Über den Artikel
Co-Autoren |
Klaus Scheicher |
|
Víctor F. Sirvent |
Sprache |
Englisch |
erschienen in |
Indagationes Mathematicae 27, Nr. 3 (2016) |
Seiten |
799 bis 820 |
DOI |
10.1016/j.indag.2016.01.011 |
Unterstützt durch |
FWF, Projekt P23990 |
Titel auf Deutsch |
Symmetrische und kongruente Rauzyfraktale |
Zusammenfassung
Zwei Rauzyfraktale sind kongruent, wenn sie durch eine affine Abbildung ineinander überführt werden können. Wir geben hinreichende Bedingungen für primitive unimodulare Pisotsubstitutionen an, unter welchen die dazugehörigen Rauzyfraktale kongruent sind. Wir beschreiben damit eine große Klasse von Substitutionen, die punktsymmetrische Rauzyfraktale liefern, anhand der erzeugten Sprache.
Literaturangaben
-
S. Akiyama, M. Barge, V. Berthé, J.-Y. Lee, A. Siegel,
On the Pisot substitution conjecture,
in Mathematics of Aperiodic Order, vol. 309 of Progress in Mathematics,
Birkhäuser, 2015, 33—72.
-
S. Akiyama, J.-Y. Lee,
Overlap coincidence to strong coincidence in substitution tiling dynamics,
European J. Combin. 39 (2014), 233—243.
-
J.-P. Allouche, M. Baake, J. Cassaigne, D.Damanik,
Palindrome complexity,
Theoret. Comput. Sci. 292 (2003), 9—31.
Selected papers in honor of Jean Berstel.
-
J.-P. Allouche, T. Johnson,
Narayana's cows and delayed morphisms,
in 3èmes Journées d'Informatique Musicale (JIM '96), Ile de Tatihou, 1996, 2—7.
-
P. Arnoux, S. Ito,
Pisot substitutions and Rauzy fractals,
Bull. Belg. Math. Soc. Simon Stevin 8 (2001), 181—207,
Journées Montoises d'Informatique Théorique, Marne-la-Vallée, 2000.
-
P. Arnoux, G.~Rauzy,
Représentation géométrique de suites de complexité 2n+1,
Bull. Soc. Math. France 119 (1991), 199—215.
-
L. Balková, E. Pelantová, Š. Starosta,
Infinite words with finite defect,
Adv. in Appl. Math. 47 (2011), 562—574.
-
G. Barat, V. Berthé, P. Liardet, J.M. Thuswaldner,
Dynamical directions in numeration,
Ann. Inst. Fourier (Grenoble) 56 (2006), 1987—2092.
-
M. Barge,
The Pisot Conjecture for β-substitutions, Vorabdruck,
verfügbar auf arXiv.
-
M. Barge, B. Diamond,
Coincidence for substitutions of Pisot type,
Bull. Soc. Math. France 130 (2002), 619—626.
-
V. Berthé, T. Jolivet, A. Siegel,
Substitutive Arnoux-Rauzy sequences have pure discrete spectrum,
Unif. Distrib. Theory 7 (2012), 173—197.
-
V. Berthé, T. Jolivet, A. Siegel,
Connectedness of fractals associated with Arnoux-Rauzy substitutions,
RAIRO Theor. Inform. Appl. 48 (2014), 249—266.
-
V. Berthé, A. Siegel,
Tilings associated with beta-numeration and substitutions,
Integers 5 (2005), A2.
-
V. Berthé, A. Siegel, J.M. Thuswaldner,
Substitutions, Rauzy fractals and tilings,
in Combinatorics, automata and number theory, vol. 135 of Encyclopedia Math. Appl.,
Cambridge Univ. Press, Cambridge, 2010, 248—323.
-
J. Cassaigne, S. Ferenczi, A. Messaoudi,
Weak mixing and eigenvalues for Arnoux-Rauzy sequences,
Ann. Inst. Fourier (Grenoble) 58 (2008), 1983—2005.
-
J. Cassaigne, S. Ferenczi, L.Q. Zamboni,
Imbalances in Arnoux-Rauzy sequences,
Ann. Inst. Fourier (Grenoble) 50 (2000), 1265—1276.
