Sobre o artigo
co-autores |
Klaus Scheicher |
|
Víctor F. Sirvent |
idioma |
inglês |
publicado no |
Indagationes Mathematicae 27, v. 3 (2016) |
páginas |
799 a 820 |
DOI |
10.1016/j.indag.2016.01.011 |
suportado por |
FWF, projeto P23990 |
título em português |
Simetrias e congruências de fractais de Rauzy |
Resumo
Dois fractais de Rauzy são congruentes se entre eles existe uma transformação afim.
Nós damos condições a substituições de Pisot primitivos e unimodulares que garantem a congruência dos associados fractais de Rauzy.
Usamos estes resultados para descrever uma família grande de substituções que produz fractais de Rauzy simétricos (referente a um ponto) em vista da linguagem induzida.
Bibliografia
-
S. Akiyama, M. Barge, V. Berthé, J.-Y. Lee, A. Siegel,
On the Pisot substitution conjecture,
in Mathematics of Aperiodic Order, vol. 309 of Progress in Mathematics,
Birkhäuser, 2015, 33—72.
-
S. Akiyama, J.-Y. Lee,
Overlap coincidence to strong coincidence in substitution tiling dynamics,
European J. Combin. 39 (2014), 233—243.
-
J.-P. Allouche, M. Baake, J. Cassaigne, D.Damanik},
Palindrome complexity,
Theoret. Comput. Sci. 292 (2003), 9—31.
Selected papers in honor of Jean Berstel.
-
J.-P. Allouche, T. Johnson,
Narayana's cows and delayed morphisms,
in 3èmes Journées d'Informatique Musicale (JIM '96), Ile de Tatihou, 1996, 2—7.
-
P. Arnoux, S. Ito,
Pisot substitutions and Rauzy fractals,
Bull. Belg. Math. Soc. Simon Stevin 8 (2001), 181—207,
Journées Montoises d'Informatique Théorique, Marne-la-Vallée, 2000.
-
P. Arnoux, G.~Rauzy,
Représentation géométrique de suites de complexité 2n+1,
Bull. Soc. Math. France 119 (1991), 199—215.
-
L. Balková, E. Pelantová, Š. Starosta},
Infinite words with finite defect,
Adv. in Appl. Math. 47 (2011), 562—574.
-
G. Barat, V. Berthé, P. Liardet, J.M. Thuswaldner,
Dynamical directions in numeration,
Ann. Inst. Fourier (Grenoble) 56 (2006), 1987—2092.
-
M. Barge,
The Pisot Conjecture for β-substitutions, pre-publicação,
disponível no arXiv.
-
M. Barge, B. Diamond,
Coincidence for substitutions of Pisot type,
Bull. Soc. Math. France 130 (2002), 619—626.
-
V. Berthé, T. Jolivet, A. Siegel,
Substitutive Arnoux-Rauzy sequences have pure discrete spectrum,
Unif. Distrib. Theory 7 (2012), 173—197.
-
V. Berthé, T. Jolivet, A. Siegel,
Connectedness of fractals associated with Arnoux-Rauzy substitutions,
RAIRO Theor. Inform. Appl. 48 (2014), 249—266.
-
V. Berthé, A. Siegel,
Tilings associated with beta-numeration and substitutions,
Integers 5 (2005), A2.
-
V. Berthé, A. Siegel, J.M. Thuswaldner,
Substitutions, Rauzy fractals and tilings,
in Combinatorics, automata and number theory, vol. 135 of Encyclopedia Math. Appl.,
Cambridge Univ. Press, Cambridge, 2010, 248—323.
-
J. Cassaigne, S. Ferenczi, A. Messaoudi,
Weak mixing and eigenvalues for Arnoux-Rauzy sequences,
Ann. Inst. Fourier (Grenoble) 58 (2008), 1983—2005.
-
J. Cassaigne, S. Ferenczi, L.Q. Zamboni,
Imbalances in Arnoux-Rauzy sequences,
Ann. Inst. Fourier (Grenoble) 50 (2000), 1265—1276.
