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Shift Radix Systems

Definition (cf. Akiyama et al., 2005)

Let r ∈ ℝd and

�r : ℤ
d → ℤd , x = (x1, . . . , xd ) → (x2, . . . , xd ,−⌊rx⌋).

The dynamical system (ℤd , �r) is called a shift radix system
(SRS). The SRS satisfies the finiteness property if

∀x ∈ ℤd : ∃n ∈ ℕ such that �n
r (x) = 0.
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Notations

Notation

For r = (r0, . . . , rd−1) denote by Mr the companion matrix
with characteristic polynomial
�Mr

(x) = xd + rd−1x
d−1 + ⋅ ⋅ ⋅+ r0.

ℰd := {r ∈ ℝd ∣%(Mr) < 1}.

Proposition

r ∈ ℰd the SRS (ℤd , �r) either satisfies the finiteness property or
for all x ∈ ℤd the sequence (�n

r (x))n∈ℕ is ultimately periodic..
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SRS-tiles

Definition

Let r ∈ ℰd and x ∈ ℤd . The set

Tr(x) = lim
n→∞

Mn
r �

−n
r (x)

(limit with respect to the Hausdorff metric) is called the SRS
tile associated with r. Tr(0) is called the central SRS tile
associated with r.
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SRS-tiles for r = (3
4 , 1)
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Basic properties of SRS tiles

For each r ∈ ℰd we have

Tr(x) is compact for all x ∈ ℤd .

The family {Tr(x)∣x ∈ ℤd} is locally finite.

∪

x∈ℤd

Tr(x) = ℝd .

Tr(x) satisfies the set equation

Tr(x) =
∪

y∈�−1
r

(x)

MrTr(y).
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Periodic points

Definition

For r ∈ ℝd a point z ∈ ℤd is called purely periodic (with
respect to �r) if � l

r (z) = z for some l ≥ 1.

Proposition

For each r ∈ ℰd there exists only finitely many purely periodic
points. 0 is the only purely periodic point if and only if (ℤd , �r)
has the finiteness property.

SRS tiles and the origin

Let r ∈ ℰd .

0 ∈ Tr(x) if and only if x is purely periodic.

�r is an SRS if and only if 0 ∈ Tr(0) ∖
∪

x ∕=0 Tr(x) is an
inner point of the central tile.
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Closure of the interior

Note

SRS tiles are not necessarily the closure of the interior!

Example

Set r = ( 9
10
,−11

20
). The points z0 = (−1,−1), z1 =

(−1, 1), z2 = (1, 2), z3 = (2, 1), z4 = (1,−1) are purely
periodic:

�r : z0 7→ z1 7→ z2 7→ z3 7→ z4 7→ z0.

But �−n
r (z0) = {z(n mod 5)} and thus

Tr(z0) = Tr(z1) = Tr(z2) = Tr(z3) = Tr(z4) = {0}.
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SRS tiles for r =
(

9
10 ,−

11
20

)

(Modern Art)



SRS tiles

Paul Surer

Definitions

Examples
and basic
properties

Tiling
properties

Tiles
associated to
an expanding
polynomial

Tiles
associated to
Pisot
numbers

Tiling properties

Definition

Let r ∈ ℰd . The family {Tr(x)∣x ∈ ℤd} provides a weak m-tiling
if for m + 1 pairwise different points x1, . . . , xm+1 we have
∩m+1

i=1 int (Tr(x)) = ∅ and for all points t ∈ ℝd we have
#{x ∈ ℤd ∣t ∈ Tr(x)} ≥ m. We call a point t ∈ ℝd an
m-exclusive point if #{x ∈ ℤd ∣t ∈ Tr(x)} = m.

Note

SRS tiles are not necessarily the closure of the interior.

The family {Tr(x)∣x ∈ ℤd} is not necessarily a collection of
finitely many tiles up to translation (Counterexample:
r =

(

−2
3

)

).

We are not able to prove in general that the boundaries of
the SRS tiles have zero measure.
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Weak m-tiling

Theorem

Let r = (r0, . . . , rd−1) ∈ ℰd . The family {Tr(x)∣x ∈ ℤd}
provides a weak m-tiling if one of the following conditions hold.

r ∈ ℚd ,

r0, . . . , rd−1 are algebraically independent over ℚ,

(x − �)(xd + rd−1x
d−1 + ⋅ ⋅ ⋅+ r0) ∈ ℤ[x ] for some � > 1.

