About the article
language |
English |
published in |
Mathematica Pannonica, 18, No. 2 (2007) |
pages |
265 to 297 |
supported by |
FWF, project P17557-N12 |
|
FWF, project S9610 (NFN S9600) |
Abstract
For
r∈d
define the function
τ
r:
d →
d
in the following way:
τ
r:
d →
d,
a=(a
1,…,a
d)
(a
2,…,a
d,−⌊
ra⌋).
τ
r
is called a Shift Radix System (SRS) if
∀
a∈d
∃k
∈:
τ
rk(
a) =
0.
In this paper we deal with new results concerning the characterisation of the set
0d:={
r∈d|τ
r is an SRS},
especially for d=2. For this purpose we adapt and generalise several results and methods presented in
earlier papers.
References
-
S. Akiyama, T. Borbély, H. Brunotte, A. Pethő, J. M. Thuswaldner,
Generalized radix representations and dynamical systems I, Acta Math. Hungar. 108 (2005), 207—238.
-
S. Akiyama, H. Brunotte, A. Pethő, W. Steiner,
Remarks and conjecture on certain integer sequences, Period. Math Hungar. 52 (2006), 1—17.
-
S. Akiyama, H. Brunotte, A. Pethő, J. M. Thuswaldner,
Generalized radix representations and dynamical systems II, Acta Arith. 121 (2006), 21—61.
-
H. Brunotte, On trinomial bases of radix representations of algebraic integers,
Acta Sci. Math. Acta Sci. Math. (Szeged) 67 (2001), 521—527.
-
K. Fukuda, cdd and cddplus Homepage, ETHZ, Zürich, Switzerland,
http://www.ifor.math.ethz.ch/~fukuda/cdd_home/index.html.
-
S. Lagarias, Y. Wang, Self affine Tiles in Self affine Tiles in n, Adv. Math. 121 (1996), 21—49.
-
T. S. Motzkin, H. Raiffa, G. L. Thompson, R. L. Thrall, The double description method Contributions to the
theory of games, vol. 2, pp. 51-73. Annals of Mathematics Studies, no. 28. Princeton University Press, Princeton, N.
J. 1953.
-
W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960), 401—416.
-
A. Pethő, On a polynomial transformation and its application to the construction of a public key cryptosystem,
Computational number theory (Debrecen, 1989), de Gruyter, Berlin, 1991, 31—43.
-
A. Rényi, Representations for real numbers and their ergodic properties,
Acta Math. Acad. Sci. Hungar. 8 (1957), 477—493.
-
P. Surer, Personal homepage,
http://www.palovsky.com/links/p12007.htm.
-
R. Tarjan, Depth-first search and linear graph algorithms,
SIAM J. Comput. 1 (1972), 146—160.
Download
Mathematica® Notebook-File (Version 5.1) with an implementation
of the algorithm Br.
download Br
Mathematica® Notebook-File (Version 5.1) with an implementation
of the algorithm Ak.
download Ak
Mathematica® Notebook-File (Version 5.1) with a list of all known nonempty
periods. Because it consists of a lot of periods (more than 1000) this list is suitable for computational use only.
download list
Links
Mathematica Pannonica
Austrian Science Foundation (FWF)
National Research Network (NFN) S9600