About the paper

coauthors Klaus Scheicher
Víctor F. Sirvent
language English
published in Indagationes Mathematicae 27, No. 3 (2016)
pages 799 to 820
DOI 10.1016/j.indag.2016.01.011
supported by FWF, project P23990

Abstract

Two Rauzy fractals are congruent if they differ by an affne transformation only. We give conditions on unimodular Pisot substitutions in order to ensure the congruence of the Rauzy fractals. We use these results to characterise a large family of substitutions that yield central symmetric Rauzy fractals in terms of the induced language.

References

  1. S. Akiyama, M. Barge, V. Berthé, J.-Y. Lee, A. Siegel, On the Pisot substitution conjecture, in Mathematics of Aperiodic Order, vol. 309 of Progress in Mathematics, Birkhäuser, 2015, 33—72.
  2. S. Akiyama, J.-Y. Lee, Overlap coincidence to strong coincidence in substitution tiling dynamics, European J. Combin. 39 (2014), 233—243.
  3. J.-P. Allouche, M. Baake, J. Cassaigne, D.Damanik}, Palindrome complexity, Theoret. Comput. Sci. 292 (2003), 9—31. Selected papers in honor of Jean Berstel.
  4. J.-P. Allouche, T. Johnson, Narayana's cows and delayed morphisms, in 3èmes Journées d'Informatique Musicale (JIM '96), Ile de Tatihou, 1996, 2—7.
  5. P. Arnoux, S. Ito, Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. Simon Stevin 8 (2001), 181—207, Journées Montoises d'Informatique Théorique, Marne-la-Vallée, 2000.
  6. P. Arnoux, G.~Rauzy, Représentation géométrique de suites de complexité 2n+1, Bull. Soc. Math. France 119 (1991), 199—215.
  7. L. Balková, E. Pelantová, Š. Starosta}, Infinite words with finite defect, Adv. in Appl. Math. 47 (2011), 562—574.
  8. G. Barat, V. Berthé, P. Liardet, J.M. Thuswaldner, Dynamical directions in numeration, Ann. Inst. Fourier (Grenoble) 56 (2006), 1987—2092.
  9. M. Barge, The Pisot Conjecture for β-substitutions, preprint, available on arXiv.
  10. M. Barge, B. Diamond, Coincidence for substitutions of Pisot type, Bull. Soc. Math. France 130 (2002), 619—626.
  11. V. Berthé, T. Jolivet, A. Siegel, Substitutive Arnoux-Rauzy sequences have pure discrete spectrum, Unif. Distrib. Theory 7 (2012), 173—197.
  12. V. Berthé, T. Jolivet, A. Siegel, Connectedness of fractals associated with Arnoux-Rauzy substitutions, RAIRO Theor. Inform. Appl. 48 (2014), 249—266.
  13. V. Berthé, A. Siegel, Tilings associated with beta-numeration and substitutions, Integers 5 (2005), A2.
  14. V. Berthé, A. Siegel, J. Thuswaldner, Substitutions, Rauzy fractals and tilings, in Combinatorics, automata and number theory, vol. 135 of Encyclopedia Math. Appl., Cambridge Univ. Press, Cambridge, 2010, 248—323.
  15. J. Cassaigne, S. Ferenczi, A. Messaoudi, Weak mixing and eigenvalues for Arnoux-Rauzy sequences, Ann. Inst. Fourier (Grenoble) 58 (2008), 1983—2005.
  16. J. Cassaigne, S. Ferenczi, L.Q. Zamboni, Imbalances in Arnoux-Rauzy sequences, Ann. Inst. Fourier (Grenoble) 50 (2000), 1265—1276.
  17. N.P. Fogg, Substitutions in dynamics, arithmetics and combinatorics, vol. 1794 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2002. Edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel.
  18. T. Harju, J. Vesti, L.Q. Zamboni, On a question of Hof, Knill and Simon on palindromic substitutive systems, available on arXiv.
  19. A. Hof, O. Knill, B. Simon, Singular continuous spectrum for palindromic Schrödinger operators, Commun. Math. Phys. 174 (1995), 149—159.
  20. M. Hollander, B. Solomyak, Two-symbol Pisot substitutions have pure discrete spectrum, Ergodic Theory Dynam. Systems. 23 (2003), 533—540.
  21. B. Host, Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable, Ergodic Theory Dynam. Systems 6 (1986), 529—540.
  22. S. Labbé, A counterexample to a question of Hof, Knill and Simon, Electron. J. Combin. 21 (2014), article no. #P3.11.
  23. B. Loridant, Topology of a class of cubic Rauzy fractals, Osaka J. Math., to appear.
  24. B. Loridant, A. Messaoudi, P. Surer, J.M. Thuswaldner, Tilings induced by a class of cubic Rauzy fractals, Theoret. Comput. Sci. 477 (2013), 6—31.
  25. B. Mossé, Puissances de mots et reconnaissabilité des points fixes d´une substitution, Theoret. Comput. Sci. 99 (1992), 327—334.
  26. M. Queffélec, Substitution dynamical systems. Spectral analysis. 2nd ed., Lecture Notes in Mathematics 1294. Dordrecht: Springer. xv, 351 p., 2010.
  27. J.L. Ramírez, V.F. Sirvent, On the k-Narayana sequence by matrix methods, Ann. Math. Inform., to appear.
  28. G. Rauzy, Nombres algébriques et substitutions, Bull. Soc. Math. France 110 (1982), 147—178.
  29. T. Sellami, Geometry of the common dynamics of Pisot substitutions with the same incidence matrix, C. R. Math. Acad. Sci. Paris 348 (2010), 1005—1008.
  30. T. Sellami, V.F. Sirvent, Symmetric intersections of Rauzy fractals, accepted for publication in Quaest. Math.
  31. A. Siegel, Pure discrete spectrum dynamical system and periodic tiling associated with a substitution, Ann. Inst. Fourier (Grenoble) 54 (2004), 341—381.
  32. A. Siegel, J.M. Thuswaldner, Topological properties of Rauzy fractals, Mém. Soc. Math. Fr. (N.S.) (2009).
  33. B. Sing, Pisot Substitutions and Beyond, Phd. thesis, Universität Bielefeld, 2006..
  34. B. Sing, V.F. Sirvent, Geometry of the common dynamics of flipped Pisot substitutions, Monatsh. Math. 155 (2008), 431—448.
  35. V.F. Sirvent, Geodesic laminations as geometric realizations of Arnoux-Rauzy sequences, Bull. Belg. Math. Soc. Simon Stevin 10 (2003), 221—229.
  36. V.F. Sirvent, Symmetries in k-bonacci adic systems, Integers 11B (2011), article no. A15, 18.
  37. V.F. Sirvent, Symmetries in Rauzy fractals, Unif. Distrib. Theory 7 (2012), 155—171.
  38. V.F. Sirvent, Y. Wang, Self-affine tiling via substitution dynamical systems and Rauzy fractals, Pacific J. Math. 206 (2002), 465—485.
  39. B. Tan, Mirror substitutions and palindromic sequences, Theoret. Comput. Sci. 389 (2007), 118—124.
  40. B. Tan, Z.-Y. Wen, Invertible substitutions and Sturmian sequences, European J. Combin. 24 (2003), 983—1002.
  41. J.M. Thuswaldner, Unimodular Pisot substitutions and their associated tiles, J. Théor. Nombres Bordeaux 18 (2006), 487—536.

Links

Indagationes Mathematicae
Austrian Science Foundation (FWF)