About the article

language English
published in Publicationes Mathematicae Debrecen, 74, Nr. 1-2 (2009)
pages 19 to 43
supported by FWF, project S9610 (NFN S9600)
Foundation "Aktion Österreich-Ungarn", project 63öu3

Abstract

Let ε[0,1), rRd and define the mapping τr: ZdZd by
τr(z) = (z1,…,zd-1,−⌊rz+ε⌋)    (z=(z0,…,zd-1)).
If for each aZd there is a kN such that the k-th iterate of τr satisfies τkr(a) = 0 we call τr an ε-shift radix system. In the present paper we unify classical shift radix systems (ε=0) and symmetric shift radix systems (ε=½), which have already been studied in several papers and analyse the relation of ε-shift radix systems to β-expansions and canonical number systems with shifted digit sets. At the end we will state several characterisation results for the two dimensional case.

References

  1. S. Akiyama, T. Borbély, H. Brunotte, A. Pethő, J.M. Thuswaldner, Generalized radix representations and dynamical systems I, Acta Math. Hungar. 108 (2005), 207—238.
  2. S. Akiyama, H. Brunotte, A. Pethő, W. Steiner, Remarks and conjecture on certain integer sequences, Period. Math Hungar. 52 (2006), 1—17.
  3. S. Akiyama, H. Brunotte, A. Pethő, W. Steiner, Periodicity of certain piecewise affine planar maps, Tsukuba J. Math. 32 (2008), 197—251.
  4. S. Akiyama, H. Brunotte, A. Pethő, J.M. Thuswaldner, Generalized radix representations and dynamical systems II, Acta Arith. 121 (2006), 21—61.
  5. S. Akiyama, H. Brunotte, A. Pethő, J.M. Thuswaldner, Generalized radix representations and dynamical systems III, Osaka J. Math. 45 (2008), 347—374.
  6. S. Akiyama, H. Brunotte, A. Pethő, J.M. Thuswaldner, Generalized radix representations and dynamical systems IV, Indag. Math. 19 (2008), 333—348.
  7. S. Akiyama, K. Scheicher, Symmetric shift radix systems and finite expansions, Math. Pannon. 18 (2007), 101—124.
  8. E. R. Berlekamp, Algebraic coding theory, McGraw-Hill Book Co., New York, 1968.
  9. A. Bertrand, Développements en base de Pisot et répartition modulo 1, C. R. Acad. Sci. Paris Sér. A-B 285 (1977), A419—A421.
  10. H. Brunotte, On trinomial bases of radix representations of algebraic integers, Acta Sci. Math. Acta Sci. Math. (Szeged) 67 (2001), 521—527.
  11. C. Frougny, B. Solomyak, Finite beta-expansions, Ergod. Th. and Dynam. Sys. 12 (1992), 713—723.
  12. A. Huszti, K. Scheicher, P. Surer, J.M. Thuswaldner, Three-dimensional symmetric shift radix systems, Acta Arith. 129 (2007), 147—166.
  13. S. Lagarias, Y. Wang, Self affine Tiles in Rn, Adv. Math. 121 (1996), 21—49.
  14. W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960), 401—416.
  15. A. Pethő, On a polynomial transformation and its application to the construction of a public key cryptosystem, Computational number theory (Debrecen, 1989), de Gruyter, Berlin, 1991, 31—43.
  16. A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957), 477—493.
  17. K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc. 12 (1980), 269—278.
  18. I. Schur, Über Potenzreihen, die im inneren des Einheitskreises beschränkt sind, J. reine angew. Math. 148 (1918), 122—145.
  19. P. Surer, Personal homepage, http://www.palovsky.com.
  20. P. Surer, Characterisation results for shift radix systems, Math. Pannon. 18 (2007), 265—297.
  21. T. Takagi, Lectures in Algebra, 1965.

Links

Publicationes Mathematicae Debrecen
Austrian Science Foundation (FWF)
National Research Network (NFN) S9600
Foundation "Aktion Österreich-Ungarn"