-
N.P. Fogg,
Substitutions in dynamics, arithmetics and combinatorics,
vol. 1794 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2002.
Edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel.
-
T. Harju, J. Vesti, L.Q. Zamboni,
On a question of Hof, Knill and Simon on palindromic substitutive systems,
disponível no arXiv.
-
A. Hof, O. Knill, B. Simon,
Singular continuous spectrum for palindromic Schrödinger operators,
Commun. Math. Phys. 174 (1995), 149—159.
-
M. Hollander, B. Solomyak,
Two-symbol Pisot substitutions have pure discrete spectrum,
Ergodic Theory Dynam. Systems. 23 (2003), 533—540.
-
B. Host,
Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable,
Ergodic Theory Dynam. Systems 6 (1986), 529—540.
-
S. Labbé,
A counterexample to a question of Hof, Knill and Simon,
Electron. J. Combin. 21 (2014), artigo n° #P3.11.
-
B. Loridant,
Topology of a class of cubic Rauzy fractals,
Osaka J. Math., aceito.
-
B. Loridant, A. Messaoudi, P. Surer, J.M. Thuswaldner,
Tilings induced by a class of cubic Rauzy fractals,
Theoret. Comput. Sci. 477 (2013), 6—31.
-
B. Mossé,
Puissances de mots et reconnaissabilité des points fixes d´une substitution,
Theoret. Comput. Sci. 99 (1992), 327—334.
-
M. Queffélec,
Substitution dynamical systems. Spectral analysis. 2nd ed.,
Lecture Notes in Mathematics 1294. Dordrecht: Springer. xv, 351 p., 2010.
-
J.L. Ramírez, V.F. Sirvent,
On the k-Narayana sequence by matrix methods,
Ann. Math. Inform., aceito.
-
G. Rauzy,
Nombres algébriques et substitutions,
Bull. Soc. Math. France 110 (1982), 147—178.
-
T. Sellami,
Geometry of the common dynamics of Pisot substitutions with the same incidence matrix,
C. R. Math. Acad. Sci. Paris 348 (2010), 1005—1008.
-
T. Sellami, V.F. Sirvent,
Symmetric intersections of Rauzy fractals,
Quaest. Math, aceito.
-
A. Siegel,
Pure discrete spectrum dynamical system and periodic tiling associated with a substitution,
Ann. Inst. Fourier (Grenoble) 54 (2004), 341—381.
-
A. Siegel, J.M. Thuswaldner,
Topological properties of Rauzy fractals,
Mém. Soc. Math. Fr. (N.S.) (2009).
-
B. Sing,
Pisot Substitutions and Beyond,
tese de doutorado, Universität Bielefeld, 2006..
-
B. Sing, V.F. Sirvent,
Geometry of the common dynamics of flipped Pisot substitutions,
Monatsh. Math. 155 (2008), 431—448.
-
V.F. Sirvent,
Geodesic laminations as geometric realizations of Arnoux-Rauzy sequences,
Bull. Belg. Math. Soc. Simon Stevin 10 (2003), 221—229.
-
V.F. Sirvent,
Symmetries in k-bonacci adic systems,
Integers 11B (2011), artigo n° A15, 18.
-
V.F. Sirvent,
Symmetries in Rauzy fractals,
Unif. Distrib. Theory 7 (2012), 155—171.
-
V.F. Sirvent, Y. Wang,
Self-affine tiling via substitution dynamical systems and Rauzy fractals,
Pacific J. Math. 206 (2002), 465—485.
-
B. Tan,
Mirror substitutions and palindromic sequences,
Theoret. Comput. Sci. 389 (2007), 118—124.
-
B. Tan, Z.-Y. Wen,
Invertible substitutions and Sturmian sequences,
European J. Combin. 24 (2003), 983—1002.
-
J.M. Thuswaldner,
Unimodular Pisot substitutions and their associated tiles,
J. Théor. Nombres Bordeaux 18 (2006), 487—536.
Links
Indagationes Mathematicae
Fundação Austríaca de Ciência (FWF)