Ergebnisse (Ableitungsregeln)
- f'(x) = 100x99
- f'(x) = 21x6 + 55x4 - 24x² - 7
- f'(x) = x³/3 + 12x²/5 - 3x/2 - 1/8
- f'(x) = -3/x4
- f'(x) = -6/x³
- f'(x) = -2/x5
- f'(x) = -4/x7
- f'(x) = 2x + 2/3 + 4/x²
- f'(x) = -9/x4 + 4/x³ - 1/(3x²)
- f'(x) = -4/x5 + 18/x4 - 24/x³ + 8/x²
- f'(x) = 1/(3·³√x²)
- f'(x) = 3√x/2
- f'(x) = 4/√x - 1/(2·4√x³)
- f'(x) = 1/(6·³√x²) - 1/(2√x³)
- y' = 8x + 4
- y' = 3x² + 8x - 2
- y' = 12x³ + 27x² - 10x - 15
- y' = 6x² + 4x - 2
- y' = 24x²
- y' = 10x4 - 4x³ + 42x² - 28x + 29
- y' = 5/(x + 4)²
- y' = -13/(3x - 5)²
- y' = (-4x³ + 4)/(x³+2)²
- y' = (5x² - 8x + 20)/(x² - 4)²
- y' = (12x² + 20x - 21)/(6x + 5)²
- y' = (x4 + 6x³ + 2x + 3)/(x² + 3x)²
- y' = 1 - 3/x²
- y' = 1/3 - 3/x²
- y' = 3
- y' = 1/4 + 2/x² + 1/x³
- y' = -4/x³ + 15/x4
- y' = -1/(4x²) - 2/x4
- f'(x) = 10(2x + 3)4
- f'(x) = 6x(x² - 9)²
- f'(x) = -2x/(x² + 3)²
- f'(x) = -20/(10x - 3)³
- f'(x) = 3/√(6x - 1)
- f'(x) = x/√(x² - 4)
- f'(x) = (1 + x)·ex
- f'(x) = (2x + x²)·ex
- f'(x) = (3x + 1)·ex
- f'(x) = (x - 1)·ex/x²
- f'(x) = (2x - x²)/ex
- f'(x) = 3e3x
- f'(x) = 0,1e0,1x+3
- f'(x) = 2x·ex²
- f'(x) = ln x + 1
- f'(x) = (1 - ln x)/x²
- f'(x) = 3·(ln x)²/x
- f'(x) = 3/x
- f'(x) = 2/(2x - 5)
- f'(x) = 2x/(x² + 1)
- f'(x) = cos² x - sin² x
- f'(x) = 1/cos² x
- f'(x) = 3·cos(3x)
- f'(x) = 6·cos(2x + π)
- f'(x) = -2x·sin(x²)
- f'(x) = 0
Zum Inhaltsverzeichnis