Über den Artikel
Sprache |
Englisch |
erschienen in |
Publicationes Mathematicae Debrecen, 74, Nr. 1-2 (2009) |
Seiten |
19 bis 43 |
Unterstützt durch |
FWF, Projekt S9610 (NFN S9600) |
|
Stiftung "Aktion Österreich-Ungarn", Projekt 63öu3 |
Titel auf Deutsch |
ε-Schiebebasissysteme und Zahlensysteme mit verschobener Ziffernmenge |
Zusammenfassung
Sei ε
∈[0,1),
r∈d und
τ
r,ε:
d →
d definiert durch
τr,ε(z) =
(z1,…,zd-1,−⌊rz+ε⌋)
(z=(z0,…,zd-1)).
Wenn zu jedem
a∈d ein
k
∈ existiert, sodass die k-te Iteration von
τ
r,ε die Bedingung
τ
kr,ε(
a) =
0 erfüllt,
nennen wir τ
r,ε ein ε-Schiebebasissysteme.
Im vorliegenden Artikel vereinheitlichen wir klassische Schiebebasissysteme (ε=0) und symmetrische Schiebebasissysteme (ε=½), welche
schon in zahlreichen Artikeln studiert wurden, und analysieren the Beziehung von ε-Schiebebasissysteme zu β-Darstellungen und kanonischen Ziffernsystemen mit verschobenen Ziffernmengen. Am Ende werden wir einige Resultate für den zwei-dimensionalen Fall präsentieren.
Quellenangaben
-
S. Akiyama, T. Borbély, H. Brunotte, A. Pethő, J.M. Thuswaldner,
Generalized radix representations and dynamical systems I, Acta Math. Hungar. 108 (2005), 207—238.
-
S. Akiyama, H. Brunotte, A. Pethő, W. Steiner,
Remarks and conjecture on certain integer sequences, Period. Math Hungar. 52 (2006), 1—17.
-
S. Akiyama, H. Brunotte, A. Pethő, W. Steiner,
Periodicity of certain piecewise affine planar maps, Tsukuba J. Math. 32 (2008), 197—251.
-
S. Akiyama, H. Brunotte, A. Pethő, J.M. Thuswaldner,
Generalized radix representations and dynamical systems II, Acta Arith. 121 (2006), 21—61.
-
S. Akiyama, H. Brunotte, A. Pethő, J.M. Thuswaldner,
Generalized radix representations and dynamical systems III, Osaka J. Math. 45 (2008), 347—374.
-
S. Akiyama, H. Brunotte, A. Pethő, J.M. Thuswaldner,
Generalized radix representations and dynamical systems IV, Indag. Math. 19 (2008), 333—348.
-
S. Akiyama, K. Scheicher, Symmetric shift radix systems and finite expansions, Math. Pannon. 18 (2007),
101—124.
-
E. R. Berlekamp, Algebraic coding theory, McGraw-Hill Book Co., New York, 1968.
-
A. Bertrand, Développements en base de Pisot et répartition modulo 1, C. R. Acad. Sci. Paris Sér. A-B 285
(1977), A419—A421.
-
H. Brunotte, On trinomial bases of radix representations of algebraic integers,
Acta Sci. Math. Acta Sci. Math. (Szeged) 67 (2001), 521—527.
-
C. Frougny, B. Solomyak, Finite beta-expansions, Ergod. Th. and Dynam. Sys. 12 (1992), 713—723.
-
A. Huszti, K. Scheicher, P. Surer, J.M. Thuswaldner, Three-dimensional symmetric shift radix
systems, Acta Arith. 129 (2007), 147—166.
-
S. Lagarias, Y. Wang, Self affine Tiles in n, Adv. Math. 121 (1996), 21—49.
-
W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960), 401—416.
-
A. Pethő, On a polynomial transformation and its application to the construction of a public key cryptosystem,
Computational number theory (Debrecen, 1989), de Gruyter, Berlin, 1991, 31—43.
-
A. Rényi, Representations for real numbers and their ergodic properties,
Acta Math. Acad. Sci. Hungar. 8 (1957), 477—493.
-
K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers,
Bull. London Math. Soc. 12 (1980), 269—278.
-
I. Schur, Über Potenzreihen, die im inneren des Einheitskreises beschränkt sind,
J. reine angew. Math. 148 (1918), 122—145.
-
P. Surer, Personal homepage, http://www.palovsky.com.
-
P. Surer, Characterisation results for shift radix systems, Math. Pannon. 18 (2007), 265—297.
-
T. Takagi, Lectures in Algebra, 1965.
Links
Publicationes Mathematicae Debrecen
Fond zur Förderung der wissenschaftlichen Forschung (FWF)
National Forschungsnetzwerk (NFN) S9600
Stiftung "Aktion Österreich-Ungarn"