Corollary

Let r ∈ ℰd . If r satisfies one of the conditions from above and
the SRS (ℤd , �r) satisfies the finiteness property then the family
{Tr(x)∣x ∈ ℤd} provides a weak (1-)tiling.
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Tiles associated to an expanding polynomial

Definition (cf. Kátai, Kőrnyei)

Let A(x) = xd + ad−1x
d−1 + ⋅ ⋅ ⋅+ a0 ∈ ℤ[x ] an expanding

polynomial (⇒ ∣a0∣ ≥ 2) and B the transposed companion
matrix with characteristic polynomial A.

ℱ :=

{

t ∈ ℝd

∣

∣

∣

∣

∣

t =
∞
∑

i=0

B−i (ci , 0, . . . , 0)
T , ci ∈ N

}

(N = {0, . . . , ∣a0∣ − 1}) is called self-affine tile associated with
A.

Lemma

ℱ is compact and self-affine.

ℱ is the closure of its interior.

{x + ℱ , x ∈ ℤd} defines a tiling of ℝd .
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Relation to SRS-tiles

r =
(

1
a0
,

ad−1

a0
, . . . , a1

a0

)

, V =

⎛

⎜

⎜

⎜

⎜

⎝

1 ad−1 ⋅ ⋅ ⋅ a1

0
. . .

. . .
...

...
. . .

. . . ad−1

0 ⋅ ⋅ ⋅ 0 1

⎞

⎟

⎟

⎟

⎟

⎠

.

Theorem

For all x ∈ ℤd we have

ℱ =VTr(0),

x + F =VTr(V
−1(x)).
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Example: A(x) = x
2 − x + 3

Figure: Translates of the self-affine tile
associated with A

Figure: SRS tile associated
with

(

1

3
,− 1

3

)



SRS tiles

Paul Surer

Definitions

Examples
and basic
properties

Tiling
properties

Tiles
associated to
an expanding
polynomial

Tiles
associated to
Pisot
numbers

Tiles associated to Pisot number

Setting

Let � > 1 a Pisot number with minimal Polynomial
(x − �)(xd + rd−1x

d−1 + ⋅ ⋅ ⋅+ r0),

T� : ℤ[�] ∩ [0, 1) −→ ℤ[�] ∩ [0, 1), 
 7→ �
 − ⌊�
⌋,

� = �0, �1, . . . , �d the galois conjugates of �, d = p + 2q,
�0, . . . , �p ∈ ℝ,
�p+1 = �p+1+q, . . . , �p+q = �p+2q ∈ ℂ,

(i) the corresponding conjugate of 
 ∈ ℚ(�), i ∈ {0, . . . , d},

Φ : ℚ(�) → ℝd , 
 7→
(


(1), . . . , 
(p+q)
)

.
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Theorem (Akiyama et al.)

(ℤd , �r) has the finiteness property if and only if � has the
property (F).

Definition (cf. Akiyama)

For ! ∈ ℤ[�] ∩ [0, 1) the set

S�(!) = lim
n→∞

Φ(�nT−n
� (!))

(with the Hausdorff limit) is called integral �-tile.

Lemma

For units we have finitely many tiles up to translation. Each tile
is the closure of its interior.
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Relation between SRS-tiles and integral �-tiles

Let
f : ℤd → ℤ[�] ∩ [0, 1), x 7→ rx − ⌊rx⌋

(Bijective map!)

Theorem

There exists a matrix U such that for each x ∈ ℤd we have that
S�(f (x)) = UTr(x).

Corollary

Let � a Pisot number of degree d + 1 satisfying the property
(F). Then the family {S�(!)}!∈ℤ[�]∩[0,1) is a weak tiling of ℝd .
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Example (Pisot unit case)

Figure: Integral beta-tiles for � the
smallest Pisot number

Figure: The corresponding
SRS tiles
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Example (Pisot non-unit case)

Figure: Integral beta-tiles for �
with minimal polynomial
x

3 − 3x
2 − x − 2.

Figure: The
corresponding SRS tiles
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