Sobre o artigo
  
  
  
  
    
    
  
  
    | idioma | inglês | 
  
    | publicado no | Mathematica Pannonica, 18, v. 2 (2007) | 
  
    | páginas | 265 a 297 | 
  
    | suportado por | FWF, projeto P17557-N12 | 
  
    |  | FWF, projeto S9610 (NFN S9600) | 
  
    | título em português | Resultados relativo à caracterização de sistemas de deslocamento de base | 
   
   
     Resumo
   
  
     Para
     
r∈ d
d
     define a aplicação
     τ
r:
     
 d
d →
     
 d
d
     como seguinte:
     
     τ
r:
     
 d
d →
     
 d
d, 
a=(a
1,…,a
d)

(a
2,…,a
d,−⌊
ra⌋).
     
     τ
r
     se chama sistema de deslocamento de base (SRS) se
     ∀
a∈ d
d
     ∃k
∈
:
     τ
rk(
a) = 
0.
     Neste artigo nós enfocamos novos resultados relativo à caracterização do conjunto
     
 0d
0d:={
r∈ d
d|τ
r é um SRS}, especialmente para d=2. Para isso nós adaptamos e generalizamos resultados e métodos apresentados em artigos mais antigos.
   
     Bibliografia
   
   
      - 
        S. Akiyama, T. Borbély, H. Brunotte, A. Pethő, J. M. Thuswaldner,
        Generalized radix representations and dynamical systems I, Acta Math. Hungar. 108 (2005), 207—238.
      
- 
        S. Akiyama, H. Brunotte, A. Pethő,  W. Steiner,
        Remarks and conjecture on certain integer sequences, Period. Math Hungar. 52 (2006), 1—17.
      
- 
        S. Akiyama, H. Brunotte, A. Pethő, J. M. Thuswaldner,
        Generalized radix representations and dynamical systems II, Acta Arith. 121 (2006), 21—61.
      
- 
        H. Brunotte, On trinomial bases of radix representations of algebraic integers,
        Acta Sci. Math. Acta Sci. Math. (Szeged) 67 (2001), 521—527.
      
- 
        K. Fukuda, cdd and cddplus Homepage, ETHZ, Zürich, Switzerland,
        
        http://www.ifor.math.ethz.ch/~fukuda/cdd_home/index.html.
      
- 
        S. Lagarias, Y. Wang, Self affine Tiles in Self affine Tiles in  n, Adv. Math. 121 (1996), 21—49. n, Adv. Math. 121 (1996), 21—49.
- 
       T. S. Motzkin, H. Raiffa, G. L. Thompson, R. L. Thrall, The double description method Contributions to the
       theory of games, vol. 2, pp. 51-73. Annals of Mathematics Studies, no. 28. Princeton University Press, Princeton, N.
       J. 1953.
      
- 
        W. Parry, On the β-expansions of real numbers, Acta  Math. Acad. Sci. Hungar. 11 (1960), 401—416.
      
- 
        A. Pethő, On a polynomial transformation and its application to the construction of a public key cryptosystem,
        Computational number theory (Debrecen, 1989), de Gruyter, Berlin, 1991, 31—43.
      
- 
        A. Rényi, Representations for real numbers and their ergodic properties,
        Acta  Math. Acad. Sci. Hungar. 8 (1957), 477—493.
      
- 
        P. Surer, Personal homepage,
        
        http://www.palovsky.com/links/p12007.htm.
      
- 
        R. Tarjan, Depth-first search and linear graph algorithms,
        SIAM J. Comput. 1 (1972), 146—160.
      
      Download
    
    
      Mathematica® Notebook-File (Versão 5.1) de uma implementação
      do algoritmo Br.
      baixar Br
    
    
      Mathematica® Notebook-File (Versão 5.1) de uma implementação
      do algoritmo Ak.
    baixar Ak
    
      
      Mathematica® Notebook-File (Versão 5.1) de uma lista de todos os ciclos conhecidos.
      Como ele contem muitos ciclos (mais que 1000) a lista é adequado para uso computational só.
      baixar lista
    
    
      Links
    
    
      Mathematica Pannonica
      Fundação Austríaca de Ciência (FWF)
      Rede national de pesquisa (NFN) S9600