2015)

Let σ be a primitive substitution such that \mathfrak{L}_{σ} is palindromic. Then there exist a primitive substitution σ' with $\sigma' \sim \tilde{\sigma}'$ (the class \mathcal{P}) such that $\mathfrak{L}_{\sigma} = \mathfrak{L}_{\sigma'}$.

Remark

The conjecture is solved for the 2-letter case (Tan: 2007) and for a class of substitutions related with interval exchange transformations (Masáková-Pelantová-Starosta: 2017).

The class \mathcal{P} -conjecture in context with symmetric Rauzy fractals

Rauzy fractals Paul Surer

Motivation Construction Congruence Symmetry Problems

The example from above

The substitutions $\sigma_1, \sigma_2, \sigma_3$ over $\mathcal{A} = \{1, 2, 3\}$ induce the same language which is palindromic, but only σ_3 is conjugate to its mirror-substitution.

Palindomicity vs. mirror-invariance

Rauzy fractals Paul Surer

Motivation Construction Congruence Symmetry Problems

Proposition

A palindomic language is always mirror invariant.

Question

Is there a primitive substitution σ such that \mathfrak{L}_{σ} is mirror-invariant but not palindromic?

Parial answer

In the two-letter case palindomicity and mirror-invariance are equivalent (Tan: 2007).

Т	han	ks

Symmetric Rauzy fractals
Motivation
Construction

Congruence

Symmetry

Problems

Thank you for your attention