About the paper
coauthors |
Benoît Loridant |
|
Ali Messaoudi |
|
Jörg M. Thuswaldner |
language |
English |
published in |
Theoretical Computer Science 477 (2013) |
pages |
6 to 31 |
DOI |
10.1016/j.tcs.2012.12.019 |
supported by |
FAPESP, process 2009/07744-0 |
Abstract
We study aperiodic and periodic tilings induced by the Rauzy fractal and its subtiles asso-
ciated with beta-substitutions related to the polynomial
x3 - ax2 - bx -1
for a ≥ b ≥ 1.
In particular, we compute the corresponding boundary graphs, describing the adjacencies
in the tilings. These graphs are a valuable tool for more advanced studies of the topological
properties of the Rauzy fractals. As an example, we show that the Rauzy fractals are not
homeomorphic to a closed disc as soon as a ≤ 2b - 4. The methods presented in this paper
may be used to obtain similar results for other classes of substitutions.
References
-
S. Akiyama,
On the boundary of self affine tilings generated by Pisot numbers,
J. Math. Soc. Japan 54 (2002) 283—308.
-
S. Akiyama, H. Rao, W. Steiner,
A certain finiteness property of Pisot number systems,
J. Number Theory 107 (2004) 135—160.
-
P. Arnoux, S. Ito,
Pisot substitutions and Rauzy fractals,
Bull. Belg. Math. Soc. Simon Stevin 8 (2001) 181—207. Journées Montoises d’Informatique Théorique (Marne-la-Vallée, 2000).
-
C. Bandt, G. Gelbrich,
Classification of self-affine lattice tilings,
J. Lond. Math. Soc. (2) 50 (1994) 581—593.
-
M. Barge, B. Diamond,
Coincidence for substitutions of Pisot type,
Bull. Soc. Math. France 130 (2002) 619—626.
-
M. Barge, J. Kwapisz,
Geometric theory of unimodular substitutions,
Amer. J. Math. 128 (5) (2006) 1219—1282.
-
V. Berthé, M. Rigo,
Combinatorics, automata, and number theory,
in: Encyclopedia of Mathematics and its Applications, vol. 135, Cambridge University Press, Cambridge, 2010.
-
V. Berthé, A. Siegel,
Tilings associated with beta-numeration and substitutions,
Integers 5 (2005) (electronic).
-
V. Berthé, A. Siegel, W. Steiner, P. Surer, J.M. Thuswaldner,
Fractal tiles associated with shift radix systems,
Adv. Math. 226 (2011) 139—175.
-
V. Canterini,
Connectedness of geometric representation of substitutions of Pisot type,
Bull. Belg. Math. Soc. Simon Stevin 10 (2003) 77—89.
-
V. Canterini, A. Siegel,
Automate des préfixes-suffixes associé à une substitution primitive,
J. Théor. Nombres Bordeaux 13 (2001) 353—369.
-
V. Canterini, A. Siegel,
Geometric representation of substitutions of Pisot type,
Trans. Amer. Math. Soc. 353 (2001) 5121—5144 (electronic).
-
H. Ei, S. Ito,
Tilings from some non-irreducible, Pisot substitutions,
Discrete Math. Theor. Comput. Sci. 7 (2005) 81—121 (electronic).
-
H. Ei, S. Ito, H. Rao,
Atomic surfaces, tilings and coincidences. II. Reducible case,
Ann. Inst. Fourier (Grenoble) 56 (2006) 2285—2313. Numération, pavages, substitutions.
-
B. Grünbaum, G.C. Shephard,
Tilings and Patterns,
W. H. Freeman and Company, New York, 1987.
-
P. Hubert, A. Messaoudi,
Best simultaneous Diophantine approximations of Pisot numbers and Rauzy fractals,
Acta Arith. 124 (2006) 1—15.
-
S. Ito, M. Kimura,
On the Rauzy fractal,
Japan J. Ind. Appl. Math. 8 (1991) 461—486.
-
S. Ito, H. Rao,
Atomic surfaces, tilings and coincidence. I. Irreducible case,
Israel J. Math. 153 (2006) 129—155.
-
A. Messaoudi,
Propriétés arithmétiques et dynamiques du fractal de Rauzy,
J. Théor. Nombres Bordeaux 10 (1998) 135—162.
-
A. Messaoudi,
Frontière du fractal de Rauzy et système de numération complexe,
Acta Arith. 95 (2000) 195—224.
-
A. Messaoudi,
Arithmetic and topological properties of a class of fractal sets (Propriétés arithmétiques et topologiques d’une classe d’ensembles fractales.),
Acta Arith. 121 (2006) 341—366.
-
G. Rauzy,
Nombres algébriques et substitutions,
Bull. Soc. Math. France 110 (1982) 147—178.
-
A. Siegel, J.M. Thuswaldner,
Topological properties of Rauzy fractals,
Mém. Soc. Math. Fr. (N.S.) (2009).
-
V.F. Sirvent, Y. Wang,
Self-affine tiling via substitution dynamical systems and Rauzy fractals,
Pacific J. Math. 206 (2002) 465—485.
-
B. Solomyak,
Substitutions, adic transformations, and beta-expansions,
in: Symbolic Dynamics and Its Applications, (New Haven, CT, 1991), in: Contemp. Math., vol. 135, Amer. Math. Soc, Providence, RI, 1992, pp. 361—372.
-
J.M. Thuswaldner,
Unimodular Pisot substitutions and their associated tiles,
J. Théor. Nombres Bordeaux 18 (2006) 487—536.
Links
Theoretical Computer Science
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)