-
N.P. Fogg,
Substitutions in dynamics, arithmetics and combinatorics,
vol. 1794 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2002.
Edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel.
-
T. Harju, J. Vesti, L.Q. Zamboni,
On a question of Hof, Knill and Simon on palindromic substitutive systems,
verfügbar auf arXiv.
-
A. Hof, O. Knill, B. Simon,
Singular continuous spectrum for palindromic Schrödinger operators,
Commun. Math. Phys. 174 (1995), 149—159.
-
M. Hollander, B. Solomyak,
Two-symbol Pisot substitutions have pure discrete spectrum,
Ergodic Theory Dynam. Systems. 23 (2003), 533—540.
-
B. Host,
Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable,
Ergodic Theory Dynam. Systems 6 (1986), 529—540.
-
S. Labbé,
A counterexample to a question of Hof, Knill and Simon,
Electron. J. Combin. 21 (2014), Artikel Nr. #P3.11.
-
B. Loridant,
Topology of a class of cubic Rauzy fractals,
Osaka J. Math., im Erscheinen.
-
B. Loridant, A. Messaoudi, P. Surer, J.M. Thuswaldner,
Tilings induced by a class of cubic Rauzy fractals,
Theoret. Comput. Sci. 477 (2013), 6—31.
-
B. Mossé,
Puissances de mots et reconnaissabilité des points fixes d´une substitution,
Theoret. Comput. Sci. 99 (1992), 327—334.
-
M. Queffélec,
Substitution dynamical systems. Spectral analysis. 2nd ed.,
Lecture Notes in Mathematics 1294. Dordrecht: Springer. xv, 351 p., 2010.
-
J.L. Ramírez, V.F. Sirvent,
On the k-Narayana sequence by matrix methods,
Ann. Math. Inform., im Erscheinen.
-
G. Rauzy,
Nombres algébriques et substitutions,
Bull. Soc. Math. France 110 (1982), 147—178.
-
T. Sellami,
Geometry of the common dynamics of Pisot substitutions with the same incidence matrix,
C. R. Math. Acad. Sci. Paris 348 (2010), 1005—1008.
-
T. Sellami, V.F. Sirvent,
Symmetric intersections of Rauzy fractals,
zur Veröffentlichung angenommen in Quaest. Math.
-
A. Siegel,
Pure discrete spectrum dynamical system and periodic tiling associated with a substitution,
Ann. Inst. Fourier (Grenoble) 54 (2004), 341—381.
-
A. Siegel, J.M. Thuswaldner,
Topological properties of Rauzy fractals,
Mém. Soc. Math. Fr. (N.S.) (2009).
-
B. Sing,
Pisot Substitutions and Beyond,
Doktorarbeit, Universität Bielefeld, 2006..
-
B. Sing, V.F. Sirvent,
Geometry of the common dynamics of flipped Pisot substitutions,
Monatsh. Math. 155 (2008), 431—448.
-
V.F. Sirvent,
Geodesic laminations as geometric realizations of Arnoux-Rauzy sequences,
Bull. Belg. Math. Soc. Simon Stevin 10 (2003), 221—229.
-
V.F. Sirvent,
Symmetries in k-bonacci adic systems,
Integers 11B (2011), Artikel Nr. A15, 18.
-
V.F. Sirvent,
Symmetries in Rauzy fractals,
Unif. Distrib. Theory 7 (2012), 155—171.
-
V.F. Sirvent, Y. Wang,
Self-affine tiling via substitution dynamical systems and Rauzy fractals,
Pacific J. Math. 206 (2002), 465—485.
-
B. Tan,
Mirror substitutions and palindromic sequences,
Theoret. Comput. Sci. 389 (2007), 118—124.
-
B. Tan, Z.-Y. Wen,
Invertible substitutions and Sturmian sequences,
European J. Combin. 24 (2003), 983—1002.
-
J.M. Thuswaldner,
Unimodular Pisot substitutions and their associated tiles,
J. Théor. Nombres Bordeaux 18 (2006), 487—536.
Links
Indagationes Mathematicae
Fond zur Förderung der wissenschaftlichen Forschung (FWF)