Sobre o artigo

co-autores Benoît Loridant
Ali Messaoudi
Jörg M. Thuswaldner
idioma inglês
publicado no Theoretical Computer Science 477 (2013)
páginas 6 to 31
DOI 10.1016/j.tcs.2012.12.019
suportado por FAPESP, processo 2009/07744-0
título em português Azulejamentos induzidos por uma classe de fractais de Rauzy cúbicos

Resumo

Nós estudamos azulejamentos periódicos e aperiódicos induzidos pelos Fractais de Rauzy e seus subazulejos associados com as beta-substituições relacionadas ao polinômio x3 - ax2 - bx -1 em que a ≥ b ≥ 1. Em particular, nós determinamos os grafos de fronteira que descrevem as vizinhanças dos azulejos dentro do azulejamento. Estes grafos são ferramentas valiosas para estudar propriedades topológicas dos Fractais de Rauzy. Como exemplo nós mostramos que os Fractais de Rauzy não são homomórfico a um disco quando a ≤ 2b - 4. Os métodos desenvolvidos neste artigo podem ser usados para obter resultados semelhantes para outras clesses de Fractais de Rauzy.

Bibliografia

  1. S. Akiyama, On the boundary of self affine tilings generated by Pisot numbers, J. Math. Soc. Japan 54 (2002) 283—308.
  2. S. Akiyama, H. Rao, W. Steiner, A certain finiteness property of Pisot number systems, J. Number Theory 107 (2004) 135—160.
  3. P. Arnoux, S. Ito, Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. Simon Stevin 8 (2001) 181—207. Journées Montoises d’Informatique Théorique (Marne-la-Vallée, 2000).
  4. C. Bandt, G. Gelbrich, Classification of self-affine lattice tilings, J. Lond. Math. Soc. (2) 50 (1994) 581—593.
  5. M. Barge, B. Diamond, Coincidence for substitutions of Pisot type, Bull. Soc. Math. France 130 (2002) 619—626.
  6. M. Barge, J. Kwapisz, Geometric theory of unimodular substitutions, Amer. J. Math. 128 (5) (2006) 1219—1282.
  7. V. Berthé, M. Rigo, Combinatorics, automata, and number theory, in: Encyclopedia of Mathematics and its Applications, vol. 135, Cambridge University Press, Cambridge, 2010.
  8. V. Berthé, A. Siegel, Tilings associated with beta-numeration and substitutions, Integers 5 (2005) (electronic).
  9. V. Berthé, A. Siegel, W. Steiner, P. Surer, J.M. Thuswaldner, Fractal tiles associated with shift radix systems, Adv. Math. 226 (2011) 139—175.
  10. V. Canterini, Connectedness of geometric representation of substitutions of Pisot type, Bull. Belg. Math. Soc. Simon Stevin 10 (2003) 77—89.
  11. V. Canterini, A. Siegel, Automate des préfixes-suffixes associé à une substitution primitive, J. Théor. Nombres Bordeaux 13 (2001) 353—369.
  12. V. Canterini, A. Siegel, Geometric representation of substitutions of Pisot type, Trans. Amer. Math. Soc. 353 (2001) 5121—5144 (electronic).
  13. H. Ei, S. Ito, Tilings from some non-irreducible, Pisot substitutions, Discrete Math. Theor. Comput. Sci. 7 (2005) 81—121 (electronic).
  14. H. Ei, S. Ito, H. Rao, Atomic surfaces, tilings and coincidences. II. Reducible case, Ann. Inst. Fourier (Grenoble) 56 (2006) 2285—2313. Numération, pavages, substitutions.
  15. B. Grünbaum, G.C. Shephard, Tilings and Patterns, W. H. Freeman and Company, New York, 1987.
  16. P. Hubert, A. Messaoudi, Best simultaneous Diophantine approximations of Pisot numbers and Rauzy fractals, Acta Arith. 124 (2006) 1—15.
  17. S. Ito, M. Kimura, On the Rauzy fractal, Japan J. Ind. Appl. Math. 8 (1991) 461—486.
  18. S. Ito, H. Rao, Atomic surfaces, tilings and coincidence. I. Irreducible case, Israel J. Math. 153 (2006) 129—155.
  19. A. Messaoudi, Propriétés arithmétiques et dynamiques du fractal de Rauzy, J. Théor. Nombres Bordeaux 10 (1998) 135—162.
  20. A. Messaoudi, Frontière du fractal de Rauzy et système de numération complexe, Acta Arith. 95 (2000) 195—224.
  21. A. Messaoudi, Arithmetic and topological properties of a class of fractal sets (Propriétés arithmétiques et topologiques d’une classe d’ensembles fractales.), Acta Arith. 121 (2006) 341—366.
  22. G. Rauzy, Nombres algébriques et substitutions, Bull. Soc. Math. France 110 (1982) 147—178.
  23. A. Siegel, J.M. Thuswaldner, Topological properties of Rauzy fractals, Mém. Soc. Math. Fr. (N.S.) (2009).
  24. V.F. Sirvent, Y. Wang, Self-affine tiling via substitution dynamical systems and Rauzy fractals, Pacific J. Math. 206 (2002) 465—485.
  25. B. Solomyak, Substitutions, adic transformations, and beta-expansions, in: Symbolic Dynamics and Its Applications, (New Haven, CT, 1991), in: Contemp. Math., vol. 135, Amer. Math. Soc, Providence, RI, 1992, pp. 361—372.
  26. J.M. Thuswaldner, Unimodular Pisot substitutions and their associated tiles, J. Théor. Nombres Bordeaux 18 (2006) 487—536.

Links

Theoretical Computer Science
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)