Ergebnisse (Dreiecke und Vierecke):
- Parallelogramm
- Quadrat
- Allgemeines Viereck
- Rhombus
- Gleichschenkeliges Trapez
- Rechteck
- u = 27,21, A = 30; rechtwinkeliges Dreieck
- u = 20,66, A = 19
- u = 21,88, A = 14
- u = 15,01, A = 10,5; gleichschenkeliges Dreieck
- A(8/4), B(0/2), C(2/-2), u = 21,20, A = 18
- A(1/1), B(3/0), C(2/4), u = 9,52, A = 3,5
- A(-3/5), B(6/-1), C(12/8), u = 36,93, A = 58,5
- A(-1/-3), B(7/1), C(2/6), u = 25,50, A = 30
- H(10/1), S(6 / 11/3), U(4/5), e: 2x + 3y = 23
- H(7/3), S(17/3 / 7/3), U(5/2), e: x - 2y = 1
- H(2/17), S(0/3), U(-1/-4), e: 7x - y = -3
- H(5/6), S(3/ 14/3), U(2/4), e: 2x - 3y = -8
- A = 18, S(8/3 /1), α = 80,54°
- A = 50, S(3/3), α = 90°
- A = 42, S(-4/2), α = 37,87°
- A = 100, S(8/6), α = 90°
- MAB(1/2), MBC(3,5/5), MAC(-0,5/3)
- MAB(1/-2), MBC(4/4), MCD(-2/6), MAD(-5/0)
- α = 53,1°, β = γ = 63,4° , u = 18,3 , A = 16 FE
- a = 13, b = 15, c = 14, A = 84 FE, U(0 / 41/8),
R = 81/8
- U(2/1); D(1/-4), E(-2/7), F(13/4)
- H(16/20), U(14/2), ku: (x - 14)² + (y - 2)² = 200
- H'(16/-12), H''(12/16), H'''(19,84/14,88)
- ku: (x - 2)² + (y - 6)² = 40
- S1(6/-2), S2(-18/6), S3(12/16)
- A1 = 48 FE, A2 = 240 FE, A1:A2 = 1:5
Zum Inhaltsverzeichnis